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Abstract: A generic feature of string compactifications is the presence of many scalar

fields, called moduli. Moduli are usually displaced from their post-inflationary minimum

during inflation. Their relaxation to the minimum could lead to the production of oscillons:

localised, long-lived, non-linear excitations of the scalar fields. Here we discuss under which

conditions oscillons can be produced in string cosmology and illustrate their production

and potential phenomenology with two explicit examples: the case of an initially displaced

volume modulus in the KKLT scenario and the case of a displaced blow-up Kähler modulus

in the Large Volume Scenario (LVS). One, in principle, observable consequence of oscillon

dynamics is the production of gravitational waves which, contrary to those produced from

preheating after high scale inflation, could have lower frequencies, closer to the currently

observable range. We also show that, for the considered parameter ranges, oscillating fibre

and volume moduli do not develop any significant non-perturbative dynamics. Further-

more, we find that the vacua in the LVS and the KKLT scenario are stable against local

overshootings of the field into the decompatification region, which provides an additional

check on the longevity of these metastable configurations.
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1 Introduction

Moduli fields, scalar fields describing the size and shape of extra dimensions, are generic in

string theory. It is well-known that moduli are displaced from their low-energy minimum

during and after inflation [1–3]. As it is expected that there are O(100) moduli fields, it is

a natural question to ask for phenomenological consequences of moduli displacement in the

early Universe. For example, it has been argued that these moduli lead to a deviation from

the standard thermal history of a radiation dominated Universe shortly after inflation. An

additional period of matter (i.e. moduli) domination takes place. This can lead to additional

contributions of dark radiation [4, 5], baryogenesis [6] and a non-thermal production of dark

matter [7] (see [8] for a review).

Moduli fields φ become dynamical when the relevant scales in the potential V (φ)

are of order the Hubble scale H, in particular when the friction term 3Hφ̇ is of order
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V ′(φdisplaced). Phenomenologically, the absence of a cosmological moduli problem [1–3] sets

a lower scale of roughly 30TeV to the masses of moduli. Advances in our understanding

of moduli potentials allow us to address the relevance of moduli in the early Universe. By

now there are well worked out scenarios of moduli stabilisation in various corners of string

theory and much attention has been devoted to the type IIB scenarios of KKLT [9] and the

Large Volume Scenario (LVS) [10, 11]. For concreteness we concentrate in this paper on

these scenarios of type IIB string theory. Here, the moduli masses are hierarchically below

the string scale and are described within a four dimensional effective N = 1 supergravity

field theory.

This property is generic in string compactifications with low-energy supersymmetry

for which the presence of such light moduli can be understood from general field theory

arguments in supergravity [3, 12–16]. The lightest non-axionic modulus, is associated to

the scalar partner of the Goldstino. Its mass is lower or equal to the gravitino mass of a

given setup. In string theory, the consistency of the four dimensional N = 1 effective field

theory requires that the gravitino mass and hence at least one modulus has a mass below

the compactification and the string scale.

In this article we consider a possible phenomenological consequence of moduli displace-

ment: the production of oscillons. Oscillons are spatially localised oscillating scalar field

configurations which are long-lived with respect to the characteristic time scale of oscilla-

tions. In these regions the modulus oscillates with large amplitude. They have been studied

in the context of field theory models (of inflation) [17–32] including potentials that appear

in axion monodromy inflation in string theory [33] (although neglecting moduli stabilisa-

tion). The production of oscillons depends on whether the shape of the potential supports

such localised scalar field configurations as well as the sufficient growth of perturbations1

and the corresponding cosmological history.

Oscillons have been found to be present in many field theories for single real scalar

fields for which the corresponding scalar potential flattens out close to its minimum. This

causes an effective attractive interaction among the scalar field particles that triggers these

time-dependent energy lumps to form. When present, oscillons can substantially affect

the cosmological evolution of the Universe. They can dominate the energy density before

decaying and delay thermalisation. They could also catalyse the implementation of second

and relatively weak first order phase transitions, be a source of baryon asymmetry, gravita-

tional waves, etc. It is then important to see if they have a role in string cosmology during

and after inflation.

In this article we start exploring the role of oscillons in the rich structure of scalar

potentials for string theory moduli. Given the magnitude of the energy landscape with

hundreds of scalar fields, quasi-stable field configurations could play an important role

in the cosmological dynamics of the theory. With respect to moduli displacements in

the early Universe, we present two examples where we find the production of oscillons

numerically. The first example is that of a displaced volume modulus in KKLT. The

second example is based on the LVS where we find oscillons from displacing so-called blow-

1For a review on the non-perturbative dynamics during preheating after inflation, see e.g. [34].
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up moduli.2 We also find that in the context of string moduli the production of oscillons is

model dependent. Some moduli potentials do not give rise to oscillons such as the overall

volume or Kähler moduli associated to fibrations in the LVS. In the current analysis, which

should serve as a proof of concept, we treat the initial displacement as a phenomenological

parameter. Connecting with a fully-fledged UV setup including an early inflationary period

(or alternatives) the initial displacement would be explicitly determined. Here we will not

assume a particular model of string inflation but consider only the dynamics of moduli

fields when relaxing towards their zero-temperature vacuum.

Depending on the type of configuration, oscillons can produce gravitational radiation,

which has been studied in the context of axion monodromy inflation [33] and more recently

during preheating after hilltop inflation [32], and leads to a distinct phenomenological

signal of oscillons. In general, the frequency of gravitational waves (GWs) is related to

the energy scales involved in the scalar (moduli) potential. This scale can be distinct from

the energy scales responsible for GWs from preheating after inflation. This hence can lead

to GWs produced at lower frequencies, potentially in the range experimentally tested by

current experiments (e.g. LIGO). Both of our examples lead to a production of stochastic

gravitational waves which can feature a peak at the characteristic oscillon frequency. More

generally, each moduli potential has its characteristic GW spectrum from various GW

production mechanisms and carries a rich information about the field dynamics in this

period. We also comment on how a subsequent period of moduli domination (until the

lightest modulus decays before BBN) affects the stochastic gravitational wave background

produced from earlier phases of “moduli preheating”.

In the context of hilltop inflation, it has been found in [28] that the strong amplification

of the perturbations can lead to localised regions which overshoot over the barrier that

separates the considered minimum from other minima in the potential. For the hilltop

model it turned out that such an overshooting is unproblematic since the overshooting

bubbles quickly collapse. A similar situation can in principle appear for moduli potentials,

e.g. the KKLT scenario and the LVS are examples where such overshooting over the barrier

could be present. For these two examples, we find that such overshootings do not occur

and hence provide an additional check on the longevity of these metastable configurations.

In section 2 we summarise the basic requirements for the production of oscillons, then

comment on how moduli potentials provide a very promising arena to the production of

oscillons, and finally we introduce the common numerical methods used for studying the

evolution of the perturbations. In section 3 we present explicit examples for the production

of oscillons, before concluding in section 4. In appendix A we discuss further moduli

potentials which only lead to a homogeneous field evolution.

2 Introduction to oscillons

Before studying the appearance of oscillons in string theory, let us first recall some con-

ditions on the production of oscillons. We then comment on when we expect to produce

oscillons from string moduli.

2For this example, our analysis extends the work in [35] in which reheating after Kähler moduli inflation

was studied in detail although the presence of oscillons was not discussed.
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2.1 Oscillons in effective field theories

We concentrate on the case of a single scalar field φ with a potential V (φ) with a Lan-

grangian of the form:

L =

∫

d4x
√−g

(

M2
Pl

2
R− 1

2
∂µφ∂µφ− V (φ)

)

. (2.1)

HereMPl is the reduced Planck mass and R the Ricci scalar. We will study the cosmological

evolution of the field φ on a FLRW background:

ds2 = −dt2 + a2(t) dx2 , (2.2)

with a(t) the scale factor.

In order to study the production of oscillons, it is convenient to express the scalar field

φ involved in the process as the sum of a (spatially averaged) homogeneous background

and a perturbation: φ(t, ~x) = φ(t) + δφ(t, ~x). The homogeneous component obeys the

equations of motion

φ̈(t) + 3Hφ̇(t) + V ′(φ(t)) = 0 , with H2(t) =
1

3M2
Pl

(

φ̇2(t)

2
+ V (φ(t))

)

. (2.3)

The perturbation δφ can, in turn, be decomposed into Fourier modes δφk:

δφ(t, ~x) =

∫

dDk

(2π)D
δφk(t) e

−i~k·~x , (2.4)

where D is the number of spatial dimensions. In D = 3 the equation of motion for the

Fourier modes takes the familiar form

δφ̈k + 3Hδφ̇k +

(

k2

a2(t)
+ V ′′(φ(t))

)

δφk = 0 , (2.5)

The initial conditions for eq. (2.5) (at t = 0 with a(0) = 1) are given by the usual vacuum

fluctuations

δφk ≃ 1√
2ωk

, δφ̇k = −i

√

ωk

2
, (2.6)

with the frequency ωk given by

ω2
k(t) =

k2

a2(t)
+ V ′′(φ) , (2.7)

where we neglected a term −3
4

(

ȧ
a

)2 − 3
2
ä
a ∼ H2 since the relevant physics will generally

take place on subhorizon scales k ≫ H for the models considered in this paper.

Three necessary conditions for the formation of oscillons are (see for instance [17, 36]):

1. The field perturbations δφ grow as the field oscillates about the minimum of

the potential.
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2. The growth of the field perturbations is sufficiently strong for non-linear interactions

to become important.

3. The potential opens up away from the minimum or in other words it is shallower

than quadratic in some field space region relevant for the field dynamics.3

The third requirement is necessary for the potential to support localised configurations

of the scalar field: if this condition is not satisfied the fragmentation of the scalar field

obtained as a consequence of the growth of the perturbations does not lead to the formation

of oscillons (as e.g. in [38]). Intuitively, contrary to a quadratic potential, a potential

shallower than quadratic (e.g. V = m2φ2 − λφ4 + · · · for small φ) implies that there is an

attractive interaction (λ > 0) among the scalar particles implying that boson condensation

leading to oscillon production is energetically favoured.

In order to study the formation of oscillons it is always crucial to check the production

explicitly, e.g. through lattice simulation (see section 2.3). The growth of perturbations

though can be obtained in various ways. Discussions in the literature typically consider

preheating after inflation. The same mechanisms can also occur in moduli preheating.

The mechanisms can be classified in terms of the region of the potential probed by the

background field during the growth of perturbations:

• Tachyonic preheating. Tachyonic preheating occurs if the scalar field is initially dis-

placed beyond the inflection point near the minimum and takes place when the field

rolls in the region of the scalar potential where V ′′(φ(t)) < 0 toward the minimum of

the potential. As the field rolls through the tachyonic region, all the infrared modes

δφk such that k2/a2+∂2V/∂φ2 < 0 grow exponentially. The importance of tachyonic

preheating depends, of course, on the initial displacement of the modulus field. It is

in principle possible that non-linear interactions between different modes δφk become

important already at this stage, however, for the models considered in this paper it

turns out that this mechanism is subdominant. Especially for the models in which

oscillon production takes place, tachyonic preheating is always followed by another,

more efficient mechanism for the growth of fluctuations.

• Tachyonic oscillations. Tachyonic oscillations happen when the field crosses period-

ically the inflection point ∂2V/∂φ2 = 0 as it oscillates about the minimum, probing

both the region where V ′′(φ(t)) > 0 and the region where V ′′(φ(t)) < 0. During each

oscillation, the field perturbations grow in the tachyonic region as the field acceler-

ates toward the minimum (downhill) and decrease as the field decelerates toward the

plateau (uphill). This, combined with the expansion of the Universe and the periodic

crossing of the inflection point, leads to a net growth of the field perturbations peaked

at a characteristic wavenumber

kp .

√

∂2V

∂φ2

∣

∣

∣

∣

∣

min

≡ m, (2.8)

3A precise condition for small amplitude oscillons including also non-canonical kinetic terms has been

discussed in [37].
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closely related to the frequency of the oscillations of the homogeneous mode at the

time of production [28, 39]. When the expansion rate is small compared to the

frequency of the background oscillations (weak damping of oscillations) and it hence

allows for a sufficient number of tachyonic oscillations, non-linear interactions between

fluctuations with different wavenumbers become important, and the system enters

a non-perturbative phase. Heuristically, the larger the ratio m/H the smaller the

damping becomes. In case the damping is large, the field quickly relaxes to the

minimum and this mechanism for the growth of perturbations is not efficient (see

appendix A).

• Parametric resonance. Parametric resonance is a mechanism for the amplification

of fluctuations that can occur even when the background field φ(t) performs small

oscillations around the minimum of its potential. Neglecting the expansion of the

Universe in equation (2.5), the equation of motion for the quantum fluctuations δφk

takes the form δφ̈k+ω2
kδφk = 0, where ωk is given by equation (2.7) with a(t) = 1. In

the simplest models (see e.g. [40, 41]) such an expression can be explicitly rewritten in

the form of a Hill’s (or Mathieu’s) equation, whose solutions are classified in stability

charts [42, 43]. The instability bands that can be observed in the stability charts

correspond to violations of the adiabaticity condition4

∣

∣

∣

∣

ω̇k(t)

ω2
k(t)

∣

∣

∣

∣

≪ 1 , (2.9)

which implies violent particle production. In more complex potential examples, such

as those examined in this paper, a numerical study of the instability bands is necessary

(see section 2.3.1). Interestingly, the growth of perturbations in the case of axion

monodromy is an example of parametric resonance at work [44].

Let us briefly comment on the production of gravitational waves from preheating with

oscillons: during an early phase of tachyonic preheating, gravitational waves with com-

paratively low k (limited by H at this time) can be produced. When, on the other hand,

the zero mode survives for several (or many more) oscillations, then tachyonic oscillations

can generate a rather broad peak in the spectrum of gravitational waves around k ∼ kp,

which then gets redshifted as the Universe expands. E.g. via tachyonic oscillations, or

via parametric resonance, oscillons can be produced which then further contribute to the

gravitational wave spectrum. In addition to gravitational waves generated during oscillon

production [44], oscillons can provide a continuous source for gravitational waves as long

as they are asymmetric [32]. In this phase, oscillons can generate a pronounced peak in the

gravitational wave spectrum at the oscillation frequency of the oscillons (k ∼ m, with m

being the mass at the minimum of the potential) and also further subdominant peaks from

higher harmonics at multiples of this frequency. Finally, when oscillons decay, additional

gravitational waves are produced. Details will be discussed later in this section and in

section 3.

4Except in the case of narrow resonance [41].
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V (φ)

φφ(initial)φ(final)

Figure 1. Sketch of a moduli potential near its post-inflationary minimum φfinal. If the initial

displacement φinitial is in the yellow region the modulus is displaced in the tachyonic region of the

potential and tachyonic preheating (oscillations) can take place.

2.2 Potential for oscillon production in string theory

By now there is a whole plethora of moduli potentials known from string theory, in parts

motivated by the construction of models of de Sitter moduli stabilisation and inflation in

string theory [45]. This includes polynomial type potentials for complex structure moduli,

periodic potentials for axions, and exponential potentials for Kähler moduli, just to name

a few. In general it is expected that there are many O(100) moduli fields and that their

dynamics are encoded in their multi-field scalar potential. The aim of this paper is only

to provide a first survey of this rich class of potentials.

The standard picture is that (one of) the moduli fields will drive inflation, while the

other fields are trapped at their minimum of the potential. However, the minimum during

inflation 〈φinf〉 for these moduli fields depends on the position of the inflaton field and gener-

ically is different from the post-inflationary minimum. After inflation ends, these moduli

fields are displaced from their minimum and locked at these displaced values until Hubble

friction 3Hφ̇ becomes comparable to V ′(φ). The displacement is set by the inflationary

potential and can be calculated in a UV model (see for instance [46] for an example). To

be independent from inflationary model building, we keep the initial displacement as a free

parameter. For simplicity we also restrict ourselves to single field examples. The cartoon

picture is shown in figure 1.

For concreteness let us concentrate on IIB string compactifications on Calabi-Yau

orientifolds that lead to N = 1 supersymmetry in 4-dimensions. The set of (closed string)

moduli fields are as follows:

• Dilaton and complex structure moduli. The model independent dilaton field S and

the many (usually of order 102 − 103) complex structure moduli Uα measuring the

size of Calabi-Yau 3-cycles. Their scalar potential is determined by fluxes of the

two 3-form fields of IIB strings: FMNP , HMNP . Fluxes of these fields are quantised

from Dirac quantisation condition with integers bound by general tadpole conditions

but otherwise arbitrary. Varying the corresponding integers is the source of the

huge landscape of string vacua. The potential for these fields is determined by the

Gukov-Vafa-Witten superpotential W =
∫

G3 ∧Ω where GMNP = FMNP + SHMNP

and Ω is the unique (3, 0) form of Calabi-Yau manifolds. Their Kähler potential is

– 7 –
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Kcs +KS with Kcs = − log
(∫

Ω ∧ Ω∗) and KS = − log(S + S∗). They give rise to a

scalar potential of order string scale (or below) and are minimised by the condition

DUW = DSW = 0. We will assume these fields are sitting in their minimum but

in a more general discussion they may be considered as potential sources of oscillons

during their cosmological evolution.

• Kähler moduli. These are Ti = τi + iai where τi measure the size of the 4-cycles of

the Calabi-Yau manifold and ai are axion-like fields. For concreteness we will only

concentrate on the potential for the fields τi where i = 1, · · · , h11 where the Hodge

number h11 measures the number of non-trivial 4-cycles which ranges from one up to

several hundreds for known manifolds. Among these fields there are three classes that

are usually distinguished: the overall volume modulus, blow-up modes (measuring the

size of cycles that can be collapsed to zero size) and fibre moduli (measuring the size

of fibrations which are generic in Calabi-Yau manifolds). We will discuss potentials

for each of these classes generated by non-perturbative superpotentials and Kähler

potentials that will be written explicitly below. Again their axionic partners could

also be sources of oscillons that we will not consider at this stage.

To be specific, let us focus on the dynamics of Kähler moduli in type IIB string theory.

For such moduli, the potential takes the schematic form

V (φ) =
n
∑

j=0

Cje
−ajφ + . . . , (2.10)

where the number of relevant terms n, the coefficients Cj and aj are model dependent, the

dots include terms with multiple exponentials e−eφ . The coefficients Cj and a can have a

mild (i.e. polynomial) dependence on the moduli. The characteristic exponential structure

for the potential arises due to two distinct reasons:

1. The shift symmetry of the Kähler moduli forbids perturbative terms in the superpo-

tential depending on the Kähler moduli. Only non-perturbative contributions, hence

exponentials, can arise in the superpotential. An example of such a generation of

terms is the case of blow-up moduli in the LVS which we discuss in section 3.2.

2. The Kähler potential of the overall volume modulus K/M2
Pl = −2 logV leads to

a canonically normalised volume of the form φ/MPl ≃ logV. Although V appears

polynomially in the potential, the potential for the canonically normalised field is

exponential. Examples of such terms arise in our discussion of the overall volume

modulus in KKLT (cf. section 3.1) and in the LVS (cf. section A.1).

The minimum in these potentials arises from a balancing of various effects which scale

differently with respect to moduli (e.g. α′−corrections and non perturbative corrections

in the LVS). This distinct scaling on both sides of the potential generically leads to the

appearance of asymmetric potentials. For example in the context of blow-up moduli in the

LVS (cf. section 3.2), the potential schematically takes the following form:

V = V0(1− κe−αφ)2 . (2.11)

– 8 –
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This potential is asymmetric about the minimum, features an inflection point at φinf ≃
ln(2κ)/α and is clearly shallower than quadratic.5 The precise form of the prefactor, e.g. a

polynomial moduli dependence of κ, and the coefficient in the exponential α are model

dependent. In fact the potential shape is qualitatively similar to the case of hilltop-like

potentials of the form:

V (φ) = V0

(

1−
(

φ

v

)p)2

. (2.12)

Such potentials have been studied in the context of inflation [48–52] and are known to

support oscillons in large regions of their parameter space [28, 29, 32, 53]. Given the

similar qualitative features of potentials (2.11) and (2.12), we expect (and will show) similar

conclusions to be valid for Kähler moduli.

In potentials of the form of equations (2.11) and (2.12) the necessary conditions that

we have listed above are satisfied. For a sufficient initial displacement, the growth of field

perturbations happens via tachyonic preheating and tachyonic oscillations: the amplitude

of the Fourier modes δφk grows when the homogeneous field φ(t) accelerates through a

tachyonic region of the potential, i.e. for regions of the potential such that k2/a2(2) +

V ′′(φ(t)) < 0. In particular, for the potential in equation (2.11) the growth of perturbations

takes place for field values φ > log(2κ)/α.

Generically such regions where perturbations grow can be found in potentials for Kähler

moduli near the minimum. Whether the perturbations grow sufficiently large depends on

the coefficients in the potential Cj , aj and is hence model dependent. Similarly whether

the conditions for parametric resonance are satisfied depends on the parameter in the

moduli potential.

In the case that perturbations grow sufficiently, gravitational radiation is produced.

After its production, the spectrum of gravitational radiation is redshifted according to the

subsequent evolution of the Universe. The presence of many moduli in string models could

lead to a modification of the standard big bang picture, that features a single period of

radiation domination lasting from reheating after inflation to radiation/matter equality. In

fact, a modulus Φ oscillating around its minimum can lead to a phase of matter domination

which lasts until the modulus decays when the Hubble parameter becomes comparable to

the decay rate of the modulus itself ΓΦ ≃ m3
Φ/M

2
Pl. To avoid the cosmological moduli

problem this lightest modulus has to decay before BBN, setting an upper bound on the

duration of this phase of matter domination. Given the existence of many moduli in string

models, in general there can be many periods of matter domination. Concerning oscillon

and GW production, we can have two different situations:

• Oscillons and consequently GWs are produced by the dynamics of the lightest mod-

ulus and are followed by a radiation dominated phase.

• After oscillon and GW production, there is at least one additional displaced lighter

modulus which can dominate the energy density of the Universe, leading to at least

one additional epoch of matter domination.

5Note that a similar opening up is expected in the case of flux potentials for complex structure moduli

where the back-reaction of the fluxes on the geometry leads to an effective flattening of the potential [47].
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Since during matter domination the Universe expands more rapidly than during radiation

domination, the abundance of GWs produced by oscillons is more diluted when matter

domination lasts longer. In order to compute the actual dilution, it is necessary to evaluate

the evolution of the scale factor. For concreteness, let Φ be the lightest modulus. Oscillons

and GWs are produced either by Φ itself or by a heavier modulus. Let us also assume that

matter domination lasts from GW production to the decay of Φ.6 We denote by te the time

of production of GWs, by t∗ the time of decay of Φ determined by ΓΦ ≃ m3
Φ/M

2
Pl ∼ H(t∗)

and by t0 the current epoch. We assume that after the decay of Φ the thermal bath of

relativistic particles obeys entropy conservation, so that g(T )a3T 3 ∼ const., where g(T ) is

the number of relativistic degreees of freedom at temperature T . Then, the evolution of

the scale factor can be written as

R ≡ a (te)

a (t0)
=

a (te)

a (t∗)

a (t∗)

a (t0)
=

ρ
1/3
∗

ρ
1/3
e

(

g0
g∗

)1/3 T0

T∗
=

(

g0
g∗

)1/12 ρ
1/12
∗

ρ
1/3
e

ρ
1/4
0,rad , (2.13)

where we have used that during matter domination ρ ∼ a−3, while during radiation domi-

nation ρ ∼ g(T )T 4. In general ρe can be inferred by the numerical simulations, while ρ∗ is

determined by the reheating temperature ρ∗ = π2

30 g(T )T
4
∗ , where Tdec =

√
ΓΦMPl. Finally

ρ0,rad is the energy density in radiation in the current epoch, and can be written in terms

of the critical density ρcrit ∼ 10GeV/m3: ρ0,rad = 4.3× 10−5 ρcrit. From equation (2.13) it

is evident that the longer the matter domination epoch (i.e. the smaller the energy density

at the decay of the lightest modulus Φ) the smaller is the ratio between the scale factors

at the GW production epoch and today.

Since GWs redshift as radiation, the abundance of GWs today is suppressed by the

fourth power of the ratio R
ΩGW,0 = R4ΩGW,e . (2.14)

On the other hand, the frequency f of GWs gets redshifted as usual

f0 = R fe . (2.15)

2.3 Numerical methods

The dynamics of a scalar field in an expanding Universe essentially depends on the exact

shape of its potential. For the various models considered in this paper, the latter typically

depends on multiple parameters. Although the shape of the potentials can be qualitatively

similar for different choices of parameter sets, the overall dynamics can vary significantly.

While for some regions of the parameter space, the field may be well described by the homo-

geneous evolution, others may support a strong amplification of scalar field perturbations

eventually leading to non-perturbative dynamics.

To study the evolution of the scalar field perturbations we use different common meth-

ods which we describe below in this section. In general, the procedure is as follows: to

determine whether and at which scales the fluctuations can potentially experience a phase

of rapid growth, for a given model, we use Floquet theory. To get a rough impression on

6In the most generic picture there could be several alternate matter and radiation domination eras.
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whether the dynamics are expected to be mild or rather violent we may also consider model

specific quantities like, for instance, m/H specifically for models where the situation is less

clear (e.g. when the parameter space is larger). Based on the results of the Floquet analysis

we either solve the fully non-linear equations of motion in an expanding Universe using

lattice simulations, or we solve the linearised equations for the perturbations equation (2.5)

in cases where no non-linear effects are expected.

2.3.1 Floquet analysis

A Floquet analysis is only applicable during the linear regime, i.e. when the fluctuations

are small compared to the motion of the background φ(t) and only if the motion of the

background is periodic. The latter is certainly not the case in an expanding Universe. Nev-

ertheless, for a first exploration of the dynamics we can use Floquet theory to compute the

growth rate of the fluctuations in Minkowski space. If the growth rate is large compared to

the expansion rate of the Universe this is typically a reliable indicator for the perturbations

to experience a phase of rapid growth.

In Minkowski space the linearised equations for the modes δφk equation (2.5) reduce to

δφ̈k(t) +

(

k2 +
∂2V (φ(t))

∂φ(t)2

)

δφk(t) = 0 , (2.16)

where φ(t) is the homogeneous background field. Since ∂2V (φ)/∂φ2 is now periodic, equa-

tion (2.16) has the form of Hill’s equation and according to the Floquet theorem the

solutions can be written as

δφk(t) = P+(t)e
µk t + P−(t)e

−µk t , (2.17)

where the µk are called Floquet exponents and the P± are periodic functions with the

same period as ∂2V (φ)/∂φ2. For fluctuations δφk for which the Floquet exponent exhibits

a non-vanishing real part ℜ[µk] the solution will be exponentially growing. Moreover, if the

growth rate is much larger compared to the expansion rate |ℜ[µk]|/H ≫ 1, this is a reliable

indicator for the corresponding mode to get significantly amplified in an expanding Uni-

verse. The Floquet exponents are typically computed numerically via a Floquet analysis.

We can rewrite equation (2.16) as a first-order system of linear differential equations

ẋ(t) = U(t)x(t) , (2.18)

with

U(t) =





0 1

−k2 − ∂2V (φ)
∂φ2 0



 , (2.19)

and defining x(t) = (δφk, δπk)
T where

δπk ≡ δφ̇k . (2.20)

The Floquet exponents can then be computed in three steps as follows (see ref. [34] for

more details):
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1. We first compute the period T of the system assuming that the field is at rest at

t = 0, i.e. φ̇initial ≡ φ̇(0) = 0:

T = 2

∫ φmaximal

φminimal

dφ
√

2V (φmaximal)− 2V (φ)
, (2.21)

where φinitial ≡ φ(0) = φminimal (or φmaximal) is the initial field value and the max-

imal and minimal field amplitudes φmaximal and φminimal are calculated by solving

V (φminimal) = V (φmaximal).

2. After having computed the period T we solve the equation for the homogeneous

background in Minkowski space and simultaneously equation (2.16) from t = 0 to t =

T and for two sets of initial conditions {δφk,1(0) = 1, δφ̇k,1(0) = 0} and {δφk,2(0) =

0, δφ̇k,2(0) = 1}.

3. Finally, the Floquet exponents are computed as

ℜ[µ±
k ] =

1

T
ln |σ±

k | (2.22)

where

σ±
k =

1

2

(

δφk,1 + δφ̇k,2 ±
√

[

δφk,1 − δφ̇k,2

]2
+ 4 δφk,2δφ̇k,1

)

(2.23)

with all quantities being evaluated at t = T .

2.3.2 Lattice simulations

To properly capture the evolution of the field in models where we expect a strong growth

of perturbations we perform numerical lattice simulations using a modified version of Lat-

ticeEasy [54]. The program is originally written to solve the fully non-linear equations of

motion of scalar fields in an expanding Universe. For the case of a single scalar field the

program solves the following set of equations on a discrete spacetime lattice

φ̈ + 3Hφ̇ − 1

a2
∇2φ +

∂V

∂φ
= 0 , (2.24)

H2 =
1

3M2
Pl

(

V +
1

2
φ̇2 +

1

2a2
|∇φ|2

)

, (2.25)

with initial fluctuations given by quantum vacuum fluctuations [55, 56]. On the lattice this

is realised by initializing the fluctuations as random variables with a Rayleigh distributed

magnitude and with randomly uniformly distributed phase (see ref. [54]).

In addition to equation (2.24) and (2.25) the code has been extended to compute

the evolution of the transverse and traceless (TT) part of the metric perturbation in the

synchronous gauge, where the line element takes the form

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj . (2.26)

The gravitational waves, hij , are sourced by TT-part of the anisotropic stress of the

scalar field

ΠTT
ij =

1

a2
[∂iφ∂jφ]

TT , (2.27)
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where on the right hand side of equation (2.27) we kept only the terms that are linear in

the gravitational coupling. The evolution of the GW is given by

ḧij + 3Hḣij − 1

a2
∇2hij =

2

M2
Pl

ΠTT
ij , (2.28)

where the initial conditions for the metric perturbations are hij(0) = ḣij(0) = 0. Instead of

directly solving for the hij , however, our code computes the evolution of the (non-transverse

and non-traceless) tensor uij

üij + 3Hu̇ij − 1

a2
∇2uij =

2

M2
Pl

1

a2
∂iφ∂jφ , (2.29)

and projects out the TT part of uij only when output is generated. This procedure saves

a considerable amount of computation time but is mathematically equivalent to directly

solving equation (2.28) [57]. The TT projection is performed in Fourier space according to

hij(k, t) =

(

Pil(k̂)Pjm(k̂)− 1

2
Pij(k̂)Plm(k̂)

)

ulm(k, t) , (2.30)

where Pij is the projection tensor defined as

Pij(k̂) ≡ δij − k̂ik̂j , with k̂i ≡ ki/|k| . (2.31)

Ultimately, the spectrum of GW per logarithmic momentum interval is computed

ΩGW(k) =
1

ρc
k
d ρGW

dk
, (2.32)

where ρc = 3M2
PlH

2 is the critical density of the Universe. The energy density of the

GW is

ρGW(t) =
M2

Pl

4

〈

ḣij(x, t)ḣij(x, t)
〉

V
, (2.33)

with 〈. . .〉V denoting an average over a sufficiently large volume, containing several wave-

lengths of the GW.

The spectrum ΩGW,e(k) refers to the spectrum at the time when the GWs are emitted.

In order to get the spectrum which would be observable today ΩGW,0(f), where f is the

frequency in Hz of the GWs, we have to take into account the expansion history of the

Universe between the emission of the GWs and today. This leads to the following rescalings

for the power spectrum (cf. equation (2.14))

ΩGW,0 =
4.3

105

(

ae
a∗

)1−3w (g∗
g0

)−1/3

ΩGW,e , (2.34)

where ae is the scale factor at the moment of emission, a∗ is the scale factor at the end

of reheating and w is the average equation of state parameter between the moment of

emission and the end of reheating. We use g∗/g0 = 100, where g∗ and g0 are the number

of relativistic degrees of freedom at the end of reheating and today, respectively. For the

frequency of the GW we have (cf. equation (2.15))

f0 = 4× 1010
(

ae
a∗

)
1−3w

4 k

aeρ
1/4
e

Hz , (2.35)

where ρe is the energy density at the time where the GWs are emitted.
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3 Oscillons from Kähler moduli

Let us now turn to the discussion of concrete examples where we find the formation of asym-

metric oscillons which lead to a production of a stochastic gravitational wave background.

3.1 KKLT

The first example is that of the overall volume modulus in KKLT [9] with a single overall

Kählermodulus T. After integrating out the complex structure moduli and the dilaton at

their supersymmetric minimum, the four dimensional effective supergravity is described by

the following Kähler and superpotential

K/M2
Pl = −3 log

(

T + T
)

−Kcs , W/M3
Pl = W0 +Ae−aT , (3.1)

where Kcs denotes the vacuum expectation value (VEV) of the complex structure Kähler

potential and the dilaton, W0 is the vacuum expectation value of the Gukov-Vafa-Witten

flux superpotential [58]. The non-perturbative superpotential contribution Ae−aT can be

generated by gaugino condensation of D7-branes or Euclidean ED3-branes. Both the flux

superpotential W0 and the prefactor of the non-perturbative effect A are functions of

complex structure moduli and dilaton, while a is a coefficient which depends on the source

of the non-perturbative effect (e.g. a = 2π/N for a gaugino condensate from N D7 branes).

This setup has a supersymmetric AdS minimum at DTW = 0. To obtain a minimum in

the region where the effective field theory is applicable Re(T ) ≫ 1, the flux superpotential

has to have hierarchically small values. Such hierarchies can be obtained by stabilising

complex structure moduli close to so-called conifold points [59]. This potential is uplifted

to a dS minimum by adding some additional source (e.g. anti D3-branes or matter fields),

effectively a standard uplifting term Vup ≃
(

T+T
2

)−1
is added to the potential (different

uplifting terms do not change the qualitative picture).7 The total scalar potential is given by

V/M4
Pl =

eKcs

6τ2
(

aA2(3 + aτ)e−2aτ − 3aAe−aτW0

)

+ Vup . (3.2)

This then leads to a minimum where supersymmetry is broken and the field value is shifted

by a factor ∼ log
(

MPl/m3/2

)

[60] compared to the AdS supersymmetric minimum. Such a

shift influences the ratio between the mass of the field at the minimum of the potential and

the height of the barrier. As we see in due course, this allows for multiple oscillations in

the tachyonic region of the scalar potential. However, as we will discuss below, parametric

resonance is the dominant mechanism for the growth of fluctuations (and not tachyonic

oscillations). In our numerical analysis of the KKLT potential we concentrate on the

following standard parameter ranges

10−12 ≤ W0 ≤ 10−5 , 1 ≤ A ≤ 10 , 1 ≤ a ≤ 2π . (3.3)

7Different uplfiting mechanisms can give rise to different powers of T appearing in the uplifting potential.

For simplicity we just consider one example. However, we have checked different powers and found similar

Floquet exponents with a slight increase for larger powers in the uplifting term. Therefore we only expect

a small quantitative effect from changing the uplifting term but no qualitative change.
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Figure 2. Example potential of the Kählermodulus in KKLT for W0 = 10−5 A = 10 and a = 2π.

The solid black lines denote the field value at the minimum of the potential φmin, the field value at

the inflection point of the potential φinf , and the field value at the local maximum of the potential

φmax.

W0 is chosen to be hierarchically smaller than unity to allow for a stabilisation with

Re(T ) ≫ 1 and the lower bound is chosen such that gravitino mass (and hence the moduli

masses) are large enough to safely avoid the cosmological moduli problem. The range for

A is chosen that we do not assume any hierarchical suppressions from this contribution.

For a we start from the largest possible value and the lower limit still corresponds to a

moderate number of D7 branes. The prefactor eKcs which rescales the overall potential is

set to unity.

The canonically normalised field φ of the real part of T is given by

φ/MPl =

√
3

2
log
(

T + T̄
)

. (3.4)

An example of the potential can be found in figure 2 for W0 = 10−5, A = 10, and a = 2π.

We would like to begin our discussion with the results of Floquet analyses of the

KKLT model with a = 2π, A = 10, and for two different values of W0: W0 = 10−12 and

W0 = 10−5. In both cases, the Floquet exponents were calculated in Minkowski space, as

a function of the initial field value φ(0) ≡ φinitial , essentially corresponding to different

amplitudes of oscillation. For φinitial we assumed values within the following range

φmin < φinitial ≤ φmin +
φmax − φinf

2
, (3.5)

where φmin is the field value at the minimum of the potential, φinf is the field value at

the inflection point, and φmax the field value at the local maximum of the potential (see

figure 2).

The results of our analyses are presented in figure 3 for W0 = 10−12 (left) and W0 =

10−5 (right). The figure shows the real part of the Floquet exponent compared to the

Hubble parameter |ℜ[µk]|/Hinitial, where

Hinitial =
1

MPl

√

V (φinitial)

3
. (3.6)
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Figure 3. Instability bands for the KKLT model with a = 2π, A = 10 and W0 = 10−12 (left) and

W0 = 10−5 (right). The figure shows the real part of the Floquet exponent |ℜ[µk]| in units of the

Hubble parameter Hinitial as a function of the amplitude of the homogeneous field φinitial.

In both cases, there is a broad instability band with |ℜ[µk]|/Hinitial ∼ O(10) for k . 0.5m.

Two other thin and weaker bands are also visible for k > 0.5m. They are, however,

narrower and also weaker than the first band. In view of these results, we would expect

a noticeable amount of growth for modes with comoving wavenumbers k . 0.5m in an

expanding universe. To investigate the evolution of the fluctuations in greater detail we

performed lattice simulations. The results are presented in the next section.

3.1.1 Results from lattice simulations

Lattice simulations of the evolution of Kählermodulus in KKLT were performed for the

two sets of parameters which were also used to perform the Floquet analyses, i.e. for

W0 = 10−12 and W0 = 10−5, and in both cases with a = 2π and A = 10. The initial

field value was considered as a phenomenological parameter which we chose to be half way

between the field value at the inflection point φinf and the field value at the local maximum

of the potential φmax. The initial field velocity φ̇initial was set to zero. In summary, we

used the following initial conditions for the homogeneous background

φinitial = φmin +
φmax − φinf

2
, φ̇initial = 0 , Hinitial =

1

Mpl

√

V (φinitial)

3
. (3.7)

For the initial conditions of the fluctuations δφ of the Kählermodulus and their derivatives

we used quantum vacuum fluctuations as discussed in section 2.3.2.

KKLT setup with W0 = 10−12. The simulation of the KKLT model with W0 = 10−12

was performed in three spatial dimensions in a box with comoving volume Vlattice = L3 ≃
(0.7/Hinitial)

3 and 256 lattice points per dimension. The results of the simulation are

demonstrated in figures 4 and 5.
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Figure 4. Evolution of the mean 〈φ〉 (top) and the variance
√

〈δφ2〉 (bottom) as a function of

the scale factor a(t). The solid black line in the left plot corresponds to the field value at the

inflection point φinf . The results were obtained from a lattice simulation of the KKLT model with

W0 = 10−12 with 2563 lattice points.

The left part of figure 4 shows the time evolution of the mean 〈φ〉 as a function of

the scale factor a(t). The solid black line denotes the field value at the inflection point of

the potential φinf . One can see that the field crosses the inflection point during the first

seven oscillations. Modes for which k2 < |∂2V/∂φ2| can be amplified during these tachyonic

oscillations. However, as can be seen from the evolution of the variance
√

〈δφ2〉 on the right

part of the plot, both the initial phase of tachyonic preheating, while the field rolls down its

potential towards the minimum, and also the subsequent phase of tachyonic oscillations,

is not very efficient within this model setup. In fact, the amplitude of the fluctuations

starts growing rather when the field falls below the inflection point at a ∼ 1.5. The growth

happens due to a parametric (self-)resonance which lasts for many oscillations of 〈φ〉. As

the amplitude of the background decreases the growth becomes less and less efficient (see

figure 3). At some point (roughly at a ∼ 8) the fluctuations eventually stop growing and

are subsequently redshifted due to the expansion. When the variance stops growing the

amplitude of the homogeneous component is still about three orders of magnitude larger

then the amplitude of the fluctuations. Therefore, although the fluctuations grow by five

orders of magnitude the field remains dominated by the homogeneous background and the

fluctuations remain linear.

Figure 5 shows the spectrum k3|δφk|2/(2π2) of the field fluctuations as a function of

the physical momentum in units of the mass of the Kählermodulus m. The spectrum is

shown at different moments in time represented by the scale factor a. The blue curve

corresponds to the spectrum at a = 2.29, the green curve at a = 5.76, the orange curve at

a = 8.36, and the red curve shows the spectrum at the end of the simulation at a = 14.03.

The spectrum forms a peak at k/a ∼ 0.2m which initially continues to grow until a ∼ 6,

while the position of the peak is continuously moved to lower values of k/a due to the

expansion. One can see that the shape of the spectrum remains nearly the same which is

exactly what is expected if non-linear interactions between different k modes are absent

and the resonance becomes inefficient.
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Figure 5. The spectrum of φ fluctuations as a function of the physical momentum a−1k/m obtained

from a lattice simulation of the KKLT model with W0 = 10−12. The different colours correspond to

different moments in time: a = 2.29 (blue), a = 5.76 (green), a = 8.36 (orange) and a = 14.03 (red).

KKLT setup with W0 = 10−5. The situation is different in the scenario with W0 =

10−5. In fact, as we will shortly discuss in greater detail, the dynamics lead to non-

linear interactions between fluctuations and ultimately to the formation of oscillons. The

results presented in this part of the section were obtained from a three dimensional lattice

simulation of the KKLT model with W0 = 10−5 and 512 points per spatial dimension. The

simulation was performed in a box with comoving volume Vlattice = L3 ≃ (0.7/Hinitial)
3.

Let us first discuss the evolution of the mean 〈φ〉 and the variance
√

〈δφ2〉 shown in

figure 6. The left part of the figure shows 〈φ〉 as a function of the scale factor a(t) where the

solid black line corresponds to the field value φinf at the inflection point of the potential.

One can see that within this setup, only the first three oscillations are tachyonic. However,

similar to the setup with W0 = 10−12 the initial phase of tachyonic preheating and also the

subsequent tachyonic oscillations are not very efficient as can be seen from the variance on

the right part of the plot in figure 6. An efficient growth of fluctuations does not happen

until the amplitude of the homogeneous mode falls below the inflection point. As in the

setup with W0 = 10−12, the dominant mechanism which leads to the growth of fluctuations

is a parametric resonance which starts to become efficient at a ∼ 1.6. The amplitude of

the fluctuations grows by one order of magnitude during the parametric resonance until

non-linear effects start to become important at a ∼ 5. As expected from our Floquet

analysis (see figure 3), the fluctuations grow less within a certain period of expansion than

in the KKLT setup with W0 = 10−12. However, since the amplitude of the initial vacuum

fluctuations is now considerably larger, while the amplitudes of the averaged fields are

comparable in both cases, the necessary growth for fluctuations to become affected by

non-linear effects is significantly smaller.

The non-linear evolution becomes more apparent when looking at the evolution of the

field spectrum at different times. The latter is shown in figure 7. Compared to the results

in section 3.1.1 (cf. figure 5), where the shape of the spectrum remains nearly unchanged

throughout the evolution of the field, the shape of the spectrum changes significantly. The
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green curve in figure 7, for example, shows the spectrum at a = 6.41. Comparing the

spectrum to an earlier time at a = 4.98 (blue curve) one can clearly see that the peak has

extended to a larger range of k modes and developed a smaller, second peak at a−1k . 2m.

The other two spectra correspond to times when a = 7.07 (orange curve) and a = 8.3 (red

curve) at the end of the simulation.

Figure 8 shows the spatial energy density distribution normalised to the average energy

density 〈ρ〉 at a = 6.41 (upper left), a = 7.07 (upper right), a = 7.7 (lower left), and a = 8.3

(lower right). The green surfaces correspond to regions where ρ = 6〈ρ〉 and blue surfaces

to ρ = 12〈ρ〉. As one can see, stable overdensities which are present on each of the figures

are produced. These overdensities correspond to localised, large amplitude oscillations in

field space, i.e. oscillons. By looking carefully at figure 8 one can see that sophisticated

dynamics take place: individual oscillons interact among each other, non-spherical and

non-ellipsoidal structures emerge and disappear. It also seems that the number of oscillons

constantly increases with time. We therefore expect that the phase of oscillon production

has not ended by the end of our simulation.

Although the fluctuations become sufficiently large for non-linear effects to become

important and inhomogeneities develop in the form of oscillons, we observe that the ho-

mogenous mode has not yet (completely) decayed, as can be seen from the mean 〈φ〉 in

figure 6. Moreover, an overshooting over the potential barrier into the decompactifying

vacuum, which can happen when fluctuations are amplified strong enough (see ref. [28])

was also not observed in the KKLT setups considered in this paper.

The production of oscillons and the consequent rich dynamics which is apparent in

figure 8, bring us to the last result of this simulation. In figure 9 we present the spectrum

of GW ΩGW,e(k) as a function of the physical momentum k/a. The different colours

correspond to different times at a = 5.72 (blue), a = 6.41 (green), a = 7.07 (orange), and

at a = 8.3 (red). The spectrum develops a characteristic peak structure with peaks at

k/a . m and k/a . 2m and a broad plateau for k/a < m. The peaks are attributable to

the oscillon dynamics and their position essentially corresponds to the oscillation frequency

of the oscillons (and the next harmonic).8 Oscillons continue to be constantly formed until

the end of our simulation and we therefore expect that the results we show are not yet the

final. Moreover, to have successful reheating the oscillons will have to decay. The decay of

the oscillons is an additional source for GW production. However, if we assume that the

Universe instantly reheats at the end of our simulation i.e. that the whole energy content

is immediately converted into radiation, we can calculate the spectrum of the GW as it

would be observable today according to equation (2.34) and (2.35) with ae = a∗. We find

ΩGW,0(f0,peak) ∼ 3× 10−11 , with f0,peak ∼ 109Hz . (3.8)

Lower frequencies are in principle also possible. For example, we assumed eKcs =

1 for the overall rescaling of the potential from the VEV of the complex structure

8Note that the position of such a peak would be different in a symmetric potential due to the shift in

the resonant frequencies.
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Figure 6. Results from a lattice simulation of the KKLT model with W0 = 10−5 with 5123 lattice

points. Top: the homogeneous mode φ(t) as a function of the scale factor a(t). The solid black line

marks the field value at the inflection point of the potential φinf . One can see that only the first

three oscillations are tachyonic. Bottom: the variance
√

〈δφ2〉 as a function of the scale factor a(t).

The dynamics start showing non-linear effects when the amplitude of the homogeneous component

〈φ〉 becomes comparable to the variance at a ∼ 5.
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Figure 7. The spectrum of field fluctuations k3|δφk|2/(2π2) as a function of the physical momentum

a−1k/m. The results originate from a lattice simulation of the KKLT model with W0 = 10−5 with

5123 points. The different colours correspond to the following moments in time: shortly after the

end of the linear regime a = 4.98 (blue), a = 6.41 (green), a = 7.07 (orange) and at the end of the

simulation a = 8.3 (red).

Kähler potential Kcs. Values smaller than unitiy would lead to smaller frequencies, since

f ∝ m

ρ
1/4
e

∝ (eKcs)1/2

(eKcs)1/4
∝ (eKcs)1/4 . (3.9)

We note that, however, decreasing eKcs means also decreasing the magnitude of the initial

vacuum fluctuations and that too small values of eKcs could lead to milder dynamics, since

the fluctuations would have to grow for a longer period of time for non-perturbative effects

to show up. This, in turn leads to less GW production.
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Figure 8. Results from a lattice simulation of the KKLT model with W0 = 10−5 and 512 points

per dimension. The figure shows the three dimensional energy density distribution. The green

surfaces correspond to regions with six times the average energy density 〈ρ〉 while the blue surfaces
indicate ρ/〈ρ〉 = 12. The energy density distribution is shown at four different moments in time

denoted by the corresponding scale factor.

3.2 Blow-up moduli in LVS

Next we dicuss the standard potential for Kähler moduli in the Large Volume scenario of

moduli stabilisation [10, 11] in type IIB string theory. It is realised in so-called Swiss-cheese

type Calabi-Yau manifolds where the volume can be written as

V = α

(

τ
3/2
b −

N
∑

i=2

αiτ
3/2
s,i

)

, (3.10)
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Figure 9. Spectrum of gravitational waves ΩGW,e(k) for KKLT model as a function of the physical

momentum a−1k/m at a = 5.72 (blue), a = 6.41 (green), a = 7.07 (orange) and at the end of the

simulation a = 8.3 (red). One can clearly see two peaks at k/a . 1 and k/a . 2. The simulation

which led to the results was performed with W0 = 10−5 and 5123 points.

where α, αi are numerical constants, τi are the Kähler moduli which describe the size of

four-cycles in the Calabi-Yau threefold. In the following we will focus on the small blow-up

cycles τs which are cycles that can shrink to zero size while the volume stays finite — the

holes of the Swiss-cheese. As in KKLT, the complex structure moduli and the dilaton are

stabilised using fluxes. The potential for the Kähler moduli is generated by α′−corrections

and non-perturbative corrections. The Kähler and superpotential are given by

K/M2
Pl = −2 log

(

V +
ξs3/2

2

)

, (3.11)

W/M3
Pl = W0 +

N
∑

i=2

Aie
−aiTs,i , (3.12)

where ξ ∼ χ(CY) is proportional to the Euler characteristic of the CY considered and

parametrises the leading α′−corrections, s = 1/gs is the inverse string coupling. W0 is

the VEV of the flux superpotential, Ai are O(1) coefficients, ai are constants depending

on the non-perturbative effects (e.g. for gaugino condensation caused by N D7-branes,

ai =
2π
N ). In the LVS, the scalar potential for the Kähler moduli can be organised in an

inverse volume expansion and the leading contributions are given by:

VO(V−3)

M4
Pl

=
gs
8π

[

N
∑

i=1

(

8

3

(

aiAi

αi

)2√
τs,i

e−2aiτs,i

V − 4W0 aiAiτs,i
e−aiτs,i

V2

)

+
3ξ̂|W0|2
4V3

]

+ VdS ,

(3.13)

where ξ̂ = ξ/g
3/2
s , VdS = D/Vγ (1 ≤ γ < 3) is an additional contribution from localised

sources where D is fine-tuned to uplift the potential to an approximate Minkowski mini-

mum. In addition, there is an overall rescaling of the entire potential arising from the VEV

of the complex structure Kähler potential eKcs , which, unless otherwise stated, we set to
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unity. The minimum with respect to the small moduli is given by

aiAie
−aiτi =

3ααi

V
(1− aiτi)

(1− 4aiτi)

√
τi . (3.14)

In the limit V → ∞ this gives

aiτi ≈ log (V) . (3.15)

The volume and D are fixed by minimising the potential with respect to the volume and

demanding the vanishing of the vacuum energy:

∂V

∂V = 0 , V = 0 . (3.16)

This leads to an exponentially large value of the volume in the minimum (in string units)

logV ≈ ξ̂

2

(

∑ αiα

a
3/2
i

)−1

. (3.17)

The value of D can be determined numerically. The masses for the volume and small

moduli in the minimum are given by

m2
τi ≃ M2

Pl

W 2
0 (logV)2
V2

, (3.18)

m2
V ≃ M2

Pl

W 2
0

V3 logV . (3.19)

The canonical normalisation of the blow-up modulus is given by σ =
√

4
3V τ

3/4
2 .

Here we consider the case where one of the blow-up moduli is displaced from the

minimum, while keeping all the other fields, in particular the volume at its minimum.

Notice that in terms of the canonically normalised field σ this potential is approxi-

mately of the form:

V ∼ V0

(

1− κ(σ)e−ασ4/3
)2

, (3.20)

so its behaviour is similar to the exponential potentials mentioned before. Notice also

that the coefficient of the exponential α is hierarchically large since α ∼ O(V2/3). In this

case the coefficient k is field-dependent: k(σ) ∼ σ4/3. This makes the scalar potential for

blow-up modes to behave differently from the potentials for other moduli, such as fibre

moduli for which α ∼ O(1). In particular the ratio m/Hinitial ∼ α plays an important role

in the production of oscillons. For instance in the models of [32] oscillons were found for

m/Hinitial ∼ O(100). Having the coefficient of the exponential α ∼ O(100) is natural for

potentials of blow-up modes but not for other moduli.

3.2.1 Results from lattice simulations

We simulate the evolution of the canonically normalised blow-up modulus σ =
√

4
3V τ

3/4
2

in its potential equation (3.13) using the following parameter set: W0 = Ai = ξ = a2 = 1,

a1 = π, gs = 0.2, γ = 2 and N = 10. The corresponding potential for the field σ, centered
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around the minimum of the potential at σmin ≃ 0.075MPl, is shown in figure 21 in units

of the plateau V (σ ≫ σmin) ≡ V0 ≃ 1.794 × 10−12M4
Pl. The simulation was performed in

3 + 1 dimensions with 512 points per spatial dimension in a box with comoving volume

Vlattice = L3 = (15π/m)3. The homogeneous field and its derivative were initialised as

σinitial = 0.025MPl , σ̇initial = 0 , Hinitial =
1

Mpl

√

V (σinitial)

3
= 7.477× 10−7MPl .

(3.21)

The initial field fluctuations were initialised as quantum vacuum fluctuations (cf. sec-

tion 3.1.1) with an ultraviolet (comoving) momentum cutoff at kUV = m. The reason

for the cutoff is simply to avoid an unphysical contribution to vacuum energy while keep-

ing the resolution benefits of a small lattice spacing.

Figure 11 shows the mean of the blow-up modulus 〈σ〉 (left) and of the variance 〈δσ2〉1/2
(right) both as a function of the scale factor a(t). The solid black line on the left part of the

figure denotes the field value at the inflection point of the potential. From the evolution of

〈σ〉 one can clearly see that the field becomes quickly inhomogeneous within the first 3-4

oscillations. The first few oscillations are tachyonic oscillations i.e. oscillations during which

the field reaches values beyond the inflection point. As can be seen from the evolution of

〈δσ2〉1/2, on the right part of figure 11, tachyonic oscillations are the dominant mechanism

for the growth of fluctuations. The fluctuations stop growing when non-linear interactions

become important.

The next result we want to show is the power spectrum of the fluctuations of σ. It

is shown in figure 12 as a function of the physical wavenumber k/a. The different colours

correspond to different times during the evolution of the field. The blue line shows the

spectrum at the end of linear preheating at a ≃ 1.16. While a . 1.2 the fluctuations are

constantly amplified due to tachyonic oscillations leading to a peak in the spectrum of δσk
for modes with k/a . 0.5m. This growing phase stops as different modes eventually start

interacting with each other. The energy carried by the fluctuations is then distributed

among different modes leading to a widening of the spectrum towards the UV. The green

line shows the spectrum shortly after the beginning of the non-linear regime at a ≃ 1.45.

The other two lines show the spectrum at a ≃ 2.1 (orange), and at the end of the simulation

a ≃ 2.5 (red).

Another, probably the most interesting, result is the three dimensional distribution of

the energy density. It is shown in figure 13 in units of the average energy density 〈ρ〉, for
different moments in time. The green areas correspond to regions with ρ = 6 〈ρ〉 and the

blue ones to regions with ρ = 12 〈ρ〉. One can see that the energy density starts fragmenting

once non-linear interactions become important (a ∼ 1.2) leading to highly energetic regions.

As the Universe expands the dynamics between field fluctuations eventually become less

violent, leading to stable, highly energetic, bubbly regions. These bubbly regions represent

localised, large amplitude oscillations in field space, i.e. oscillons. Although the snapshots

shown in figure 13 are most likely still representing a phase of oscillon formation, one can

see that for a ≥ 1.78 there are already bubbles which persist at least until the end of our

simulation. Compared to the oscillons we found in KKLT (see figure 8) the oscillons for
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Figure 10. The potential of the blow-up Kähler modulus in terms of the canonically normalised

field, normalised to the height of the plateau V0 ≃ 1.794×10−12 M4

Pl
and with the minimum shifted

to zero. The black line denotes the inflection point. The parameter choices are: W0 = Ai = ξ =

a2 = 1, gs = 0.2, γ = 2 and n = 10.
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Figure 11. Top: evolution of the mean of the blow-up modulus 〈σ〉 as a function of the scale

factor a(t). The solid black line denotes the field value at the inflection point of the potential. One

can see that the initially homogeneous field decays into inhomogeneous fluctuations within four

oscillation. Bottom: evolution of the variance 〈δσ2〉1/2. The evolution becomes non-linear when

〈δσ2〉1/2 becomes comparable to the amplitude of oscillation of homogeneous component 〈φ〉.
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Figure 12. Spectrum of fluctuations at different moments in time: at the end of linear preheating

at a ≃ 1.16 (blue), shortly after the beginning of the non-linear regime at a ≃ 1.45 (green), at

a ≃ 2.1 (orange), and at the end of the simulation a ≃ 2.5 (red).
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blow-up moduli look more deformed and also many smaller inhomogeneities are present.

Similar to the model studied in [32], the tachyonic oscillations lead to violent field dynamics

and the homogeneous mode decays quickly into inhomogeneous fluctuations within the

first four oscillations of the condensate. The fluctuations in KKLT, however, are gradually

amplified over many oscillations of the background and over a larger period of expansion.

By looking at figure 8 and figure 13, it seems as if inhomogeneities in KKLT are directly

generated in the form of oscillons, while the formation of stable oscillons for blow-up

moduli happens indirectly through the fragmentation of previously generated, unstable

inhomogeneities. Another impression of the formation and dynamics of oscillons can be

seen in two-dimensional simulations where we show snapshots of the evolution of the energy

density in figure 14.

The rich dynamics within this blow-up moduli setup lead also to the production of

GWs. The stochastic background of GWs produced during the early stage of preheating

is shown in figure 15 at different moments in time. After the end of linear preheating

a & 1.16 the spectrum forms a flat plateau for k/a . m which falls off for larger values of

k/a. The peaky structure in the GW spectrum, which is typically formed in the presence

of oscillons, is not visible by the end of our simulation. This, however, does not mean that

oscillons do not produce GW. One possible reason for the (yet) absent peaky structure

could be that the latter is simply hidden by the stochastic background produced during

and shortly after the tachyonic oscillations. This background is produced once during

the early stage of preheating and is subsequently redshifted due to the expansion of the

Universe. Oscillons, however, are an active source of GW production until they decay. If

they live for a sufficiently long period and efficiently produce GWs, the peaky structure in

the spectrum of GWs will eventually become visible at some later stage of the evolution.

The final spectrum shown in figure 15 (red curve), is not expected to be the final result

since oscillons continue to be produced. If the universe would instantly reheat at that time

the frequencies of the plateau (corresponding to a−1k/m ∼ 0.1− 1 in figure 15) would lie

today at

f0 ∼ 108Hz− 109Hz , with ΩGW,0 ∼ 10−10 − 5× 10−10 . (3.22)

Similar as in KKLT, an overall rescaling of the potential from complex structure moduli

which is smaller than unity would also lead to lower frequencies. Altering, other model

parameters could in principle also alter the frequencies of the stochastic GW background.

Furthermore, the volume modulus being the lightest modulus in this scenario, will at some

point start to dominate the energy density of the Universe. This, in turn, leads to an

additional period of matter domination and thus pushing not only the frequencies but also

ΩGW,0 to lower values.

4 Conclusions and open questions

Moduli fields may be the only stringy remnants that survive at low energies and particularly

after a period of inflation. It is usually stated that the dilution effect of inflation makes

it difficult to test any fundamental theory at scales larger than the inflation scale. Even
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Figure 13. Three dimensional energy density distribution in units of the average energy density.

The green surfaces correspond to overdensities six times the average energy density, while the blue

ones correspond to twelve times the average energy density.

though this is the case for string theory, moduli fields survive after inflation and can play

a crucial role in the relatively late post-inflationary cosmology, improving the probability

to allow us to identify cosmological signatures of string theory.

In this article we studied the potential for moduli fields to produce oscillons during

“moduli preheating”, i.e. independent of the particular mechanism that drives inflation.

We may summarise our results stating that:

• Oscillons can be produced from moduli in string theory. For two very well motivated

examples of moduli potentials, the overall volume in KKLT and the blow-up moduli

in the LVS we find the production of oscillons.
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Figure 14. Four snapshots of the energy density in a 2d simulation for our LVS blow-up modulus

example at a = 1.26, a = 2, a = 3.02 and a = 4.02. Clearly, asymmetric oscillons are formed at

a ∼ 3. Videos of the simulations can be found here [61].
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Figure 15. Spectrum of Gravitational waves ΩGW,e(k) as a function of the physical momentum

a−1 k. The spectrum is shown at different moments in time which correspond to: the end of linear

preheating at a ≃ 1.16 (blue), shortly after the beginning of the non-linear regime at a ≃ 1.45

(green), at a ≃ 2.1 (orange), and at the end of the simulation a ≃ 2.5 (red).
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• The mechanisms producing oscillons in our examples are distinct (parametric reso-

nance and tachyonic oscillations) and lead to subsequently different oscillon dynamics.

The shape of the gravitational wave spectra shown in figure 9 and 15 are different as

well, which provides an — in principle — observable distinction of the moduli poten-

tials. Compared to previous studies of blow-up moduli preheating, where oscillons

were not discussed, we showed that oscillon production can take place via the tachy-

onic oscillation mechanism. On the contrary, oscillon production in KKLT happens

via parametric resonance.

• In both cases a distinct stochastic gravitational wave background is produced, which

includes contributions from oscillon effects. Contrary to the case of GWs produced

during preheating after inflation, the frequency of the GWs can in principle be lower

due to the lower energies allowed in moduli potentials. For the examples studied in

this paper the frequencies of the GWs are still high. It is an open question whether

the relevant scales for other moduli potentials can be such that GWs are produced at

frequencies within the reach of current and planned GW detectors such as LIGO [62]

and the Einstein Telescope [63].

• We also find that oscillon production is model dependent and it depends on the shape

and the scale of the potential. In particular, for the considered parameter ranges,

we find that no oscillons and sufficiently large inhomogeneities are produced for the

volume modulus in the LVS and for the simplest version of the fibre inflation potential.

• The absence of large non-perturbative effects, in particular of oscillons, also implies

the absence of “overshooting effects” of the modulus field into the decompactification

region. This provides additional support for the stability of the metastable KKLT

and LVS minima. It will be interesting to study whether overshooting happens in

other moduli potentials and what the possible consequences are.

These results are opening several future directions of research; let us mention a few:

• The general case of multi-field potentials needs further study. This will allow us to

determine the phenomenological parameter capturing the phase of matter domination

from the UV perspective. In particular the displacement of the volume modulus

after the blow-up mode relaxes to its own minimum provides one example of such

a dilution. Aiming further, one might ask what is the phenomenology of multi-field

displacements. Which displacements are compatible with explicit models of string

inflation. Concretely, is it possible to keep lighter moduli at their minimum?

• Another aspect a study of multi-field potentials can answer is the coupling to other

fields, i.e. moduli and Standard Model degrees of freedom. This will allow to explicitly

study the decay of oscillons. Global string models of chiral matter with inflation such

as those recently studied in [64] could be a good laboratory for these investigations.

• Note that in a situation where several moduli are displaced and undergo a significant

growth of fluctuations, the possible gravitational radiation produced adds up. It
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might be worth investigating further on how generic it is that O(100) moduli are

displaced from their minimum and what the generic size of such a gravitational wave

signal would be.

• In this article we have focused on potentials for Kähler moduli in type IIB string

theory. It will be very interesting to see whether other moduli potentials also support

oscillons and which dynamics can be obtained. For example, they could lead to

oscillons which might even trigger the formation of primordial black holes.

Clearly, further studies are needed to fully explore the implications of oscillons in post-

inflationary string cosmology. We hope to return to these exciting phenomenological and

theoretical directions in the near future.
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A On inhomogeneities in other models

Moduli displacement beyond the inflection point around a minimum seems to be fairly

generic. Such a displacement makes a phase of tachyonic preheating unavoidable. As

explained in section 2.1, tachyonic preheating leads to the growth of perturbations. Inde-

pendently of the formation of oscillons, the enhanced spectrum of perturbations leads to

the production of a plateau-like gravitational wave spectrum. In this section we discuss

this growth of perturbations for other moduli potentials.

A.1 Volume modulus in LVS

Here we analyse the displacement of the volume modulus of the LVS beyond the inflection

point in the scalar potential from equation (3.13). The structure of the potential for this

field is different compared to the potential for the volume modulus in KKLT. In particular

we observe that the height of the barrier and the mass of the field at the minimum are

always roughly of the same order, with their ratio . 20. As a consequence, after the first

tachyonic preheating phase, the field does not cross the inflection point anymore. We also

find that parametric resonance is an inefficient mechanism for the growth of fluctuations

in this scenario.

The potential of the canonically normalised volume modulus φ in the LVS can be

expressed as [46]

V (φ)

M4
Pl

=
−3P W 2

0

4
e
− 3

√
3/2φ

MPl

[

2

(

3

2

)3/4 φ3/2

M
3/2
Pl

− ξ̂

P
− 3

(

3

2

)1/4 φ
1/2
∗

M
1/2
Pl

e

√
3/2(φ−φ∗)

MPl

]

, (A.1)
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where the canonically normalised modulus φ is related to the volume of the CY manifold by

φ/MPl =
√

2/3 logV and P = α
∑

i

αia
−3/2
i , (A.2)

and φ∗ is the minimum of the potential satisfying

ξ̂

P
= 2

[

(

3

2

)3/4 φ
3/2
∗

M
3/2
Pl

− 3

2

(

3

2

)1/4 φ
1/2
∗

M
1/2
Pl

]

. (A.3)

By replacing ξ̂/P in equation (A.1) with the relation (A.3) we can express the volume

modulus potential in a way that the only free parameters are the value of the minimum φ∗
and the overall normalization of the potential 3P W 2

0 /4:

V (φ)

M4
Pl

= 3
(

3
2

)1/4
V0 e

− 3
√

3/2φ

MPl

[

φ
1/2
∗

M
1/2
Pl

e

√
3/2(φ−φ∗)

MPl −
(

2
3

)1/2 (φ3/2 − φ
3/2
∗ )

M
3/2
Pl

− φ
1/2
∗

M
1/2
Pl

]

, (A.4)

where we have defined

V0 ≡ M4
Pl

3P W 2
0

4
. (A.5)

Since V0 is simply an overall rescaling of the potential, it does not have an effect on the

evolution of the homogeneous volume modulus. Generic values for the underlying UV

parameters lead to a value for V0 . M4
Pl. For the purpose of this paper we set V0 = M4

Pl.

By fixing V0, the only free parameter that remains is the value of the vacuum expectation

value of the Kählermodulus φ∗.

An example plot of the potential with V0 = M4
Pl and φ∗ ≃ 28.2MPl is shown in figure 16.

The solid black lines correspond to the field value at the local maximum of the potential

φmax, the field value at the inflection point of the potential φinf , and the field value at the

minimum of the potential φ∗.

A.1.1 Floquet analysis

For two different realizations of the potential (A.4), corresponding to two different choices

for φ∗, we performed a Floquet analysis in Minkowski space. We computed the real part

of Floquet exponents ℜ[µk] as a function of the initial field value of the homogeneous

background field φinitial. The results of our analyses are presented in figure 17. The figure

shows the real part of the Floquet exponent |ℜ[µk]| in units of the Hubble parameter

Hinitial = 1/MPl

√

V (φinitial)/3, for φ∗ ≃ 5.64MPl (left) and for φ∗ ≃ 28.2MPl (right).

The Floquet diagram exhibits three distinct instability bands, the strongest and broad-

est of which at values of k/m . 0.5. On the basis of these results, we do not expect a strong

growth of fluctuations, since the largest values of |ℜ[µk]|/Hinitial are of order unity, which

in turn means that the growth rate of the fluctuations is comparable to the expansion rate

of the Universe. To confirm our expectations, we solved the linearised equations for the

fluctuations in an expanding Universe.
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Figure 16. The scalar potential in the LVS as a function of the canonically normalised volume

modulus φ for φ∗ ≃ 28.2MPl. In string units, the value of the volume in the minimum is Vmin = 1015.

The solid black lines denote the value of the canonically normalised volume modulus at the minimum

of the potential φ∗, at the inflection point of the potential φinf , and at the local maximum of the

potential φmax.
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Figure 17. Instability bands for the volume modulus potential (A.4) in the LVS. The instability

bands are represented by the Floquet exponent |ℜ[µk]|/H as a function of the initial field value

φinitial. The analysis was performed for two different values of φ∗: φ∗ ≃ 5.64MPl (corresponding to

Vmin = 103) (left) and for φ∗ ≃ 28.2MPl (corresponding to Vmin = 1015) (right).

A.1.2 Homogeneous field evolution and linear perturbations

We computed the evolution of the fluctuations for the potential 16 with φ∗ ≃ 28.2MPl

by numerically solving equation (2.5) with initial conditions for the fluctuations given by

equation (2.6). At the same time we solved equation (2.3) for the homogeneous component

φ(t). We used the following initial conditions for the homogenous background field φ, its

velocity φ̇ and the Hubble parameter H:

φinitial ≃ 28.61MPl , φ̇initial = 0 , Hinitial =

√

V (φinitial)

3M2
Pl

≃ 1.39× 10−23MPl . (A.6)
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The numerical results are shown in figure 18 and 19. Figure 18 shows the spectrum

of the fluctuations of the canonically normalised volume modulus as a function of the

comoving momentum k at different moments in time: the initial spectrum (blue), before

the first oscillation of φ (green), after eight oscillations (orange), and after 47 oscillations

(red). Initially we have a weak phase of tachyonic preheating which is, however, negligible

compared to the expansion rate of the universe. The phase of tachyonic preheating is

subsequently followed by a weak self-resonance during which modes with k . 0.7m are

amplified. The amplification of these modes leads to a tiny peak in the final spectrum

shown in figure 18.

Figure 19 shows the evolution homogeneous field φ(t) (right) and the evolution of the

variance 〈δφ2〉 (left) as a function of the scale factor a(t). The variance was calculated

from the spectrum of the linear perturbations according to

〈δφ2〉 =
∫

d log k
k3

2π2
|δφk|2 =

∫

dk
k2

2π2
|δφk|2 . (A.7)

One can see that the variance decreases continuously since no significant amplification of

the perturbations takes place. However, since the homogeneous field φ(t) is damped and

its amplitude of oscillation decreases as well, a net growth of fluctuations with respect to

the amplitude of φ(t) is in principle possible. In order to estimate the relative growth of

fluctuations with respect to the amplitude of the field we can consider the following quantity

γ(t) ≡
√

〈δφ2〉(t)
Φ(t)

Φ(0)
√

〈δφ2〉vac
, (A.8)

where Φ(t) is the envelope of
√

[φ(t)− φ∗]2 and 〈δφ2〉vac is the variance obtained from the

initial vacuum spectrum. As long as the evolution of the fluctuations is linear, γ(t) is a

measure for the growth of the fluctuations relative to the amplitude of the field which is

independent of the absolute value of the vacuum fluctuations (i.e. independent of V0).

The left part of figure 20 shows
√

[φ(t)− φ∗]2 (blue) and Φ(t) (red) both as a function

of a(t), where Φ(t) was calculated at times at which φ̇ = 0. The right part of the figure

shows the evolution of γ(t). One can see that in the case of the volume modulus the

fluctuations grow only by a factor of ∼ 3.5 relative to the field amplitude and that the

relative growth rate decreases with time. Provided that initially the fluctuations are small

compared to the amplitude of homogeneous field φ(t), this means that always 〈δφ2〉 ≪ Φ(t).

For the considered parameter ranges, we do not find significant inhomogeneities or non-

perturbative effects. In turn, the absence of significant inhomogeneities implies that GWs

are expected to be only marginally produced.

The mild and perturbative dynamics prevent the field from overshooting over the

potential barrier into the decompactification minimum, thus supporting the stability of the

LVS minimum.

A.2 Fibre inflation

The last example we want to consider is fibre inflation [65, 66]. This is a model of large

field inflation which gives rise to a tensor-to-scalar ratio in the experimentally accessible
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Figure 18. The spectrum of the fluctuations δφk of the canonically normalised volume modulus in

the LVS. The spectrum is shown as a function of the comoving momentum k at different moments

in time: the initial spectrum (a = 1) (blue), before the first oscillation of φ (a ≃ 1.5) (green), after

eight oscillations (a ≃ 4.8) (orange), and after 47 oscillations (a ≃ 14.2) (red).
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Figure 19. Numerical results from the evolution of the volume modulus in the LVS. Left: the

evolution of φ(t) as a function of the scale factor a(t). The solid black line denotes the field value

at the inflection point of the potential. One can see that no tachyonic oscillations occur. Right:

evolution of the variance
√

〈δφ2〉 as a function of a(t).
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Figure 20. Left:
√

[φ(t)− φ∗]2 vs. a(t) (blue) and its envelope Φ(t) computed at times at which

φ̇ = 0. Right: evolution γ(t) (cf. equation (A.8)). γ(t) reflects the growth of the fluctuations relative

to the amplitude of the homogeneous background.
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Figure 21. Left: the fibre inflation potential (A.9) in units of V0 for ǫ = 10−7 (red), ǫ = 5× 10−6

(orange), and ǫ = 10−5 (blue). Right: predictions for the spectral index ns for the three different

values of ǫ (same colour coding as for the potential) as a function of the field value at horizon exit

φ∗. Different values of φ∗ correspond to different numbers of e-folds of slow-roll inflation N∗. The

value of N∗ ranges from 50 (tiny dot) to 60 (large dot).

window r ∈ (10−3, 10−2) [67].9 The inflaton corresponds to a Kähler modulus describing

the ‘fibre’ volume in a fibred Calabi-Yau manifold of Swiss-cheese type. In its simplest

version the scalar potential of fibre inflation in terms of the canonically normalised field φ

takes the form

V (φ) = V0

(

c0 + c1e
− kφ

2 + c2e
−2kφ + ǫekφ

)

, (A.9)

where V0 and ǫ are coefficients that depend on the underlying parameters of the compact-

ification, and can be written as

c0 = 3− ǫ , c1 = −4

(

1 +
ǫ

6

)

, c2 =

(

1 +
2ǫ

3

)

. (A.10)

ǫ is naturally small (it is proportional to g4s), preserving the flatness of the inflationary

plateau. Similarly, V0 is set by the overall stabilisation of the Calabi-Yau volume and

hence hierarchically smaller than unity. The coefficients are adjusted such that V (0) = 0.

k = 2/
√
3 is a coefficient that arises from the canonical normalization of the field φ.

A.2.1 Floquet analysis

For the fibre potential (A.9) we performed two different Floquet analyses in Minkowski

space. In the first analysis we kept the initial field value (i.e. the amplitude of oscillation)

φinitial constant and computed the Floquet exponents for different values of ǫ ranging from

10−7 to 10−1. A second analysis was performed with a fixed value of ǫ where the Floquet

exponents were computed as a function of φinitial.

The results of the analyses are shown in figure 22. The left part of the figure shows

the Floquet exponents |ℜ[µk]|/Hinitial as a function of k/m and ǫ. On the right we show

|ℜ[µk]|/Hinitial as a function of the amplitude of oscillation φinitial for a fixed ǫ = 10−7. The

9A consistent string embedding of fibre inflation with an explicit orientifolded Calabi-Yau manifold and

brane setup can be found in [68].
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Figure 22. Results of a Floquet analysis of the Fibre inflation potential. Left: the real part of the

Floquet exponent |ℜ[µk]|/Hinitial as a function of k/m and ǫ Right: |ℜ[µk]|/Hinitial as a function

of k/m and the amplitude of oscillation of the field φinitial. One can see that in none of the cases

|ℜ[µk]|/Hinitial > 0.4 which is a strong indication that no significant growth of fluctuations occurs

in an expanding Universe.

Hubble parameter is calculated according to

Hinitial =

√

V (φinitial)

3M2
Pl

. (A.11)

For the maximum φinitial we chose the value at the end of slow-roll inflation, when10 εφ ≡
M2

Pl/2(V
′(φ)/V )2 ≃ 1, φ ≃ 0.91 ≥ φinitial.

One can see that the Floquet exponents are always small compared to the expansion

rate of the Universe, since |ℜ[µk]|/Hinitial . 0.4 for all values of k, φinitial and ǫ. Therefore

the fluctuations are not expected to grow significantly throughout the evolution of the

field in an expanding Universe. In order to confirm this we compute the evolution of

the perturbations δφk in an expanding Universe by solving the linearised equations of

motion (2.5).

A.2.2 Homogeneous field evolution and linear perturbations

We solved the equation of motion for the homogeneous field φ(t) equation (2.3) and at

the same time the equations for the perturbations of the field equation (2.5). The initial

conditions for the homogeneous field and the Hubble parameter are set to11

φinitial = 0.8MPl , φ̇initial = 0 , Hinitial =

√

V (φinitial)

3M2
Pl

≃ 0.46MPl . (A.12)

The fluctuations δφk are initialised as vacuum fluctuations according to equation (2.6).

10εφ ≡ M2
Pl/2(V

′(φ)/V )2 ≃ 1 for φ ≃ 0.91 holds for all values of ǫ between 10−7 and 10−5. For larger

values of ǫ the potential becomes steeper. Hence, within our Floquet anlyses the field lies always outside

the slow-roll regime.
11We also checked explicitly that the results do not change significantly when replacing the initial field

velocity with the slow-roll velocity φ̇initial = −V ′(φinitial)/(3Hinitial).
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Figure 23. Numerical results from Fibre inflation. Left : homogeneous field evolution as a function

of mt. Right: spectrum of the perturbations δφk at different moments in time: the initial spec-

trum (blue), after the first oscillation of φ (green), after four oscillations (orange), and after eight

oscillations (red).

The results for the homogeneous field evolution and for the spectrum of the perturba-

tions are shown in figure 23. The left part of the figure shows the homogeneous field φ(t)

as a function of the scale factor a(t). One can clearly see that the amplitude of the field

is strongly damped due to the expansion. On the right part of the figure the spectrum
k3

2π2 |φk|2 is shown in dependence of the comoving wavenumber k at different moments in

time: the initial spectrum (blue), after the first oscillation of φ (green), after four oscil-

lations (orange), and after eight oscillations (red). One can clearly see that none of the

modes is significantly excited, as already expected from the Floquet analysis. The spec-

trum is redshifted due to the expansion and the field can be considered to stay practically

homogeneous.
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