Czechoslovak Mathematical Journal

Pavol Marušiak

Oscillatory properties of functional differential systems of neutral type

Czechoslovak Mathematical Journal, Vol. 43 (1993), No. 4, 649-662

Persistent URL:
http://dml.cz/dmlcz/128431

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

OSCILLATORY PROPERTIES OF FUNCTIONAL DIFFERENTIAL SYSTEMS OF NEUTRAL TYPE

Pavol Marušiak, Žilina
(Received February 26, 1992)

1. In this paper we are concerned with the oscillatory and nonoscillatory behavior of functional differential systems of the form

$$
\begin{aligned}
(S, \sigma) \quad\left[y_{1}(t)-a(t) y_{1}(h(t))\right]^{\prime} & =p_{1}(t) f_{1}\left(y_{2}\left(g_{2}(t)\right)\right), \\
y_{i}^{\prime}(t) & =p_{i}(t) f_{i}\left(y_{i+1}\left(g_{i+1}(t)\right)\right), \quad i=2, \ldots, n-1 \\
y_{n}^{\prime}(t) & =\sigma p_{n}(t) f_{n}\left(y_{1}\left(g_{1}(t)\right)\right)
\end{aligned}
$$

where $n \geqslant 2, \sigma=1$ or $\sigma=-1$ and
$\left(\mathrm{C}_{1}\right) a:[0, \infty) \rightarrow R$ is a continuous function satisfying

$$
|a(t)| \leqslant \beta<1, a(t) a(h(t)) \geqslant 0 \text { on }[0, \infty), \text { where } \beta \text { is a constant; }
$$

$\left(\mathrm{C}_{2}\right) p_{i}:[0, \infty) \rightarrow[0, \infty), i=1,2, \ldots, n$ are continuous functions not identically zero on any subinterval $[T, \infty) \subset[0, \infty)$,

$$
\int^{\infty} p_{i}(t) \mathrm{d} t=\infty, \quad i=1,2, \ldots, n-1
$$

$\left(\mathrm{C}_{3}\right) h:[0, \infty) \rightarrow R$ is a continuous function, $h(t) \leqslant t$ on $[0, \infty), h$ is nondecreasing on $[0, \infty)$ and $\lim _{t \rightarrow \infty} h(t)=\infty$;
$\left(\mathrm{C}_{4}\right) g_{i}:[0, \infty) \rightarrow R, i=1,2, \ldots, n$ are continuous functions and $\lim _{t \rightarrow \infty} g_{1}(t)=\infty$, $i=1,2, \ldots, n$;
$\left(\mathrm{C}_{5}\right) f_{i}: R \rightarrow R, i=1,2, \ldots, n$ are continuous functions, $u f_{i}(u)>0$ for $u \neq 0$, $i=1,2, \ldots, n$;
$\left(\mathrm{C}_{6}\right) g_{i}, i=1,2, \ldots, n$ are increasing functions on $[0, \infty)$;
$\left(\mathrm{C}_{7}\right) f_{i}, i=n-1, n$ are nondecreasing functions on R.

Remark 1. Let $g_{i}(t)=t, i=2, \ldots, n, p_{i}(t)>0$ on $[0, \infty), i=1,2, \ldots, n-1$, $f_{i}(u)=u, u \in R, i=1,2, \ldots, n-1$. Then the system (S, σ) is equivalent to the n-th order differential equation of neutral type with quasiderivatives:
(E, σ)

$$
\left(\frac{1}{p_{n-1}(t)} \ldots\left(\frac{1}{p_{2}(t)}\left(\frac{1}{p_{1}(t)}(y(t)-a(t) y(h(t)))^{\prime}\right)^{\prime}\right)^{\prime} \ldots\right)^{\prime}=\sigma p_{n}(t) f_{n}(y(g(t)))
$$

Recently there has been a growing interest in the study of oscillatory solutions of neutral differential equations of n-th order, see, for example, the papers [$[1,4-6$, 10] and the references cited therein. As far as is known to the author, the oscillatory theory of systems of neutral differential equations is studied only in the papers $[2,3,9]$.

The purpose of this paper is to establish some new criteria for the oscillation of the system (S, σ). These criteria extend and improve those introduced in [7]. Our results are new even when $a(t) \equiv 0$.

Let $t_{0} \geqslant 0$. Denote

$$
t_{1}=\min \left\{\inf _{t \geqslant t_{0}} h(t), \inf _{t \geqslant t_{0}} g_{i}(t), i=1,2, \ldots, n\right\}
$$

A function $y=\left(y_{1}, \ldots, y_{n}\right)$ is a solution of the system (S, σ) if there exists a $t_{0} \geqslant 0$ such that y is continuous on $\left[t_{1}, \infty\right), y_{1}(t)-a(t) y_{1}(h(t)), y_{i}(t), i=2, \ldots, n$ are continuously differentable on $\left[t_{0}, \infty\right)$ and y satisfies (S, σ) on $\left[t_{0}, \infty\right)$.

Denote by W the set of all solutions $y=\left(y_{1}, \ldots, y_{n}\right)$ of the system (S, σ) which exist on some ray $\left[T_{y}, \infty\right) \subset[0, \infty)$ and satisfy

$$
\sup \left\{\sum_{i=1}^{n}\left|y_{i}(t)\right|: t \geqslant T\right\}>0 \quad \text { for any } T \geqslant T_{y}
$$

A solution $y \in W$ is nonoscillatory if there exists a $T_{y} \geqslant 0$ such that its every component is different from zero for all $t \geqslant T_{y}$. Otherwise a solution $y \in W$ is said to be oscillatory.
2. Denote

$$
\begin{align*}
\gamma_{i}(t) & =\sup \left\{s \geqslant 0: g_{i}(s) \leqslant t\right\}, \quad t \geqslant 0, \quad i=1,2, \ldots, n ; \tag{1}\\
\gamma_{h}(t) & =\sup \{s \geqslant 0: h(s) \leqslant t\}, \quad t \geqslant 0 ; \\
\gamma(t) & =\max \left\{\gamma_{h}(t), \gamma_{1}(t), \ldots, \gamma_{n}(t)\right\}, \quad t \geqslant 0 .
\end{align*}
$$

For any $y_{1}(t)$ we define $z(t)$ by

$$
\begin{equation*}
z(t)=y_{1}(t)-a(t) y_{1}(h(t)), \quad t \geqslant \gamma_{h}\left(t_{0}\right)=t_{1}>0 . \tag{2}
\end{equation*}
$$

The inequality (2) implies that

$$
\begin{align*}
y_{1}(t) & =z(t)+a(t) y_{1}(h(t)) \quad t \geqslant t_{1} \tag{3}\\
y_{1}(t) & =z(t)+a(t) z(h(t))+a(t) a(h(t)) y_{1}(h((h(t)) \tag{4}\\
t & \geqslant \gamma_{h}\left(t_{1}\right)=t_{2}
\end{align*}
$$

Lemma 1. Let $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{5}\right)$ hold and let $y \in W$ be a solution of the system (S, σ) with $y_{1}(t) \neq 0$ on $\left[t_{0}, \infty\right), t_{0}>0$. Then y is nonoscillatory and $z(t), y_{2}(t), \ldots, y_{n}(t)$ are monotone on some ray $[T, \infty), T \geqslant t_{0}$.

Proof. Let $y \in W$ and let $y_{1}(t) \neq 0$ on $\left[t_{0}, \infty\right), t_{0} \geqslant 0$. Then in view of $\left(\mathrm{C}_{3}\right)$ $\left(\mathrm{C}_{5}\right)$ the n-th equation of (S, σ) implies that either $y_{n}^{\prime}(h(t)) \geqslant 0$ or $y_{n}^{\prime}(h(t)) \leqslant 0$ for $t \geqslant \gamma\left(t_{0}\right)=T_{1}$, and $y_{n}^{\prime}(t), y_{n}(t)$ are not identically zero on any infinite subinterval of $\left[T_{1}, \infty\right)$. Thus y_{n} is a monotone function on $\left[T_{1}, \infty\right)$ and hence there exists a $T_{2} \geqslant T_{1}$ such that $y_{n}(t) \neq 0$ on $\left[T_{2}, \infty\right)$. Analogously we can prove that $y_{n-1}(t), \ldots, y_{2}(t)$, $z(t)$ are nonoscillatory and monotone functions on an interval $[T, \infty), T \geqslant T_{2}$.

Lemma 2. Suppose that $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{5}\right)$ hold. Let $y=\left(y_{1}, \ldots, y_{n}\right) \in W$ be a nonoscillatory solution of (S, σ) and let $\lim _{t \rightarrow \infty} z(t)=L_{1}, \lim y_{k}(t)=L_{k}, k=2, \ldots, n$. Then
(5) if $k \geqslant 2,\left|L_{k}\right|>0$ implies $\lim _{i \rightarrow \infty} y_{i}(t)=\delta \infty, i=1, \ldots, k-1$, where $\delta=\operatorname{sign} L_{k}$;
(6) if $1 \leqslant k<n,\left|L_{k}\right|<\infty$ implies $\lim _{t \rightarrow \infty} y_{i}(t)=0, i=k+1, \ldots, n$.

Proof. Lemma 1 implies that $z(t), y_{k}(t), k=2, \ldots, n$ are monotone functions for large t and therefore there exist finite or infinite limits: $\lim _{t \rightarrow \infty} z(t)=L$, $\lim _{t \rightarrow \infty} y_{k}(t)=L_{k}, k=2, \ldots, n$.
(i) Let $k \geqslant 2, L_{k}>0$. Similarly we proceed if $L_{k}<0$. Then there exists a $t_{0} \geqslant 0$ such that $y_{k}(t) \geqslant L_{k} / 2$ for $t \geqslant t_{1}$. From the $(k-1)$-st, \ldots, the first equations of (S, σ), taking into account $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{4}\right),\left(\mathrm{C}_{5}\right)$, we get that $y_{k-1}(t), \ldots, y_{2}(t), z(t)$ are increasing functions and $\lim _{t \rightarrow \infty} y_{i}(t)=\infty, i=k-1, \ldots, 2, \lim _{t \rightarrow \infty} z(t)=\infty$.

By virtue of monotonicity of $z(t)(>0)$, (4) and $\left(\mathrm{C}_{1}\right)$ we conclude that

$$
y_{1}(t) \geqslant z(t)+a(t) z(h(t)) \geqslant z(t)-\beta z(h(t)) \geqslant(1-\beta) z(t) .
$$

If $\lim _{t \rightarrow \infty} z(t)=\infty$, then $\lim _{t \rightarrow \infty} y_{1}(t)=\infty$.
(ii) Let $1 \leqslant k<n, 0 \leqslant L_{k}<\infty$. Suppose that $L_{i}>0$ for some $i \in\{k+1, \ldots, n\}$. Then by (5) $\lim _{t \rightarrow \infty} y_{i}(t)=\infty, i=1, \ldots, i-1$. This contradicts the fact that $L_{k}<\infty$. Therefore $L_{i}=0, i=k+1, \ldots, n$.

If $a(t) \equiv 0$ on $[0, \infty)$, then we denote the system (S, σ) by $\left(S_{0}, \sigma\right)$. It is then a system of differential equations with deviating arguments. For the system (S_{0}, σ) the following lemma holds:

Lemma 3 [8, Lemma 1]. Suppose that $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{4}\right)$ and $\left(\mathrm{C}_{5}\right)$ hold. Let $y=$ $\left(y_{1}, \ldots, y_{n}\right)$ be a nonoscillatory solution of $\left(S_{0}, \sigma\right)$ on $[0, \infty)$. Then there exist an integer $l \in\{1, \ldots, n\}, \sigma(-1)^{n+l+1}=1$ or $l=n$, and a $t_{0} \geqslant 0$ such that for $t \geqslant t_{0}$

$$
\begin{aligned}
y_{i}(t) y_{1}(t) & >0, \\
(-1)^{l+i} y_{i}(t) y_{1}(t)>0, & i=l, l+1, \ldots, l
\end{aligned}
$$

We now generalize this lemma to the system (S, σ).

Lemma 4. Suppose that $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{5}\right)$ hold. Let $y=\left(y_{1}, \ldots, y_{n}\right)$ be a nonoscillatory solution of (S, σ) on $[0, \infty)$. Then there exist an integer $l \in\{1,2, \ldots, n\}$, $\sigma(-1)^{n+l+1}=1$ or $l=n$, and a $t_{0} \geqslant 0$ such that for $t \geqslant t_{0}$ either

$$
\begin{align*}
& y_{1}(t) z(t)>0, \tag{7}\\
& y_{1}(t) y_{i}(t)>0, \quad i=1,2, \ldots, l, \tag{8}\\
&(-1)^{l+i} y_{i}(t) y_{1}(t)>0, \quad i=l, l+1, \ldots, n \tag{9}
\end{align*}
$$

or

$$
\begin{align*}
y_{1}(t) z(t) & <0 \tag{10}\\
(-1)^{i} y_{i}(t) y_{1}(t) & >0, \quad i=2, \ldots, n, \quad \text { where } \quad \sigma(-1)^{n}=-1 . \tag{11}
\end{align*}
$$

Proof. Let $y=\left(y_{1}, \ldots, y_{n}\right) \in W$ be a nonoscillatory solution of (S, σ). Without loss of generality we suppose that $y_{1}\left(g_{1}(t)\right)>0$ for $t \geqslant T_{0} \geqslant a$. Then Lemma 1 implies that $z(t)(\neq 0)$ and $y_{i}(t), i=2, \ldots, n$ are monotone on $\left[T_{1}, \infty\right), T_{1} \geqslant T_{0}$. Therefore either (7) or (10) hold on [T_{1}, ∞).

1) Let (7) hold on $\left[T_{1}, \infty\right)$. In this case we can use Lemma 3 which implies that there exist $l \in\{1,2, \ldots, n\}, \sigma(-1)^{n+l+1}=1$ or $l=n$ and a $t_{0} \geqslant T_{1}$ such that (8), (9) hold for $t \geqslant t_{0}$.

Ila) Let (10) hold and let $y_{2}(t)<0$ on $\left[T_{1}, \infty\right)$. Then in view of $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{4}\right),\left(\mathrm{C}_{5}\right)$, the first equation of (S, σ) implies that $z(t)$ is decreasing on $\left[T_{2}, \infty\right), T_{2} \geqslant \gamma\left(T_{1}\right)$. We now show that this case cannot occur. Indeed, taking into account that $y_{1}(t)>0$, $z(t)<0$ on $\left[T_{2}, \infty\right)$ and $\left(\mathrm{C}_{1}\right)$, we obtain from (3) that $y_{1}(h(t)) \geqslant y_{1}(t)$ on $\left[T_{2}, \infty\right)$.

Then with regard to the monotonicity of y_{1}, z, there exist $\lim _{t \rightarrow \infty} y_{1}(t)=c \geqslant 0$, $\lim _{t \rightarrow \infty} z(t)=L<0$. Then (2) together with $\left(\mathrm{C}_{1}\right)$ implies

$$
L=\lim _{t \rightarrow \infty}\left(y_{1}(t)-a(t) y_{1}(h(t))\right) \geqslant c(1-\beta) \geqslant 0 .
$$

This contradicts the inequality $L<0$.
IIb) Let (10) hold and let $y_{2}(t)>0$ on $\left[T_{1}, \infty\right)$. Then in view of $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{4}\right)$ and $\left(\mathrm{C}_{5}\right)$ the first equation of (S, σ) implies that $z(t)$ is increasing on $\left[T_{2}, \infty\right), T_{2} \geqslant \gamma\left(T_{1}\right)$. If $n \geqslant 3$ we now show that $y_{3}(t)<0$ on $\left[T_{3}, \infty\right), T_{3} \geqslant T_{2}$. In the opposite case by virtue of $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{4}\right)$ and $\left(\mathrm{C}_{5}\right)$ the second equation of (S, σ) gives that there exist an $L_{2}>0$ and a $T_{4} \geqslant T_{3}$ such that $y_{2}(t) \geqslant L_{2}$ on $\left[T_{4}, \infty\right)$. With regard to the system (S, σ) we conclude that $z(t) \geqslant z\left(T_{4}\right)+f_{1}(c) \int_{T_{4}}^{t} p_{1}(t) \mathrm{d} t \rightarrow \infty$ for $t \rightarrow \infty$. This contradicts the negativeness of $z(t)$ on $\left[T_{1}, \infty\right)$. If $n>3$ we similarly prove that $y_{4}(t)>0, y_{5}(t)<0, \ldots,(-1)^{n} y_{n}(t)>0$ for $t \geqslant t_{0} \geqslant T_{4}$, where $\sigma(-1)^{n}=-1$.

The proof of Lemma 4 is complete.
Remark 2. The case $y_{1}(t) z(t)<0$ on $\left[t_{0}, \infty\right) \subset[0, \infty)$ can occur only if $a(t)>0$ on $\left[t_{1}, \infty\right)$ and $\sigma(-1)^{n}=-1$.

We denote by N_{l}^{+}or N_{2}^{-}the set of all nonoscillatory solutions of (S, σ) which satisfy (7)-(9) or (10), (11), respectively. Denote by N the set of all nonoscillatory solutions of (S, σ). Then by Lemma 4 the following classification holds.

$$
\begin{align*}
& N=N_{n}^{+} \cup N_{n-1}^{+} \cup \ldots \cup N_{3}^{+} \cup N_{1}^{+} \quad \text { for } \sigma=1, n \text { even, } \tag{12}\\
& N=N_{n}^{+} \cup N_{n-1}^{+} \cup \ldots \cup N_{4}^{+} \cup N_{2}^{+} \cup N_{2}^{-} \quad \text { for } \sigma=1, n \text { odd, } \\
& N=N_{n}^{+} \cup N_{n-2}^{+} \cup \ldots \cup N_{2}^{+} \cup N_{2}^{-} \quad \text { for } \sigma=-1, n \text { even, } \\
& N=N_{n}^{+} \cup N_{n-2}^{+} \cup \ldots \cup N_{3}^{+} \cup N_{1}^{+} \quad \text { for } \sigma=-1, n \text { odd. }
\end{align*}
$$

Lemma 5. I) Let $y \in N_{l}^{+}, l \geqslant 2$. Then

$$
\begin{equation*}
\left|y_{1}(t)\right| \geqslant(1-\beta)|z(t)| \quad \text { for large } t \tag{13}
\end{equation*}
$$

II) Let $y \in N_{1}^{+}$.
(i) If $\lim _{t \rightarrow \infty} z(t)=L>0$, then there exists an $a_{0}: 0<a_{0}<1$ such that

$$
\begin{equation*}
\left|y_{1}(t)\right| \geqslant a_{0}|z(t)| \quad \text { for large } t ; \tag{14}
\end{equation*}
$$

(ii) If $\lim _{t \rightarrow \infty} z(t)=0$ then $\lim _{t \rightarrow \infty} \inf y_{1}(t)=0, \lim _{t \rightarrow \infty} y_{i}(t)=0, i=2, \ldots, n$.

Proof. Without loss of generality we suppose that $y_{1}(t)>0$ on $\left[t_{0}, \infty\right), t_{0} \geqslant 0$.
I) The relation (13) is derived in the proof of Lemma 2.
II) (i) Let $y \in N_{1}^{+}, y_{1}(t)>0$ on $\left[t_{0}, \infty\right)$ and let $\lim _{t \rightarrow \infty} z(t)=L>0$. Then the first equation of (S, σ) together with $\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{5}\right)$ implies that $z(t)(>0)$ is a decreasing function on $\left[t_{1}, \infty\right), t_{1} \geqslant \gamma\left(t_{0}\right)$. We choose $\delta: 1<\delta<1 / \beta$, where β is defined by $\left(\mathrm{C}_{1}\right)$. Then there exists a $t_{2} \geqslant t_{1}$ such that $L \leqslant z(t) \leqslant z(h(t)) \leqslant \delta L$ for $t \geqslant t_{2}$. The last inequality implies

$$
\begin{equation*}
z(h(t)) \leqslant \delta L \leqslant \delta z(t) \text { for } t \geqslant t_{o} . \tag{16}
\end{equation*}
$$

Taking into account (16), (C_{1}) we obtain from (4) that

$$
y_{1}(t) \geqslant z(t)+a(t) z(h(t)) \geqslant z(t)-\beta z(h(t)) \geqslant(1-\beta \delta) z(t)=a_{0} z(t)
$$

for $t \geqslant t_{2}$, where $a_{0}=1-\beta \delta>0$.
(ii) Let $\lim _{t \rightarrow \infty} z(t)=0$ and $\lim _{t \rightarrow \infty} \inf y_{1}(t)=L_{1}>0$. Then (3) yields

$$
0<L_{1} \leqslant \lim _{t \rightarrow \infty} z(t)+\beta \lim _{t \rightarrow \infty} \inf y_{1}(h(t)) \leqslant \beta L_{1} .
$$

This contradicts the fact that $0<\beta<1$ and proves that $L_{1}=0$. Using Lemma 2 we obtain $\lim _{t \rightarrow \infty} y_{1}(t)=0, i=2, \ldots, n$.

Lemma 6. Let $y \in N_{2}^{-}$. Then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} z(t)=0, \quad \lim _{t \rightarrow \infty} y_{1}(t)=0, \quad i=1,2, \ldots, n \tag{17}
\end{equation*}
$$

Proof. Let $y \in N_{2}^{-}$. We may suppose that $y_{1}(t)>0, z(t)<0$ on $\left[t_{0}, \infty\right)$, $t_{0} \geqslant 0$. In view of the first equation of $(S, \sigma),\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{5}\right)$ we conclude that $z(t)$ is an increasing function on $\left[t_{0}, \infty\right)$. From (3), taking into account the inequality $z(t)<0$ and $\left(\mathrm{C}_{1}\right)$ we have $y_{1}(t) \leqslant y_{1}(h(t)), t \geqslant t_{0}$. Then there exists $\lim _{t \rightarrow \infty} z(t)=L \leqslant 0$, $\lim _{t \rightarrow \infty} y_{1}(t)=c \geqslant 0$. Let $c>0$. Then the inequality $y_{1}(t) \leqslant \beta y_{1}(h(t))$ implies $c \leqslant \beta c$. This contradicts the fact that $\beta<1$. Thus we conclude that $c=0$. From (2) we obtain $\lim _{t \rightarrow \infty} z(t)=0$. Then using Lemma 2 we have $\lim _{t \rightarrow \infty} y_{1}(t)=0, i=2, \ldots, n$.

In the sequel we will use the following notation:

$$
\begin{align*}
& G_{1}(t)=g_{1}(t), \quad G_{i}(t)=g_{i}\left(G_{i-1}(t)\right), \quad i=2, \ldots, n ; \tag{18}\\
& g_{i}^{-1}(t) \quad \text { denotes the inverse function to } g_{i}(t), \quad i=1, \ldots, n . \\
& t_{k-1}=\max \left\{t_{k}, \gamma_{k}\left(t_{k}\right)\right\}, \quad s_{k}=\max \left\{s_{k-1}, g_{k}\left(s_{k-1}\right)\right\}, \quad k=2, \ldots, n . \tag{19}
\end{align*}
$$

We now put

$$
\begin{align*}
f_{i}(x) & \equiv x, \quad i=1,2, \ldots, n-2 \quad(\text { if } n \geqslant 3) \tag{20}\\
P_{i-1}(t) & =p_{i-1}(t) f_{i-1}\left(\left|y_{i}\left(g_{i}(t)\right)\right|\right), \quad i=2, \ldots, n ; \tag{21}\\
\bar{y}_{1}(t) & =z(t), \quad \bar{y}_{i}(t)=y_{i}(t), \quad i=2, \ldots, n .
\end{align*}
$$

The system (S, σ) in which the functions $f_{i}, i=1,2, \ldots, n-2$ satisfy (20) will be denoted by (\bar{S}, σ).

Lemma 7. Let the assumptions $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{7}\right)$ hold and let $y=\left(y_{1}, \ldots, y_{n}\right) \in W$ be a nonoscillatory solution of (\bar{S}, σ) on $\left[t_{0}, \infty\right), t_{0} \geqslant 0$. Then there exist a $t_{1} \geqslant t_{0}$ and an integer $l \in\{1,2, \ldots, n\}, \sigma(-1)^{n+l+1}=1$ or $l=n$, such that

$$
\begin{align*}
\left|\bar{y}_{k}\left(g_{k}(t)\right)\right| \geqslant & \int_{g_{k}(t)}^{s_{k}} p_{k}\left(x_{k}\right) \ldots \int_{g_{n-2}\left(x_{n-3}\right)}^{s_{n-2}} p_{n-2}\left(x_{n-2}\right) \tag{k}\\
& \times \int_{g_{n-1}\left(x_{n-2}\right)}^{s_{n-1}} P_{n-1}\left(x_{n-1}\right) \mathrm{d} x_{n-1} \mathrm{~d} x_{n-2} \ldots \mathrm{~d} x_{k}
\end{align*}
$$

for $t_{1} \leqslant t \leqslant s_{k}, l \leqslant k \leqslant n-1$,
$\left(23_{l}\right) \quad\left|\bar{y}_{i}\left(g_{i}(t)\right)\right| \geqslant \int_{i_{i}}^{g_{l}(t)} p_{i}\left(x_{i}\right) \ldots \int_{t_{l-2}}^{g_{l-2}\left(x_{l-3}\right)} p_{l-2}\left(x_{l-2}\right) \int_{t_{l-1}}^{g_{l-1}\left(x_{i-2}\right)} p_{l-1}\left(x_{l-1}\right) \mathrm{d} x_{l-1} \mathrm{~d} x_{l-2} \ldots \mathrm{~d} x_{i}$,
for $t \geqslant t_{i} \geqslant \gamma\left(t_{0}\right), i=1,2, \ldots, l-1, l \leqslant n$.
Proof. The proof of this lemma is analogous to the proof of Lemma 3 in [8] and therefore we omit it.

Remark 3. Putting (22_{l}) into (23_{l}), where $l \leqslant n-2$, we obtain
$\left(24_{i}\right)\left|\bar{y}_{i}\left(g_{i}(t)\right)\right| \geqslant \int_{t_{i}}^{g_{i}(t)} p_{i}\left(x_{i}\right) \ldots \int_{t_{l-1}}^{g_{t-1}\left(x_{l-2}\right)} p_{l-1}\left(x_{l-1}\right) \int_{g_{l}\left(x_{l-1}\right)}^{s_{l}} p_{l}\left(x_{l}\right) \ldots \int_{g_{n-2}\left(x_{n-3}\right)}^{s_{n-2}} p_{n-2}\left(x_{n-2}\right)$

$$
\times \int_{g_{n-1}\left(x_{n-2}\right)}^{s_{n-1}} P_{n-1}\left(x_{n-1}\right) \mathrm{d} x_{n-1} \mathrm{~d} x_{n-2} \ldots \mathrm{~d} x_{l} \mathrm{~d} x_{l-1} \ldots \mathrm{~d} x_{1}
$$

$t \geqslant t_{1} \geqslant t_{0}, i=1,2, \ldots, l, l \leqslant n-1$.

Denote
$\left(25_{n}\right)$
(251) $\quad D_{n-1}^{1}\left(G_{n-1}(t), t_{n-1} ; p\right)=\int_{t_{n-1}}^{G_{n-1}(t)} p_{n-1}\left(x_{n-1}\right)$

$$
\times \int_{t_{n-2}}^{g_{n-1}^{-1}\left(x_{n-1}\right)} p_{n-2}\left(x_{n-2}\right) \ldots \int_{t_{1}}^{g_{2}^{-1}\left(x_{2}\right)} p_{1}\left(x_{1}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n-2} \mathrm{~d} x_{n-1}, \quad n \geqslant 3 ;
$$

$$
\begin{equation*}
D_{n-1}^{l}\left(G_{n-1}(t), t_{n-1} ; p\right)=\int_{t_{n-1}}^{G_{n-1}(t)} p_{n-1}\left(x_{n-1}\right) \tag{l}
\end{equation*}
$$

$$
\times \int_{t_{n-2}}^{g_{n-1}^{-1}\left(x_{n-1}\right)} p_{n-2}\left(x_{n-2}\right) \ldots \int_{t_{l-1}}^{s_{l}^{-1}\left(x_{l}\right)} p_{l-1}\left(x_{l-1}\right) \int_{s_{l-1}^{-1}\left(x_{l-1}\right)}^{G_{l-2}(t)} p_{l-2}\left(x_{l-2}\right)
$$

$$
\ldots \int_{g_{2}^{-1}\left(x_{2}\right)}^{G_{1}(t)} p_{1}\left(x_{1}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{l-2} \mathrm{~d} x_{l-1} \ldots \mathrm{~d} x_{n-2} \mathrm{~d} x_{n-1}
$$

$2 \leqslant l \leqslant n-1, t_{k}=g_{k}\left(t_{k-1}\right), k=l, \ldots, n-1 ;$

$$
\begin{equation*}
D_{1}^{1}\left(G_{1}(t), t_{1} ; p\right)=\int_{t_{1}}^{G_{1}(t)} p_{1}(t) \mathrm{d} t . \tag{1}
\end{equation*}
$$

We will say that the system (S, σ) has the property A_{0} if every solution

$$
y=\left(y_{1}, \ldots, y_{n}\right) \in W
$$

is either oscillatory or
$\left(P_{1}\right) \quad z(t), y_{i}(t), \quad i=2, \ldots, n$ tend monotonically to zero as $t \rightarrow \infty$.

$$
\begin{aligned}
& D_{n-1}^{n}\left(G_{n-1}(t), t_{n-1} ; p\right)=\int_{t_{n-1}}^{G_{n-1}(t)} p_{n-1}\left(x_{n-1}\right) \\
& \times \int_{g_{n-1}^{-1}\left(x_{n-1}\right)}^{G_{n-2}(t)} p_{n-2}\left(x_{n-2}\right) \ldots \int_{g_{2}^{-1}\left(x_{2}\right)}^{G_{1}(t)} p_{1}\left(x_{1}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n-2} \mathrm{~d} x_{n-1} ;
\end{aligned}
$$

We will say that the system (S, σ) has the property B_{0} if every solution

$$
y=\left(y_{1}, \ldots, y_{n}\right) \in W
$$

is either oscillatory or $\left(\mathbf{P}_{1}\right)$ holds or
$\left(P_{2}\right)$

$$
\lim _{t \rightarrow \infty} y_{i}(t)=\delta \infty, \quad i=1,2, \ldots, n
$$

where $\delta=\operatorname{sign} y_{1}(t)$.

Remark 4. (i) If the system (S, σ) has the property A_{0} (the property B_{0}), where $\left(\mathrm{P}_{1}\right)$ holds iff $\sigma(-1)^{n}=1$, then we say that the system (S, σ) has the property A (the property B).
(ii) In view of Lemma 5 and Lemma 6 the property (P_{1}) can be replaced by
$\lim _{t \rightarrow \infty} \inf y_{1}(t)=0$ and $y_{i}(t)(i=2, \ldots, n)$ tend monotonically to zero as $t \rightarrow \infty$.

Theorem 1. Let the assumptions $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{7}\right)$ hold and let there exist a continuous nondecreasing function $g:[0, \infty) \rightarrow R$ such that

$$
\begin{equation*}
g_{n}(t) \leqslant g(t), \quad g\left(G_{n-1}(t)\right) \leqslant t \tag{26}
\end{equation*}
$$

Let

$$
\begin{equation*}
f_{n}(u v) \geqslant K f_{n}(u) f_{n}(v), \quad u>0, v>0 \quad(0<K=\text { const. }) \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\alpha} \frac{\mathrm{d} x}{f_{n}\left(f_{n-1}(x)\right)}<\infty, \quad \int_{0}^{-\alpha} \frac{\mathrm{d} x}{f_{n}\left(f_{n-1}(x)\right)}<\infty \tag{28}
\end{equation*}
$$

for every constant $\alpha>0$.
If

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \int_{T}^{u} p_{n}(t) f_{n}\left(D_{n-1}^{l}\left(G_{n-1}(t), T ; p\right)\right) \mathrm{d} t=\infty \tag{29}
\end{equation*}
$$

for $l=1,2, \ldots, n$, where $\sigma(-1)^{n+l+1}=1$ or $l=n$, then the system $(\bar{S},-1)$ has the property A_{0} and the system $(\bar{S}, 1)$ has the property B_{0}.

Proof. Let $y=\left(y_{1}, \ldots, y_{n}\right) \in W$ be a nonoscillatory solution of (\bar{S}, σ) on $[0, \infty)$. Then by Lemma 4 there exist $l \in\{1, \ldots, n\}, \sigma(-1)^{n+l+1}=1$ or $l=n$ and a $t_{0} \geqslant 0$ such that the classification (12) holds. Without loss of generality we suppose that $y_{1}(t)>0$ for $t \geqslant t_{0}$.

Ia) Let $\sigma=-1, y \in N_{n}^{+}(n+1$ is even $)$. We prove that $N_{n}^{+}=\emptyset$. From (23_{n}) for $i=1$ we get

$$
\begin{align*}
z\left(g_{1}(t)\right) \geqslant & \int_{i_{1}}^{g_{1}(t)} p_{1}\left(x_{1}\right) \ldots \int_{t_{n-2}}^{g_{n-2}\left(x_{n-3}\right)} p_{n-2}\left(x_{n-2}\right) \tag{30}\\
& \times \int_{t_{n-1}}^{g_{n-1}\left(x_{n-2}\right)} p_{n-1}\left(x_{n-1}\right) \mathrm{d} x_{n-1} \mathrm{~d} x_{n-2} \ldots \mathrm{~d} x_{1}, \quad t \geqslant t_{1} \geqslant \gamma\left(t_{0}\right) .
\end{align*}
$$

Interchanging the order of integration in (30) we obtain

$$
\begin{align*}
z\left(g_{1}(t)\right) \geqslant & \int_{t_{n-1}}^{G_{n-1}(t)} p_{n-1}\left(x_{n-1}\right) \int_{s_{n-1}^{-1}\left(x_{n-1}\right)}^{G_{n-2}(t)} p_{n-2}\left(x_{n-2}\right) \ldots \tag{31}\\
& \quad \cdots \int_{g_{2}^{1}\left(x_{2}\right)}^{G_{1}(t)} p_{1}\left(x_{1}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n-2} \mathrm{~d} x_{n-1}, \quad t \geqslant T=\gamma\left(t_{n-1}\right) .
\end{align*}
$$

Then using the monotonicity of $y_{n}, f_{n-1},(26),\left(25_{n}\right)$ and (13), from (31) we get

$$
\begin{equation*}
y_{1}\left(g_{1}(t)\right) \geqslant(1-\beta) f_{n-1}\left(y_{n}(t)\right) D_{n-1}^{n}\left(G_{n-1}(t), t_{n-1} ; p\right), \quad t \geqslant T . \tag{32}
\end{equation*}
$$

Putting (32) into the n-th equation of ($(\vec{S},-1$) and using (27) we have

$$
y_{n}^{\prime}(t) \leqslant-K_{1} p_{n}(t) f_{n}\left(f_{n-1}\left(y\left(t_{n}\right)\right)\right) f_{n}\left(D_{n-1}^{n}\left(G_{n-1}(t), t_{n-1} ; p\right),\right.
$$

where $K_{1}=K^{2} f_{n}(1-\beta), t \geqslant T$.
Multiplying the last inequality by $\left(f_{n}\left(f_{n-1}\left(y_{n}(t)\right)\right)\right)^{-1}$ and then integrating from T to $u(>T)$ we get

$$
\begin{equation*}
K_{1} \int_{T}^{u} p_{n}(t) f_{n}\left(D_{n-1}^{n}\left(G_{n-1}(t), t_{n-1} ; p\right) \mathrm{d} t \leqslant \int_{y_{n}(T)}^{y_{n}(u)} \frac{\mathrm{d} x}{f_{n}\left(f_{n-1}(x)\right)} .\right. \tag{33}
\end{equation*}
$$

Then (28) together with (33) for $u \rightarrow \infty$ contradicts (29). Therefore $N_{n}^{+}=\emptyset$ if $\sigma=-1$.

Ib) Let $\sigma=1, y \in N_{n}^{+}, n \geqslant 2$. Taking into account $y_{1}\left(g_{1}(t)\right)>0$ on $\left[\gamma\left(t_{0}\right), \infty\right)$ we obtain from the n-th equation of $(\bar{S}, 1)$ that $y_{n}(t)$ is nondecreasing. Therefore there exist a $L_{n}>0$ and a $t_{1} \geqslant \gamma\left(t_{0}\right)$ such that $y_{n}\left(g_{n}(t)\right) \geqslant L_{n}$ on $\left[t_{1}, \infty\right)$. From (23_{n}) for $i=1$, taking into account $\left(\mathrm{C}_{7}\right)$ and the last inequality we obtain

$$
z\left(g_{1}(t)\right) \geqslant f_{n-1}\left(L_{n}\right) \int_{i_{1}}^{g_{1}(t)} p_{1}\left(x_{1}\right) \ldots \int_{t_{n-1}}^{g_{n-1}\left(x_{n-2}\right)} p_{n-1}\left(x_{n-1}\right) \mathrm{d} x_{n-1} \ldots \mathrm{~d} x_{1}, \quad t \geqslant t_{1} .
$$

Interchanging the order of integration in the last inequality and using (25_{n}) and (13) we get

$$
y_{1}\left(g_{1}(t)\right) \geqslant(1-\beta) f_{n-1}\left(L_{n}\right) D_{n-1}^{n}\left(G_{n-1}(t), t_{n-1} ; p\right), t \geqslant T \geqslant \gamma\left(t_{n-1}\right)
$$

Putting the last inequality into the n-th equation of ($\bar{S}, 1$) and then using (27) we successively obtain

$$
\begin{equation*}
y_{n}^{\prime}(t) \geqslant K_{2} p_{n}(t) f_{n}\left(D_{n-1}^{n}\left(G_{n-1}(t), t_{n-1} ; p\right)\right. \tag{34}
\end{equation*}
$$

where $K_{2}=K f_{n}\left((1-\beta) f_{n-1}\left(L_{n}\right)\right), t \geqslant T$. Integrating (34) from T to $u \rightarrow \infty$ and using (29) we have $\lim _{t \rightarrow \infty} y_{n}(t)=\infty$. Then by Lemma $2, \lim _{t \rightarrow \infty} y_{i}(t)=\infty, i=1, \ldots, n$.
II) Let $y \in N_{l}^{+}, 2 \leqslant l \leqslant n-1$. Interchanging the order of integration in (24 $)$, then using the monotonicity of $y_{n}, f_{n-1},(26),\left(25_{l}\right),(13)$ we get

$$
\begin{equation*}
y_{1}\left(g_{1}(t)\right) \geqslant(1-\beta) f_{n-1}\left(\left|y_{n}(t)\right|\right) D_{n-1}^{l}\left(G_{n-1}(t), t_{n-1} ; p\right) \tag{35}
\end{equation*}
$$

Putting (35) into the n-th equation of (\bar{S}, σ) and then proceeding in the same way as in the case Ia), we arrive at a contradiction with (29). We have proved that $N_{1}^{+}=\emptyset$ if $2 \leqslant l \leqslant n-1, \sigma(-1)^{n+l}=-1$.
III) Let $y \in N_{1}^{+},\left(\sigma(-1)^{n}=1\right)$. Then in view of $y_{1}(t)>0$, the first equation of (\bar{S}, σ) implies that $z(t)(>0)$ is a decreasing function for large t. Therefore $\lim _{t \rightarrow \infty} z(t)=L \geqslant 0$ exists. We suppose that $L>0$. Then there exists a $t_{1} \geqslant t_{0}$ such that

$$
\begin{equation*}
L \leqslant z(t) \leqslant 2 L \quad \text { on } \quad\left[t_{1}, \infty\right) \tag{36}
\end{equation*}
$$

(i) Let $n \geqslant 3$. Then (22 $)$ together with (9) gives

$$
\begin{aligned}
-y_{2}\left(g_{2}(t)\right) \geqslant & \int_{g_{2}(t)}^{s_{2}} p_{2}\left(x_{2}\right) \ldots \int_{g_{n-2}\left(x_{n-3}\right)}^{s_{n-2}} p_{n-2}\left(x_{n-2}\right) \\
& \times \int_{g_{n-1}\left(x_{n-2}\right)}^{s_{n-1}} P_{n-1}\left(x_{n-1}\right) \mathrm{d} x_{n-1} \mathrm{~d} x_{n-2} \ldots \mathrm{~d} x_{1}, \quad t \geqslant \gamma\left(t_{1}\right)=t_{2}
\end{aligned}
$$

Putting the last inequality into the first equation of (\bar{S}, σ), then integrating from t_{2} to $g_{1}(t)$ and using (36) we have
(37) $z\left(g_{1}(t)\right) \geqslant L \geqslant z\left(t_{2}\right)-z\left(g_{1}(t)\right) \geqslant \int_{t_{2}}^{g_{1}(t)} p_{1}\left(x_{1}\right) \int_{g_{2}\left(x_{1}\right)}^{s_{2}} p_{2}\left(x_{2}\right) \ldots \int_{g_{n-2}\left(x_{n-1}\right)}^{s_{n-2}} p_{n-2}\left(x_{n-2}\right)$

$$
\times \int_{g_{n-1}\left(x_{n-2}\right)}^{s_{n-1}} P_{n-1}\left(x_{n-1}\right) \mathrm{d} x_{n-1} \mathrm{~d} x_{n-2} \ldots \mathrm{~d} x_{2} \mathrm{~d} x_{1}
$$

Interchanging the order of integration in (37), then using the monotonicity of y_{n}, $f_{n-1},(26),\left(25_{l}\right)$ and (14) we obtain

$$
\begin{equation*}
y_{1}\left(g_{1}(t)\right) \geqslant a_{0} f_{n-1}\left(\left|y_{n}(t)\right|\right) D_{n-1}^{1}\left(G_{n-1}(t), t_{n} ; p\right), \tag{38}
\end{equation*}
$$

where a_{0} is the constant from (14).
(ii) Let $n=2(\sigma=1)$. Integrating the first equation of $(\bar{S}, 1)$ from t_{1} to $g_{1}(t)$, then using the monotonicity of $y_{2}, f_{1},(26),(36)$ and (14) we get

$$
\begin{align*}
y_{1}\left(g_{1}(t)\right) & \geqslant a_{0} L \geqslant a_{0} f_{1}\left(\left|y_{2}(t)\right|\right) \int_{t_{1}}^{g_{1}(t)} p_{1}(x) \mathrm{d} x \tag{39}\\
& =a_{0} f_{1}\left(\left|y_{2}(t)\right|\right) D_{1}^{1}\left(G_{1}(t), t_{1} ; p\right) .
\end{align*}
$$

If we put (38) or (39) into the last equation of (\bar{S}, σ) and then we proceed in the same way as in the case Ia) we get a contradiction with (29). Therefore $L=0$, i.e. $\lim _{t \rightarrow \infty} z(t)=0$. Then by Lemma 5 we have $\lim _{t \rightarrow \infty} \inf y_{1}(t)=0, \lim _{t \rightarrow \infty} y_{i}(t)=0$, $i=\stackrel{t \rightarrow \infty}{2, \ldots, n}$.
IV) Let $y \in N_{2}^{-}\left(\sigma(-1)^{n}=-1\right)$. Then by Lemma $6 \lim _{t \rightarrow \infty} z(t)=0, \lim _{t \rightarrow \infty} y_{i}(t)=0$, $i=1,2, \ldots, n$.

The proof of Theorem 1 is complete.

Theorem 2. Let the assumptions $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{7}\right),(27),(28)$ hold and let

$$
\begin{equation*}
g_{n}(t) \leqslant t, \quad G_{n-1}(t) \geqslant t \quad \text { on } \quad[0 . \infty) \tag{40}
\end{equation*}
$$

If

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \int_{T}^{u} p_{n}(t) f_{n}\left(D_{n-1}^{l}(t, T ; p) \mathrm{d} t=\infty\right. \tag{41}
\end{equation*}
$$

for $l=1,2, \ldots, n$, where $\sigma(-1)^{n+l+1}=1$ or $l=n$, then the conclusion of Theorem 1 holds.

Proof. The proof is similar to that of Theorem 1, only we replace (26) and $D_{n-1}^{\prime}\left(G_{n-1(t)}, T ; p\right)$ by (40) and $D_{n-1}^{l}(t, T ; p)$, respectively.

Theorem 1 (Theorem 2) improves and generalizes Theorem 1 (Theorem 2) in the paper [7].

Let the function
$\left(\bar{C}_{1}\right) \quad a(t)$ satisfy $\left(C_{1}\right)$, where $a(t)$ is not positive on $[0, \infty)$.

Remark 5. Let $\left(\bar{C}_{1}\right)$ be fulfilled. Then $N_{2}^{-}=\emptyset$ in view of Remark 2, and it is easy to see that the property $\left(P_{1}\right)$ holds only if $\sigma(-1)^{n}=1$. Then Theorem 1 (Theorem 2) with regard to Remark 4 implies the following theorems:

Theorem 3. Let the assumptions $\left(\bar{C}_{1}\right),\left(\mathrm{C}_{2}\right)-\left(\mathrm{C}_{7}\right),(26)-(29)$ hold. Then the system $(\bar{S},-1)$ has the property A and the system $(\bar{S}, 1)$ has the property B.

Theorem 4. Let the assumptions $\left(\bar{C}_{1}\right),\left(\mathrm{C}_{2}\right)-\left(\mathrm{C}_{7}\right),(27),(28),(40),(41)$ hold. Then the conclusion of Theorem 3 holds.

References

[1] S. R. Grace, B. S. Lalli: Oscillation theorems for certain neutral differential equations, Czech. Math. J. 38(113) (1988), 745-753.
[2] I. Györi, G. Ladas: Oscillation of systems of neutral differential equations, Diff. and Integral Equat. 1 (1988), 281-286.
[3] A. N. Ivanov, P. Marušiak: Oscillatory and asymptotic properties of solutions of systems of functional-differential equations of neutral type, Ukrain. Mat. Journal 44 (1992), 1044-1049. (In Russian.)
[4] J. Jaros̆, T. Kusano: Oscillation theory of higher order linear functional differential equations of neutral type, Hirosh. Math. J. 18 (1989), 509-531.
[5] J. Jaroš, T. Kusano: Sufficient conditions for oscillations in higher order linear functional differential equations of neutral type, Japan J. Math. 15, N2 (1989), 415-432.
[6] G. Ladas, Y. Sficas: Oscillations of higher order neutral equations, J. Austr. Math. Soc. (Ser B) 27 (1986), 502-511.
[7] P. Marušiak: Oscillatory properties of solutions of nonlinear differential systems with deviating arguments, Czech. Math. J. 36(111) (1986), 223-231.
[8] P. Marus̆iak: Oscillation criteria for nonlinear differential systems with general deviating arguments of mixed type, Hirosh. Math. J. 20, N1 (1990), 197-208.
[9] V.N. Shevelo, N. V. Varech, A. G. Gritsai: Oscillations of components of solutions of systems of functional differential equations of neutral type, lnst. Mat. Preprint, Acad. Nauk Ukr. SSR., 1984, pp. 116-126. (In Russian.)
[10] A. I. Zachariev, D. D. Bainov: On some oscillation criteria for a class of neutral type of functional differential equations, J. Austr. Math. Soc. (Ser. B) 28 (1986), 229-239.

Author's address: Katedra matematiky SEF VŠDS, J. M. Hurbana 15, 01026 Žilina, Slovakia.

