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Oscillatory Stability and Eigenvalue Sensitivity
Analysis of A DFIG Wind Turbine System

Lihui Yang, Zhao Xu, Member, IEEE, Jacob Østergaard, Senior Member, IEEE,
Zhao Yang Dong, Senior Member, IEEE, Kit Po Wong, Fellow, IEEE, and Xikui Ma

Abstract—This paper focuses on modeling and oscillatory stabil-
ity analysis of a wind turbine with doubly fed induction generator
(DFIG). A detailed mathematical model of DFIG wind turbine
with vector-control loops is developed, based on which the loci of
the system Jacobian’s eigenvalues have been analyzed, showing
that, without appropriate controller tuning a Hopf bifurcation can
occur in such a system due to various factors, such as wind speed.
Subsequently, eigenvalue sensitivity with respect to machine and
control parameters is performed to assess their impacts on system
stability. Moreover, the Hopf bifurcation boundaries of the key
parameters are also given. They can be used to guide the tuning
of those DFIG parameters to ensure stable operation in practice.
The computer simulations are conducted to validate the developed
model and to verify the theoretical analysis.

Index Terms—Doubly fed induction generator (DFIG), eigen-
value sensitivity, Hopf bifurcation, stability.

I. INTRODUCTION

DOUBLY fed induction generator (DFIG) is a popular wind
turbine system due to its high energy efficiency, reduced

mechanical stress on the wind turbine, and relatively low power
rating of the connected power electronics converter. The DFIG is
also complex involving aerodynamical, electrical, and mechan-
ical systems. With increasing penetration level of DFIG-type
wind turbines into the grid, the stability issue of DFIG is of
great importance to be properly investigated.

A DFIG system, including induction generator, two-mass
drive train, power converters, and feedback controllers, is a
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multivariable, nonlinear, and strongly coupled system. Bifurca-
tion phenomena in such a nonlinear system may occur under
certain conditions, leading to oscillatory instability. Therefore,
practical analysis of DFIG stability will have to involve the bi-
furcation phenomena. In recent years, some researchers studied
stability of industrial motor drives with a wealth of nonlinear dy-
namics according to the bifurcation and chaos theories [1]–[4].
However, earlier studies mainly deal with dc and simple ac mo-
tor drives. The stability analysis of DFIG from a bifurcation
perspective is absent.

Eigenvalue analysis of the DFIG wind turbine system has
been discussed in [5]–[8], where the participation factor, fre-
quency, and damping ratio analysis are focused. The compre-
hensive analysis of eigenvalue locus and the eigenvalue sen-
sitivity, which can provide useful guidance in tuning system
parameters, have not been carried out earlier.

The Yang et al. have investigated the Hopf bifurcation in a
vector-controlled DFIG with one-mass drive train [9]. The main
purpose of this paper is to study the oscillatory stability of a
DFIG system with respect to varying wind speed, and to ana-
lyze the eigenvalue sensitivity as well. A more comprehensive
system model, incorporating two-mass drive train, pitch con-
trol, etc., is developed. Based on this model, the eigenvalue
loci are analyzed, revealing that with inappropriate controller
parameters, Hopf bifurcation is likely to happen in the system
under certain conditions, such as variation of wind speed. Then,
eigenvalue sensitivity analysis is carried out to identify possible
sources of instability, as well as the key influential parameters
with respect to system oscillatory stability. Furthermore, in or-
der to obtain the overview of system oscillatory stability, Hopf
bifurcation boundaries with regard to some key parameters are
analyzed, in order to facilitate optimal design of the DFIG wind
turbine system. This paper focuses on the small-signal-stability
analysis of the DFIG wind turbine system itself. The impact of
the DFIG on the power system stability will be considered in
our future research.

II. MODELING OF DFIG WIND TURBINE SYSTEM

FOR OSCILLATORY STABILITY ANALYSIS

As shown in Fig. 1 [10], the DFIG system utilizes a wound ro-
tor induction generator in which the stator windings are directly
connected to the three-phase grid and the rotor windings are
fed through three-phase back-to-back bidirectional pulsewidth
modulation (PWM) converters. The back-to-back PWM con-
verters consist of two three-phase six-switch converters, i.e., the
rotor- and the grid-side converter, between which a dc-link ca-
pacitor is placed. For the wind turbine control level, two stage

0885-8969/$26.00 © 2011 IEEE
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Fig. 1. Schematic diagram of DFIG wind turbine system.

control strategies, based on the electric power versus wind speed
curve, are used for DFIG wind turbines: power optimization
strategy below rated wind speed and power limitation strategy
above rated wind speed [10]. For the DFIG control level, vector
control is used for both the rotor- and the grid-side converters
to achieve decoupled control of active and reactive power.

It is recognized that the wind power generations involving
DFIG often experience different oscillations resulted from the
DFIG and its auxiliary systems [9], [11]. In order to study the
oscillatory behavior of the system, small-signal-stability analy-
sis, especially the Hopf bifurcation, is needed. The modeling of
DFIG has been studied in [5]–[13]; however, there is currently a
lack of a systematic comprehensive modeling approach suitable
for small-signal stability. In the following section, we develop a
comprehensive model for the DFIG wind turbine system. This
model particularly enables small-signal-stability analysis of the
overall system.

A. Generator

According to the voltage- and flux-linkage equations of the
induction generator [13], [14], the differential equations of the
stator and rotor circuits of the induction generator with stator and
rotor current as state variables can be given in a d–q reference
frame rotating at synchronous speed (we define this reference
frame as the generator reference frame in this paper) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dids

dt
= D[RsLr ids + (ωs − ωr )L2

m iqs − ωsLsLr iqs

−RrLm idr − ωrLrLm iqr − Lruds + Lm udr ]

diqs

dt
= D[−(ωs − ωr )L2

m ids + ωsLsLr ids + RsLr iqs

+ωrLrLm idr − RrLm iqr − Lruqs + Lm uqr ]

didr

dt
= D[−RsLm ids + ωrLsLm iqs + RrLsidr

+ωsL
2
m iqr − (ωs − ωr )LsLr iqr + Lm uds − Lsudr ]

diqr

dt
= D[−ωrLsLm ids − RsLm iqs − ωsL

2
m idr

+(ωs − ωr )LsLr idr + RrLsiqr + Lm uqs − Lsuqr ]
(1)

where is = ids + jiqs and ir = idr + jiqr are the stator and
rotor current vectors, respectively; us = uds + juqs and ur =
udr + juqr are the stator and rotor voltage vectors, respectively;
D = ωb /(Lm

2 −LsLr ). This paper adopts the motor convention
meaning that stator and rotor currents are positive when flowing
into the generator. The quantities in the system model are in per
unit except the time t.

B. Drive Train

When studying the stability of DFIG wind turbine, the two-
mass model of the drive train is important, as the wind turbine
shaft is relatively softer than the typical steam turbine shaft in
conventional power plants [15]. The equations, which represent
the two-mass model of the drive train, are expressed as follows:

dωr

dt
=

1
2Hg

(Tsh − Te − Bωr ) (2)

dθt

dt
= ωb(ωt − ωr ) (3)

dωt

dt
=

1
2Ht

(Tm − Tsh) (4)

where ωb , ωr , and ωt are the base, generator, and wind turbine
speeds, respectively. Hg and Ht [SI unit(s)] are the generator
and turbine inertias, respectively. θt is the shaft twist angle.
The electromagnetic torque Te , the shaft torque Tsh , and the
mechanical torque Tm , which are the power input of the wind
turbine, are as follows:

Te = Lm (idsiqr − iqsidr ) (5)

Tsh = Kshθt + Dshωb(ωt − ωr ) (6)

Tm =
0.5ρπR2Cp(λ, β)V 3

w

ωt
(7)

where Cp is the power coefficient as follows:

Cp = 0.22
(

116
λi

− 0.4β − 5
)

e−12.5/λi (8)

λi =
1

1/(λ + 0.08β) − 0.035/(β3 + 1)
(9)

where λ = ωtR/Vw is the blade tip speed ratio. Cp (λ, β) has a
maximum Cmax

p for a particular tip speed ratio λopt and pitch
angle βopt . The aim for variable wind turbine at wind speeds
lower than rated value is to adjust the rotor speed at varying wind
speeds; therefore, λ and Cp are always maintained at the opti-
mal and maximum value, respectively. The speed control of the
DFIG is achieved by driving the generator speed along the opti-
mum power-speed characteristic curve [10], which corresponds
to the maximum energy capture from the wind. In this curve,
when generator speed is less than the low limit or higher than
the rated value, the reference speed is set to the minimal value
or rated value, respectively. When generator speed is between
the lower limit and the rated value, the rotor speed reference can
be obtained by substituting λ = ωtR/Vw into (7) as follows:

ωref =

√
Tm

Kopt
(10)
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Fig. 2. Schematic diagrasm of the pitch control.

Fig. 3. Control scheme of the rotor-side converter.

where Kopt = ρπR5 C m a x
p

2λ
3
o p t

is the optimal constant of wind tur-

bine. Equation (10) is an easy and direct way to get ωref from
the academic perspective while it implies the mechanical torque
observer is needed. Although mechanical torque observation is
not popularly used in industrial application, due to some en-
gineering problems, it is available in practice and can obtain
improved optimum operating point tracking [16], [17].

C. Pitch Control

The pitch angle of the blade is controlled to optimize the
power extraction of wind turbine as well as to prevent overrated
power production in strong wind. The pitch servo is modeled as
follows:

dβ

dt
=

1
Tβ

(βref − β). (11)

For the sake of simplicity, the reference of the pitch angle βref
is kept zero when wind speed is below rated value. When wind
speed is higher than rated value, the power limitation is active by
adjusting the pitch angle using the pitch-control scheme shown
in Fig. 2 [10], and⎧⎪⎨

⎪⎩
βref = KP β (Pg − Pref ) + xβ

ẋβ =
KP β

TIβ
(Pg − Pref ).

(12)

D. Rotor-Side Converter

The generic control scheme of the rotor-side converter is il-
lustrated in Fig. 3. In order to decouple the electromagnetic
torque and the rotor excitation current, the induction generator
is controlled in the stator-flux-oriented reference frame, which
is a synchronously rotating reference frame, with its d-axis ori-
ented along the stator-flux vector position [17]. The typical
proportional–integral (PI) controllers are used for regulation in
both the rotor speed and the terminal voltage (outer) control loop

Fig. 4. Control scheme of the grid-side converter.

and the rotor current (inner) control loop. In Fig. 3, superscript
ϕ denotes the variable is in the stator-flux-oriented reference
frame.

Based on the stator-flux orientation, the stator flux can be de-
scribed as ψϕ

ds = Ψs and ψϕ
qs = 0 [17]. Accordingly, the rotor-

voltage equations can be expressed as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uϕ
dr = Rri

ϕ
dr − σLr i

ϕ
qr (ωs − ωr ) +

σLr

ωb

diϕdr

dt

uϕ
qr = Rri

ϕ
qr +

(
σLr i

ϕ
dr +

Lm

Ls
Ψs

)
(ωs − ωr ) +

σLr

ωb

diϕqr

dt
(13)

where σ = 1 − (L2
m /LsLr ) is the leakage factor.

Usually, the bandwidth of the inner current-control loop is
much wider than the outer speed-control loop [17]. Hence, the
fast dynamics of the current-control loop does not affect the
low-frequency oscillations. On account of this, we assume that
the rotor current can well track the reference current, and thus,
omit the dynamics of the rotor current-control loop. Under this
assumption and according to the control scheme of the rotor-
side converter shown in Fig. 3, the equations with respect to the
control of the rotor-side converter become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋω =
KP ω

TIω
(ωref − ωr )

ẋus =
KP us

TIus
(Usref − Us)

iϕdr = iϕdrref = KP us(Usref − Us) + xus

iϕqr = iϕqrref = − Ls

Lm Ψs
[KP ω (ωref − ωr ) + xω ]

(14)

where KP ω and TIω are the proportional gain and the integral
time constant of the rotor-speed controller, respectively.

The rotor voltage in the generator reference frame can be
derived by the following: [18][

udr

uqr

]
=

[
cos ϕ − sin ϕ

sin ϕ cos ϕ

] [
uϕ

dr

uϕ
qr

]
(15)

where ϕ = arctan(ψqs/ψds) is the angle between the stator-
flux vector and the d-axis of the generator reference frame.

E. Grid-Side Converter

Fig. 4 shows the control scheme of the grid-side converter.
In order to obtain the independent control of active and reactive
power flowing between the grid and the grid-side converter, the
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converter control operates in the grid-voltage-oriented reference
frame, which is a synchronously rotating reference frame, with
its d-axis oriented along the grid-voltage vector position [17].
Similarly, the typical PI controllers are used for regulation in
both dc-link voltage (outer) control loop and grid-side inductor
current (inner) control loop. In Fig. 4, superscript ε denotes the
variable is in the grid-voltage-oriented reference frame.

Under the grid-voltage-oriented reference frame, the equa-
tions of the grid-side converter are given by [17] the following:⎧⎪⎪⎨

⎪⎪⎩
uε

ds = Us = RLiεdL +
L

ωb

diεdL

dt
− ωsLiεqL + uε

da

uε
qs = 0 = RLiεqL +

L

ωb

diεqL

dt
+ ωsLiεdL + uε

qa

(16)

where iL = idL + jiqL is the grid-side-inductor-current vector,
and ua = uda + juqa is the grid-side converter voltage vector.

Similar to the derivation of the rotor-side controller, based on
the same simplification, which omits the fast dynamics in the
inner current-control loop, and according to the control scheme
of the grid-side converter shown in Fig. 4, the equations with
respect to the control of the grid-side converter are described as
follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋv =
KP v

TIv
(Udcref − Udc)

iεqL = IqLref

iεdL = iεdLref =
√

2√
3m

[KP v (Udcref − Udc) + xu ]

(17)

where KP v and TIv are the proportional gain and the integral
time constant of the dc-link voltage controller, respectively.

The relationship between the generator reference frame and
the grid-voltage-oriented reference frame can be given by [18]
the following:[

Vda

Vqa

]
=

[
cos ε − sin ε

sin ε cos ε

] [
V ε

da

V ε
qa

]
(18)

where ε = arctan(uqs/uds) is the angle between the grid-
voltage vector and the d-axis of the generator reference frame;
V can be the variable of voltage u or current i.

F. DC-link Capacitor

The equation, which describes the energy balance of the dc-
link capacitor can be expressed as follows:

CdcUdc

ωb

dUdc

dt
= pa − pr

=
3
2
(udaidL + uqa iqL − udr idr − uqr iqr ) (19)

where Udc is the dc-link voltage, and pa and pr are the powers
supplied to the grid-side converter and the rotor circuit, respec-
tively.

From (1)–(19), we can obtain a set of state equations to present
the DFIG wind turbine system. They can be written in a compact
form as follows:

ẋ = f(x,u) (20)

where x and u are the vectors with respect to the state and the
input variables, which are defined as x = [ids iqs idr iqr ωr Udc
xω xu θt ωt β xus xβ ]T , u = [uds uqs IqL ref Udcref Vw βref ]T .

III. SMALL-SIGNAL-STABILITY ANALYSIS

A DFIG wind turbine system, modeled by (1)–(19) or sim-
ply (20), can be linearized to form the linear model around an
equilibrium point for small-signal-stability analysis.

A. System Jacobian

The Jacobian matrix is of great importance to stability anal-
ysis of dynamical systems. In order to analyze the Jacobian
matrix, the equilibrium point X0 of the system needs to be cal-
culated by solving equation f (x, u) = 0. With X0 , the Jacobian
matrix of the system evaluated at the equilibrium point is given
in (21), shown at the bottom of this page, where {Ji,j} (i =

J(X0) = A =
∂f

∂x

∣∣∣∣
x=X 0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J11 J12 J13 J14 J15 0 J17 0 J19 J110 J111 J112 0

J21 J22 J23 J24 J25 0 J27 0 J29 J210 J211 J212 0

J31 J32 J33 J34 J35 0 J37 0 J39 J310 J311 J312 0

J41 J42 J43 J44 J45 0 J47 0 J49 J410 J411 J412 0

J51 J52 J53 J54 J55 0 0 0 J59 J510 0 0 0

J61 J62 J63 J64 J65 J66 J67 J68 J69 J610 J611 J612 0

0 0 0 0 J75 0 0 0 0 J710 J711 0 0

0 0 0 0 0 J86 0 0 0 0 0 0 0

0 0 0 0 J95 0 0 0 0 J910 0 0 0

0 0 0 0 J105 0 0 0 J109 J1010 J1011 0 0

J1101 J1102 0 0 0 J116 0 J118 0 0 J1111 0 J1113

0 0 0 0 0 0 0 0 0 0 0 0 0

J131 J132 0 0 0 J136 0 J138 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)
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1, 2, . . . , 4 and j = 1, 2, . . . , 13) represents the linearized dy-
namics of the generator from (1); {Ji,j} (i = 5, 9, 10 and j
= 1, 2, . . . , 13) represents the linearized dynamics of the drive
train from (2)–(4); {Ji,j} (i = 6, 7, 8, 12 and j = 1, 2, . . . , 13)
represents the linearized dynamics of the dc-link capacitor and
controllers of the back-to-back converters from (14), (17), and
(19); {Ji,j} (i = 11, 13 and j = 1, 2, . . . , 13) represents the
linearized dynamics of the pitch control from (11) and (12). The
elements of the Jacobian matrix are given in the Appendix.

In this paper, we focus on the oscillatory stability analysis
of the DFIG itself, the studied DFIG is directly connected to
the infinite bus and the dynamic behavior of the grid is not
concerned. Therefore, in (14), we have Us = Us ref , and the dif-
ferential equation associated with the voltage-control loop can
be omitted. Under this assumption, 12th row and 12th column
of the Jacobian matrix can be removed. When wind speed is
lower than the rated value, the power limitation is not active;
therefore, 13th row and 13th column of matrix J(X0), which
are associated with pitch-control loop, can be deleted.

B. Hopf Bifurcation

This paper concentrates on the analysis of local bifurcations,
particularly Hopf bifurcation that can occur in a DFIG system.

Hopf bifurcation corresponds to emergence of a periodic so-
lution from an equilibrium point of (20); in this way, the HFB
is responsible for system oscillatory behavior. According to the
Hopf bifurcation theorem [19], a HFB can be supercritical or
subcritical. A supercritical HFB has the initially stable periodic
solution branch and will result in a smooth transition to oscil-
lations. On the other hand, a subcritical HFB is associated with
an unstable periodic solution branch and will lead to a hard
transition to large amplitude oscillations.

The DFIG wind turbine system works in power-optimization
operation mode at most of the time. Under this operation mode,
the rotor speed of DFIG usually changes along with the vari-
ation of wind speed [10]. We will consequently focus on the
effect of the variation of wind speed as well as rotor speed on
the dynamical behavior of DFIG under the power optimization
operation mode in the following section.

C. Eigenvalue Sensitivity

Eigenvalue sensitivity, defined as the rate and direction of
eigenvalue movement in the s-plane due to the variation in
system parameters is an efficient tool for designing the control
system and parameterizing the system, especially for the higher
order systems. Two types of eigenvalue sensitivities are studied:
eigenvalue sensitivity with respect to the entry of system state
matrix and system parameter.

The participation factor is a special group of eigenvalue sen-
sitivity with respect to the system states [20] as follows:

Pki =
∂λi

∂akk
= ukivki(i, k = 1, 2, ..., n) (22)

where akk is the kth row and kth column of A, ui, vi ∈ Rn

denote the normalized right and left eigenvectors corresponding
to λi , respectively.

TABLE I
SYSTEM PARAMETERS USED IN SIMULATIONS

TABLE II
EIGENVALUES OF DFIG WIND TURBINE SYSTEM (Vw = 12 M/S, KP ω = 1)

The first-order sensitivity of an eigenvalue λi with regard to
a system-operating parameter α can be given by the following:

∂λi

∂α
=

uT
i (∂A/∂α) vi

uT
i vi

. (23)

The magnitude and the sign of the real part of the eigenvalue
sensitivity Sλ,σ

α are defined as the size and direction of move-
ment of eigenvalue λi in the horizontal direction in the s-plane
due to the small perturbation of a general parameter α, respec-
tively, whereas the imaginary part of the eigenvalue sensitivity
Sλ,ω

α are associated with the movement of eigenvalue λi in the
vertical direction.

IV. THEORETICAL SYSTEM EIGENVALUE ANALYSIS

Using the Jacobian matrix derived in Section III, eigenvalue
analysis of the DFIG wind turbine system is given in this section.

A. Eigenvalue Loci

The system parameters, set as the standard value from MAT-
LAB vR2007b Demo, are detailed in Table I. Using the Jacobian
matrix (21), eigenvalues of the DFIG system can be calculated.
All the eigenvalues at rated wind speed (Vw = 12 m/s, ωr =
1.1 p.u., KP ω = 1) are listed in Table II. The eigenvalue loci of
corresponding oscillatory modes are plotted in Figs. 5 and 6.

Fig. 5(a)–(d) shows the eigenvalue loci of λ1,2 , λ3,4 , λ5,6 , and
λ7,8 as wind speed increases when KP ω = 60. The arrows in
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Fig. 5. Eigenvalue loci as wind speed increases from 8 to 15 m/s (KP ω =
60) for (a) λ1 ,2 , (b) λ3 ,4 , (c) λ5 ,6 , and (d) λ7 ,8 .

Fig. 6. Eigenvalue loci as the proportional gain of rotor speed controller
KP ω increases from 1 to 50 (Vw = 12 m/s) for (a) λ1 ,2 , (b) λ3 ,4 , (c) λ5 ,6 , and
(d) λ7 ,8 .

the figures indicate the directions of the eigenvalue movement
as Vw increases from 8 to 15 m/s. When Vw is higher than
the rated value, the power and generator speed limitation are
activated, resulting in slower movement of all the eigenvalues.
As shown in this figure, λ1,2 move to the imaginary axis and the
oscillation frequency is increased as Vw increases. For λ3,4 , they
move away from the imaginary axis. The oscillation frequency
increases up to a point (Vw = 9 m/s), then decreases again. For
λ5,6 , they move to right and the oscillation frequency decreases
up to a point (Vw = 10.2 m/s), then suddenly moves toward
left. When Vw is higher than the rated value, they move to right
from a new position, which is far away from imaginary axis.
For λ7,8 , they move to left up to a point (Vw = 11 m/s), then
they move toward right. The oscillation frequency is decreased
as Vw increases. When Vw is higher than the rated value, they
move to left from a new position close to imaginary axis.

TABLE III
EIGENVALUES FOR VARIATION VALUE OF Vw AND ωr (KP ω = 70)

Fig. 6(a)–(d) shows the eigenvalue loci of λ1,2 , λ3,4 , λ5,6
and λ7,8 as the proportional gain of rotor speed controller KP ω

increases from 1 to 50, respectively. λ1,2 and λ5,6 move toward
the imaginary axis, while λ3,4 and λ7,8 move away from the
imaginary axis as KP ω increases. The oscillation frequencies of
λ1,2 , λ3,4 , and λ5,6 are decreased, while the oscillation frequency
of λ7,8 is increased as KP ω increases.

The aforementioned analyses show that the operation stability
of a DFIG wind turbine system can vary very much due to
reasons, such as varying wind speed and control parameters.
For the studied wind turbine, it is observed that as wind speed
varies, λ1,2 and λ5,6 tend to move to the right half of the s-
plane, if KP ω is inappropriately selected above a critical value.
This indicates that they are the key modes for inducing the
oscillatory instability, especially when wind speed is lower than
rated value. Moreover, it is obvious from the results in Fig. 5 that
the system is more stable and oscillation can hardly happen when
the wind speed is higher than the rated value due to activeness
of the power limitation. Therefore, the oscillatory instability
and eigenvalue sensitivity at higher wind speed will not been
analyzed in the following section.

B. Hopf Bifurcation

Table III shows the effect of Vw and ωr variations on the
eigenvalues of the studied system when KP ω is set improperly
(KP ω = 70). It shows that there totally exist four pairs of
complex conjugate eigenvalues and two real eigenvalues, as
Vw and ωr vary. When ωr is around the synchronous speed,
all these eigenvalues have negative real parts. As ωr increases
at a critical value (ωr = 1.0564 p.u.), a simple pair of pure
imaginary eigenvalues λ5,6 = 0 ± j19.4 of around 3 Hz ap-
pears, while other eigenvalues remain in the left half plane, and
((d(Re[λ(μ)]))/dμ) |μ∗ < 0.

A supercritical HFB, therefore, occurs and a stable limit cy-
cle emerges, leading to a smooth transition to time-periodic
oscillations in the studied DFIG [19]. As ωr increases further,
the real part of the complex eigenvalues changes to positive,
so the system loses stability and oscillates periodically. When
ωr decreases at a critical value (ωr = 0.9593 p.u.), a simple
pair of pure imaginary eigenvalues λ5,6 = 0 ± j16.7 of around
3 Hz appears, while other eigenvalues remain in the left-half
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TABLE IV
EIGENVALUES AND PARTICIPATION FACTORS (Vw = 12 m/s, KP ω = 1)

plane, and ((d(Re[λ(μ)])/dμ)) |μ∗ < 0. Therefore, a supercrit-
ical HFB occurs. As ωr decreases further, the real part of the
complex eigenvalues changes to positive and the system loses
stability with periodical oscillation.

The analysis reveals that the Hopf bifurcation can happen
in a DFIG wind turbine with inappropriate tuning of control
parameters. For this studied system, this is essentially caused
by the shift of the real part of λ5,6 from negative to zero.

C. Eigenvalue Sensitivity

The eigenvalues and participation factors of the studied sys-
tem when ωr = 1.1 p.u. (Vw = 12 m/s, KP ω = 1) are shown
in Table IV. We can see that λ1,2 are associated with the stator
flux; λ3,4 are associated with the rotor and turbine mechanical;
λ5,6 are associated with the rotor flux; λ7,8 are associated with
rotor and turbine mechanical; λ9 and λ10 are associated with
dc-link voltage; λ11 is associated with dynamics of pitch angle.
The first-order eigenvalue sensitivities with respect to some ma-
chine and control parameters at different rotor speeds are listed
in Table V. As the required perturbed parameters appear explic-
itly in state matrix A, the analytical approach can be applied to
compute the eigenvalue sensitivities [21].

It is obvious from Table V that a DFIG parameter differs much
in their sensitivities to different eigenvalues. Furthermore, the
sensitivities also vary at different rotor speeds. This observation
implies that simply adjusting only one DFIG parameter can-
not ensure damping enhancements of several critical eigenvalue
pairs at different rotor speeds. Correspondingly, the coordinated
tuning of system parameters using advanced optimization tech-
nique should be considered to improve system stability in future
work.

For λ1,2 , the most sensitive parameters are Rs , Lls , and Llr

as the real part of the sensitivities of λ1,2 with respect to Rs ,
Lls , and Llr are larger than the others. The increase in Rs

and decrease in Lls and Llr make λ1,2 move toward left in
the s-plane. For λ3,4 , the most sensitive parameter is Hg . A
small positive perturbation in Hg makes λ3,4 shift toward the
imaginary axis. However, as λ3,4 are not the key modes for the
oscillatory stability of the studied system, the increase in Hg will
not deteriorate the system stability. For λ5,6 , the most critical
parameters are Rs , Rr , Lls , and Llr . The increase in Rr and
decrease in Lls and Llr will lead to λ5,6 moving toward left in
the s-plane. The decrease in Rs at subsynchronous speed, while
increase at synchronous and supersynchronous speed makes
λ5,6 shift toward left in the s-plane. For λ7,8 , only at synchronous

speed, λ7,8 is sensitive to the variation of Rr and Lls . For λ9
and λ10 , the most sensitive parameters are Rr . The increase in
Rr leads to λ9 shifting toward right and λ10 moving toward left
in the s-plane. λ11 is insensitive to all these parameters listed in
Table V.

V. COMPUTER SIMULATION STUDY

The preceding section presents theoretical analysis based on
the mathematical model. In this section, we will present a series
of computer simulations to verify the theoretical analysis. In
particular, we will focus on the qualitative change of dynamics
as Vw is varied, as analyzed in Section IV. MATLAB/Simulink is
used to establish the simulation model of DFIG system described
in the foregoing section. All the components of the simulation
model are built with standard electrical component blocks from
the SimPowerSystems block set in MATLAB/Simulink library.

A. Stable Operation

Fig. 7(a)–(f) shows the time-domain waveforms of rotor speed
ωr , dc-link voltage Udc , active power P , reactive power Q, stator
current of phase A isa and rotor current of phase A ira when
wind speed Vw = 11.1 m/s, rotor speed set point ωref = 1.015. It
is shown that ωr , Udc , P , and Q are nearly constant, isa and ira

are sinusoidal. The system is stable and there is no oscillatory
behavior.

B. Oscillatory Instability

When Vw varies above a critical value, oscillatory behavior
can occure in the studied system. Fig. 8 shows the corresponding
steady-state time-domain waveforms, after a step increase of
0.9 m/s (8.1%) is applied to Vw (Vw = 12 m/s, ωref ≈ 1.1).
It is shown that ωr , Udc , P , and Q are no longer constant,
but oscillate around the frequency of 3 Hz. isa and ira are no
more sineusoidal. In Section III, the nature of such oscillation is
analyzed from a Hopf bifurcation perspective. It can be observed
that Hopf bifurcation takes place at approximately the same
wind speed condition as it does in our theoretical analysis, and
the simulated periodic oscillations also match the earlier Hopf
bifurcation analysis.

C. Hopf Bifurcation Boundary

The analysis in Section IV already shows that the oscillatory
instability is essentially Hopf bifurcation induced one, through
the eigenvalues λ5,6 . Sensitivity analysis also indicates the pa-
rameters, which have significant effects on the movement of
λ5,6 , are Rs , Rr , Lls , and Llr . In this section, the stability
boundary curves with respect to those critical parameters within
the space of KP ω versus ωr , where the conjugate eigenvalues
λ5,6 intersecting with the imaginary axis are mapped, which
corrospond to the occurence of Hopf bifurcation. The Hopf
bifurcation boundaries can be readily obtained by using the an-
alytical means described in the earlier section. On the other
hand, the boundaries obtained from simulations performed in
MATLAB/Simulink are also given to verify the results from the
theoretical analysis.
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TABLE V
FIRST-ORDER EIGENVALUES SENSITIVITIES GIVEN DIFFERENT ROTOR SPEED: (A) ωr = 0.9 SUBSYNCHRONOUS SPEED;

(B) ωr = 1 SYNCHRONOUS SPEED; (C) ωr = 1.1 SUBSYNCHRONOUS SPEED

Fig. 9(a)–(d) shows the Hopf bifurcation boundaries in the
parameter space of KP ω versus ωr under different values of
Rs , Rr , Lls , and Llr , respectively, which clearly illustrates the
effect of those sensitive parameters on the Hopf bifurcation
boundaries. Area below the curves corresponds to stable opera-
tion and above that to unstable operation. On top of these curves,
the system loses stability via Hopf bifurcation.

As shown in Fig. 9, the simulation results agree well with the
analytical results. Also, we can generally observe that around
synchronous speed, the critical value of KP ω is the largest, and
does not change so significantly in different system parameter
conditions. When ωr is away from synchronous speed (e.g., in
0.7–0.9 or around 1.1), the critical value of KP ω decreases as
the value of ωr increases, and Hopf bifurcation boundaries have
considerable changes in different system parameter conditions.
The point marked with “∗” is the stable operating point before
the bifurcation occurs. At subsynchronous speed, the Hopf bi-
furcation margin becomes smaller as Rs increases. While at
supersynchronous speed, the Hopf bifurcation margin becomes
larger as Rs increases. For all studied region of rotor speed, the
Hopf bifurcation margin becomes larger, as Rr increases, while
Lls and Llr decrease.

D. Discussion

The simulation results have confirmed the theoretical analy-
sis based on derived model and Jacobian matrix. The simulation

results show that the oscillatory behavior with the nature of
Hopf bifurcation can happen due to reason like varying wind
speed. The observed oscillation is primarily due to the vary-
ing electromagnetic torque, since the mechanical one is fixed.
Such oscillation of the electromagnetic torque is related to the
variations of the magnitude and direction of the stator and rotor
flux-linkage vectors [22], [23], which is not focused herein, but
will be investigated in our future scope.

Besides the wind speed and control parameters, Hopf bifurca-
tion is also sensitive to other system parameters, and the impact
of different parameters on the Hopf bifurcation margin at dif-
ferent rotor speeds is different. For the studied system, Hopf
bifurcation boundaries for the eigenvalues λ5,6 show that such
bifurcation can happen particularly when Rs , Lls , and Llr in-
crease, while Rr decreases at subsynchronous speed. At super-
synchronous speed, the increase of Lls and Llr , while decrease
of Rs and Rr may lead to such Hopf bifurcation. Hence, simply
increasing Rs cannot enhance the Hopf bifurcation margin at
different rotor speeds, and it is recommended to choose large
value of Rr , while small value of Lls and Llr to enlarge such
Hopf bifurcation margin. These are the important characteristics
for a DFIG wind turbine system, and very useful for the oper-
ators of such system to be careful in situations, where critical
parameters may be changed. Hopf bifurcation boundaries for
other eigenvalues have also been studied. Though different bi-
furcation boundaries will be exhibited for different eigenvalues,
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Fig. 7. Simulation results when DFIG works in stable operation. (a) Rotor
speed ωr . (b) DC-link voltage Udc . (c) Active power P . (d) Reactive power Q.
(e) Phase A of stator current isa . (f) Phase A of rotor current ir a .

Fig. 8. Simulation results when oscillatory instability occurs. (a) Rotor speed
ωr . (b) DC-link voltage Udc . (c) Active power P . (d) Reactive power Q.
(e) Phase A of stator current isa . (f) Phase A of rotor current ir a .

Fig. 9. Hopf bifurcation boundaries in the parameter space of KP ω versus
ωr for (a) different values of stator resistance Rs , (b) mutual inductance Rr ,
(c) stator leakage inductance Lls , and (d) rotor leakage inductance Llr . Re-
sults from analysis are denoted by the solid line. Results from simulations are
represented by “•”, “+,” and “◦”. The dot “∗” is the stable operating point.

in general, a varying style along with rotor speed can be clearly
observed.

When the wind speed is higher than the rated value, the power
limitation is activated. It is obvious from the results in Fig. 5 that
the system is more stable and Hopf bifurcation can hardly hap-
pen. Therefore, the bifurcation boundary at higher wind speed
has not been analyzed in this paper.

VI. CONCLUSION

DFIG has been one of the popular types for high-power ap-
plications of wind power generation. However, the detailed
nonlinear dynamics of this system, so far, has not been thor-
oughly investigated. In this paper, a detailed DFIG wind turbine
model including two-mass drive train, pitch control, induction
generator, back-to-back PWM converters, and vector-control
loops was developed. The Jacobian matrix was also derived for
small-signal-stability analysis purpose. Bifurcation and eigen-
value sensitivity analysis based on both theoretical analysis and
computer simulations showed that DFIG wind turbine can loose
stability via a Hopf bifurcation. Further analysis showed that the
impact of different DFIG parameters on different critical eigen-
value pairs at different rotor speeds was different. The most
sensitive parameters to the Hopf bifurcation of a DFIG wind
turbine system can be identified through eigenvalue sensitivity
analysis. Moreover, the Hopf bifurcation boundaries with re-
spect to those critical parameters have also been analyzed that
can facilitate parameterizing the DFIG wind turbine system to
ensure stable operation. The analyses in this paper provide in-
sights into DFIG oscillatory stability that can be important for
both manufacturer and system operators in designing or practi-
cally operating such wind turbines concerning their impact on
power system small-signal stability.
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APPENDIX

JACOBIAN MATRIX
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