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Oscillatory properties of solutions of

superlinear-sublinear parabolic equations

via Picone-type inequalities

Jaroslav Jaroš, Kusano Takaŝi and Norio Yoshida

Abstract. Oscillations of solutions of superlinear-sublinear parabolic
equations are studied, and the unboundedness of solutions is also in-
vestigated as corollaries. The approach used here is to use the Picone-
type inequalities for elliptic operators.

In 1962, McNabb [8] established criteria for unboundedness of solutions
of linear parabolic equations on the basis of Picone-type identities. His
results were extended by Dunninger [4], Kusano and Narita [7] to parabolic
differential inequalities, and by Chan [1], Chan and Young [2, 3], Kuks [6]
to time-dependent matrix differential inequalities. All of them also contain
the results about zeros of solutions or singularities of matrix solutions.

Recently Jaroš, Kusano and Yoshida [5] established Picone-type inequali-
ties which connect a linear elliptic operator with an associated superlinear-
sublinear elliptic operator. By extending the Picone-type inequalities to
parabolic equations with time-dependent coefficients, we obtain the oscil-
latory behavior or the unboundedness of solutions of superlinear-sublinear
parabolic equations.

We are concerned with the oscillatory behavior of solutions of the non-
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linear parabolic equation

∂v

∂t
− L[v] = 0, (x, t) ∈ Ω ≡ G× (0,∞), (1)

where G is a bounded domain in Rn with piecewise smooth boundary ∂G

and

L[v] ≡
n∑

i,j=1

∂

∂xi

(
Aij(x, t)

∂v

∂xj

)
+ C(x, t)|v|β−1v + D(x, t)|v|γ−1v.

It is assumed that :

(A1) Aij(x, t) ∈ C(Ω;R) (i, j = 1, 2, ..., n) and the matrix (Aij(x, t)) is
symmetric and positive definite in Ω ;

(A2) C(x, t) ∈ C(Ω; [0,∞)) and D(x, t) ∈ C(Ω; [0,∞)) ;

(A3) β and γ are constants such that β > 1 and 0 < γ < 1.

Definition 1. The domain DL(Ω) of L is defined to be the set of all func-

tions v of class C1(Ω;R) with the property that Aij(x, t)
∂v

∂xj
∈ C1(Ω;R)∩

C(Ω;R).

Definition 2. By a solution of (1) we mean a function v ∈ DL(Ω) which
satisfies the equation (1).

Definition 3. A solution v of (1) is said to be oscillatory on Ω if v has a
zero on G× [t,∞) for any t > 0.

We consider the linear differential operator ` defined by

`[u] =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)u, (2)

where the coefficients aij(x) and c(x) satisfy the following assumptions :

(A4) aij(x) ∈ C(G;R) (i, j = 1, 2, ..., n) and the matrix (aij(x)) is symmet-
ric and positive definite in G ;
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(A5) c(x) ∈ C(G;R).

Definition 4. The domain D`(G) of ` is defined to be the set of all func-

tions u of class C1(G;R) with the property that aij(x)
∂u

∂xj
∈ C1(G;R) ∩

C(G;R).

The following theorem is due to Jaroš, Kusano and Yoshida [5, Theo-
rem 8].

Theorem 1. (Picone-type inequality) Assume that u ∈ D`(G), v ∈
DL(Ω) and v 6= 0 in G × I, where I is any interval in R. Then we ob-
tain the following inequality

n∑

i,j=1

∂

∂xi

(
uaij(x)

∂u

∂xj
− u2

v
Aij(x, t)

∂v

∂xj

)

≥
n∑

i,j=1

(aij(x)−Aij(x, t))
∂u

∂xi

∂u

∂xj

+

(
β − γ

1− γ

(
β − 1
1− γ

) 1−β
β−γ

C(x, t)
1−γ
β−γ D(x, t)

β−1
β−γ − c(x)

)
u2

+
n∑

i,j=1

Aij(x, t)
(

v
∂

∂xi

(u

v

))(
v

∂

∂xj

(u

v

))
+

u

v
(v`[u]− uL[v]) (3)

for (x, t) ∈ G× I.

Theorem 2. Assume that (A1) – (A5) hold, and that there exists a non-
trivial function u ∈ D`(G) such that

`[u] = 0 in G,

u = 0 on ∂G,

lim
t→∞

∫ t

T
V [u](s) ds = ∞ for any T > 0,

where

V [u](t) ≡
∫

G

[
n∑

i,j=1

(aij(x)−Aij(x, t))
∂u

∂xi

∂u

∂xj

+

(
β − γ

1− γ

(
β − 1
1− γ

) 1−β
β−γ

C(x, t)
1−γ
β−γ D(x, t)

β−1
β−γ − c(x)

)
u2

]
dx.
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Let v ∈ DL(Ω) be a solution of (1) which is nonoscillatory on Ω. Then v

satisfies

lim
t→∞

∫

G
u2 log |v| dx = ∞. (4)

Proof. Since v ∈ DL(Ω) is a nonoscillatory solution on Ω, we see that

v 6= 0 on G× [t0,∞)

for some t0 > 0. Without loss of generality we may assume that v > 0 on
G× [t0,∞). Integrating the Picone-type inequality (3) over G, we obtain

0 ≥ V [u](t) +
∫

G

n∑

i,j=1

Aij(x, t)
(

v
∂

∂xi

(u

v

))(
v

∂

∂xj

(u

v

))
dx

−
∫

G

u2

v
L[v] dx

≥ V [u](t)−
∫

G

u2

v

∂v

∂t
dx, t ≥ t0. (5)

We see from (5) that

∫

G
u2 ∂

∂t
log v dx ≥ V [u](t), t ≥ t0

and therefore
d

dt

∫

G
u2 log v dx ≥ V [u](t), t ≥ t0. (6)

Integration of (6) over [t0, T ] yields

z(T )− z(t0) ≥
∫ T

t0

V [u](s) ds, (7)

where

z(t) ≡
∫

G
u2 log v dx.

Letting T → ∞ in (7), we observe that lim
T→∞

z(T ) = ∞. This completes
the proof.
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Corollary 1. Assume that (A1) – (A5) hold, and that there exists a non-
trivial function u ∈ D`(G) such that

`[u] = 0 in G,

u = 0 on ∂G,

lim
t→∞

∫ t

T
V [u](s) ds = ∞ for any T > 0.

Then every bounded solution v ∈ DL(Ω) of (1) is oscillatory on Ω.

Proof. Let v ∈ DL(Ω) be any bounded solution of (1). Then, we observe
that log |v| is bounded from above, and hence

∫
G u2 log |v| dx is also bounded

from above. Therefore (4) does not hold. Theorem 2 implies that the
bounded solution v is oscillatory on Ω.

Corollary 2. Assume that the same hypotheses as those of Theorem 2
hold. If v ∈ DL(Ω) is a solution of (1) which is nonoscillatory on Ω,
then v is unbounded in Ω.

Proof. Since v is nonoscillatory on Ω, v satisfies the condition (4). Hence,
|v| cannot be bounded from above in Ω, that is, v is unbounded in Ω.

The following theorem was established by Jaroš, Kusano and Yoshida [5,
Theorem 7].

Theorem 3. Let v ∈ DL(Ω) and let v 6= 0 in G×I, where I is any interval
in R. Then the following inequality holds for any u ∈ C1(G;R) :

n∑

i,j=1

Aij(x, t)
(

v
∂

∂xi

(u

v

))(
v

∂

∂xj

(u

v

))
+

n∑

i,j=1

∂

∂xi

(
u2

v
Aij(x, t)

∂v

∂xj

)

≤
n∑

i,j=1

Aij(x, t)
∂u

∂xi

∂u

∂xj
− β − γ

1− γ

(
β − 1
1− γ

) 1−β
β−γ

C(x, t)
1−γ
β−γ D(x, t)

β−1
β−γ u2

+
u2

v
L[v], (x, t) ∈ G× I. (8)

Theorem 4. Assume that (A1) – (A3) hold, and that there exists a non-
trivial function u ∈ C1(G;R) such that u = 0 on ∂G and

lim
t→∞

∫ t

T
M [u](s) ds = −∞ for any T > 0,
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where

M [u](t) ≡
∫

G

[
n∑

i,j=1

Aij(x, t)
∂u

∂xi

∂u

∂xj

− β − γ

1− γ

(
β − 1
1− γ

) 1−β
β−γ

C(x, t)
1−γ
β−γ D(x, t)

β−1
β−γ u2

]
dx.

Let v ∈ DL(Ω) be a solution of (1) which is nonoscillatory on Ω . Then v

satisfies the condition (4).

Proof. Without loss of generality we may assume that v > 0 on G×[t0,∞)
for some t0 > 0. We integrate the inequality (8) over G to obtain

0 ≤ M [u](t) +
∫

G

u2

v
L[v] dx

= M [u](t) +
∫

G

u2

v

∂v

∂t
dx, t ≥ t0

or equivalently
∫

G
u2 ∂

∂t
log v dx ≥ −M [u](t), t ≥ t0.

Proceeding as in the proof of Theorem 2, we see that (4) holds. This
completes the proof.

Corollary 3. Assume that (A1) – (A3) hold, and that there exists a non-
trivial function u ∈ C1(G;R) such that u = 0 on ∂G and

lim
t→∞

∫ t

T
M [u](s) ds = −∞ for any T > 0.

Then every bounded solution v ∈ DL(Ω) of (1) is oscillatory on Ω.

Proof. The proof follows by using the same arguments as in the proof of
Corollary 1.

Corollary 4. Assume that the same hypotheses as those of Theorem 4
hold. If v ∈ DL(Ω) is a solution of (1) which is nonoscillatory on Ω,
then v is unbounded in Ω.
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The proof is quite similar to that of Corollary 2, and will be omitted.

Example 1. We consider the parabolic equation

∂v

∂t
−

(
∂

∂x

(
A0

∂v

∂x

)
+ C0v

3 + C0v
1/3

)
= 0, (9)

(x, t) ∈ (−1, 1)× (0,∞),

where A0 and C0 are positive constants satisfying A0 < (8/5)3−(3/4)C0.
Here n = 1, A11(x, t) = A0 > 0, C(x, t) = D(x, t) = C0 > 0, β = 3,
γ = 1/3, G = (−1, 1) and Ω = (−1, 1)× (0,∞). Letting u = 1− x2, we see
that u(−1) = u(1) = 0. An easy computation shows that

M [u](t) =
∫ 1

−1

[
A0(u′)2 − 4 · 3−(3/4)C0u

2
]
dx

=
8
3

(
A0 − 8

5
3−(3/4)C0

)
< 0.

Hence, it is obvious that

lim
t→∞

∫ t

T
M [u](s)ds = −∞

for any T > 0. It follows from Theorem 4 that every solution v of (9) which
is nonoscillatory on Ω satisfies

lim
t→∞

∫ 1

−1

(
1− x2

)2 log |v| dx = ∞.

Example 2. We consider the parabolic equation

∂v

∂t
−

(
∂

∂x

(
A0

∂v

∂x

)
+

1
2
e−4tv5 +

1
2
e(2/3)tv1/3

)
= 0, (10)

(x, t) ∈ (0, π)× (0,∞),

where A0 is a positive constant satisfying A0 < (7/2)6−(6/7). Here n = 1,
A11(x, t) = A0 > 0, C(x, t) = (1/2)e−4t, D(x, t) = (1/2)e(2/3)t, β = 5,
γ = 1/3, G = (0, π) and Ω = (0, π) × (0,∞). Letting u = sin x, we find
that u(0) = u(π) = 0 and

M [u](t) =
∫ π

0

[
A0(u′)2 − 7

2
6−(6/7)u2

]
dx

=
π

2

(
A0 − 7

2
6−(6/7)

)
< 0.
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Hence, it is clear that

lim
t→∞

∫ t

T
M [u](s)ds = −∞

for any T > 0. Then, Theorem 4 implies that every solution v of (10) which
is nonoscillatory on [0, π]× [0,∞) satisfies

lim
t→∞

∫ π

0

(
sin2 x

)
log |v| dx = ∞.

One such solution is v = et.

Example 3. We consider the parabolic equation

∂v

∂t
−

(
∂2v

∂x2
+ 5v3 + 5v1/5

)
= 0, (x, t) ∈ (0, π/2)× (0,∞). (11)

Here n = 1, A11(x, t) = 1, C(x, t) = D(x, t) = 5, β = 3, γ = 1/5, G =
(0, π/2) and Ω = (0, π/2) × (0,∞). We let u = x cosx and find that
u(0) = u(π/2) = 0. A direct calculation yields

M [u](t) =
∫ π/2

0

[
(u′)2 − 7

(
5
2

)(2/7)

u2

]
dx

=
π

8

((
π2

6
+ 1

)
− 7

(
5
2

)(2/7) (
π2

6
− 1

))
< 0.

Since

lim
t→∞

∫ t

T
M [u](s)ds = −∞

for any T > 0, we conclude from Corollary 3 that every bounded solution
v of (11) is oscillatory on Ω.
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