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Abstract

An important problem for augmented reality is

registration error. No system can be perfectly tracked,

calibrated or modeled. As a result, the overlaid graphics

will not align perfectly with objects in the physical world.

This can be distracting, annoying or confusing. In this

paper we propose a method for mitigating the effects of

registration errors that enables application developers

to build dynamically adaptive AR displays. Our solution

is implemented in a programming toolkit called OSGAR.

Built upon OpenSceneGraph (OSG), OSGAR statistically

characterizes registration errors, monitors those errors

and, when a set of criteria are met, dynamically adapts

the display to mitigate the effects of the errors. Because

the architecture is based on a scene graph, it provides a

simple, familiar and intuitive environment for application

developers. We describe the components of OSGAR, discuss

how several proposed methods for error registration can

be implemented, and illustrate its use through a set of

examples.

1. Introduction

Registration errors can have a profound impact on the

effectiveness of an augmented reality (AR) system. The

purpose of many AR systems is to provide information

to the user about objects by aligning graphics with those

objects in the physical world. However, no AR system

is perfect. Tracking systems cannot measure the pose of

their sensors exactly. Internal system calibration parameters

cannot be known perfectly and the world cannot be modeled

precisely. As a result, the graphics will not align perfectly

with the objects in the physical world. In some situations

these errors can be little more than an annoyance. However,

in other situations the annotations could be ambiguously

placed (it is not clear what object they refer to) or appear

to be placed on the wrong object altogether.

The conventional approach to registration errors is

to consider them as a type of tracking problem. Apart

from a few notable exceptions, none of them recent

(e.g., [1], [13]), they are rarely addressed directly. The

prevailing assumption seems to be that, given better

tracking and faster computers, the major causes of

registration errors will be overcome. However, we do not

believe that this is the case, especially when one considers

mobile augmented reality systems where one cannot rely

on accurate, fixed infrastructure in carefully controlled

settings.

We believe that a better approach is to assume that

registration errors will be inevitable, and provide applica-

tion developers with tools to help them understand and

deal with these errors. In particular, we believe that any

AR toolkit should also help developers choose and display

annotations in such a way that the effects of registration

errors are minimized.

Our first attempt at developing an adaptive user interface

was to introduce the concept of a Level of Error 3D scene

graph node [10]. Analogous to Level of Detail (LOD) nodes

(that switch between different representations of an object

based on the projected size of the object), an LOE node

is a switch node that uses an estimate of the registration

error of an object to select the appropriate annotation style

for a particular object in a scene. In [11] we described an

implementation of the LOE which considered the problem

of estimating and adapting to the registration error of a

single object. The only sources of error were due to the

tracker and calibration errors.

However, despite its appeal to conventional graphics

scene graphs, the LOE is not sufficient to handle all of the

possible strategies that are needed to adapt to registration

error. For example, the LOE considers each object individ-

ually. Furthermore, the LOE only allows a finite set of fixed
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(a) (b) (c)

Figure 1. In (a) two drawers are labeled, but the target of the labels is ambiguous. In (b) all drawers are

labeled, reducing ambiguity but cluttering the space. In (c) the two drawers are labeled with callout

lines that point to unambiguous locations on the appropriate drawer.

displays, limiting it to handling a small number of cases.

In this paper, we present the design and implementation

of a programming toolkit for AR, called OSGAR, that

provides a general framework for propagating error

estimates from an arbitrary collection of sources, and

creating adaptive interfaces based on these estimates. It

consists of three main components: an error propagation

mechanism (which calculates the uncertainty at any point

in the scene graph), a set of components for adaptation

(such as replacing models of objects with callout labels and

lines), and a set of common facilities required for many

types of AR applications (including support for trackers,

video-in-the-background and fiducial tracking).

The structure of this paper is as follows. Section 2

provides several motivating examples. Section 3 describes

the sources of registration error we are concerned with.

Section 4 describes the uncertainty representation and the

mathematical framework used to compute the estimate of

the registration error. The architecture and implementation

of OSGAR is described in Section 5. This section also

describes some of the techniques which can be used to

improve the quality of the augmentation presented to the

user as well as the quality of interaction. The limitations

and future directions of OSGAR are discussed in Section 6

and conclusions are drawn in Section 7.

2. Motivating examples

While some AR domains require precise registration

(e.g., AR-guided surgery [13]), there are many domains

where AR could be usefully applied that do not require

precise registration. For example, consider a system that

tries to label two empty drawers in the tool cabinet in

Figure 1(a). While the labels are small enough to fit within

the projected area of the drawers, a small amount of

registration error makes it unclear which drawer the labels

are referring to. Furthermore, because all drawers look

the same there are no obvious visual clues a user could

employ to resolve the ambiguity. One solution, shown in

Figure 1(b), is to label all the drawers, so the user can

infer the registration error offset. However, even for this

relatively small amount of registration error, adding all

thirty labels unnecessarily clutters the user’s view of the

world. A better solution in this case, shown in Figure 1(c),

would be to offset each label so it does not cover any part

of the target drawer, and use a callout line to point to a

location on the display that is likely to overlap some part of

the drawer.

Another example is the recent evaluation (by Honda

and Microvision1) of a wearable maintenance system

that uses a non-tracked see-through heads-up display

to present in-situ automotive maintenance informations

to trained technicians. This system was demonstrably

useful (resulting in a quoted 38% improvement over the

non-wearable version) despite the fact that the graphics

were not registered with the physical world. This system

raises some interesting questions for the AR community:

would an AR version of the system be even more effective?

Would precise registration be necessary, or would a coarsely

registered version using moderately accurate tracking be as

effective (e.g., by allowing the current system’s graphics

to be generated from technician’s approximate viewpoint,

even if they aren’t registered)? Would some tasks benefit

1 For more information, see http://www.microvision.com/

nomadexpert/field.html
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greatly from precise registration, while others would not?

When one considers practical issues of creating, deploying

and maintaining such a system, such as cost and robustness,

these questions become critical.

To continue with the above example, perhaps some

repair shops would have good tracking, and others would

not. Perhaps tracking quality would vary with the model

of the car (e.g., new cars might have “embedded trackers”,

old ones would not), or the location in the shop or parking

lot. Perhaps trackers break occasionally. For whatever

reason, a commercially viable repair system such as this

would need to function in a variety of situations, and

ideally adapt automatically as the situation changes (e.g.,

as the technician walks around the shop). As an application

designer, it is easy to imagine many different display

modes for such a system, based on different amounts

of registration error. What is hard is actually computing

reasonable estimates of registration error for the different

graphical objects in the system, and creating a graphical

display system that uses these estimates to select the

appropriate display modes. OSGAR is designed to address

this problem.

3. Sources of uncertainty

For OSGAR, we consider the following classes of

uncertainty [8]: tracking, calibration, and modeling.

Tracking. Tracking systems estimate, in real-time, the

pose of a tracked object. There are literally hundreds of

papers which describe different tracking methods based on

a variety of sensing technologies (e.g., magnetic, ultrasonic,

inertial, computer vision, etc.), as well as hybrid systems

that combine more than one of these technologies. However,

as noted by Welch and Foxlin, there is no “Silver Bullet”

that is likely to provide perfect tracking [16]. Therefore, any

tracking system should be assumed to return error-corrupted

estimates of the true pose of the sensor. These errors can be

modeled statistically. However, it is often very difficult to

provide precise, high-order statistical descriptions of these

errors, especially since many tracking systems are closed

black-boxes, making it impossible to know what signal

processing is carried on within them.

Therefore, we assume that the measurement from a

tracker can be considered to be the mean of the distribution

and the uncertainty can be represented by the covariance.

Some tracking systems (such as the Intersense VisTracker

and GPS receivers that support the NMEA GST message)

provide covariance information directly. However, many

tracking systems only provide performance specifications

and the covariances must be approximated from these.2

2 For example, if the specifications consist of a hard bound on the errors,
the standard deviation can be set to be a third or a quarter of this value.

Calibration. An AR system consists of a tracking

system and a display system and the calibration of these

systems and the relationship between them must be

known. For example, in video-mixed AR systems the

intrinsic parameters of the camera (such as its optical

distortion) must be computed. Calibration parameters

can be accurately computed off-line for a camera with

a specific focus and zoom setting by looking at a static

scene with a set of calibration patterns in it. However,

there is no guarantee that these parameters are correct for a

moving camera in a scene with different camera settings.

The problems are exacerbated in see-through AR systems

because current methods require the user to align objects

on the display with those in the physical world (e.g.,

SPAAM [14] or the alignment framework described in [2]).

Issues such as fatigue, the finite sampling space and user

error can lead to inaccuracies. The errors can be calculated

using perturbation methods.

Modeling. Models are approximations of the physical

objects they are meant to represent. Models can be acquired

in many ways, from a tape measure to 3D scanning laser

range finders. However, measurements always contain

errors. The environment can change in unmodeled ways.

The GIS community has been cognizant of the effects of

errors for a great deal of time [15] and the Geography

Markup Language (GML) includes a schema for data

quality which is expressed using means and covariances.

Therefore we assume that the raw model constitutes a mean

estimate and each vertex in the model contains errors.

Several issues should be noted. First, each of these error

sources include temporal elements that OSGAR does not

currently address. Latency throughout all components of the

system, time synchronization across multiple devices, and

the discrete update times of displays and the rendering sub-

systems create errors which can be considered to increase

the error in the tracker [8]. Second, some of these errors are

view dependent and some are view independent. The error

in the model is not, for example, a function of the position

and orientation of the user’s head. However, the projection

of the model onto the user’s display is a function of the

users view. As described below, this distinction is used

to optimize the error propagation mechanism. Finally, we

are not aware of any widely-used modeling format which

includes information about the imprecision of the model,

so we do not currently support models with errors on each

vertex. However, it would be straightforward to modify the

system to support such models if they existed.

4. Error representation and propagation

Uncertainty in OSGAR is represented by adding a

covariance matrix to the transformation nodes in the

scene graph. Any transformation matrix is considered to
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be the mean of a probability distribution function (PDF)

for that transformation, instead of just a single discrete

transformation. If no uncertainty information is specified

for a transformation, it is assumed to be exact. The mean

of the PDF (i.e., the original transformation) is used for

culling, rendering, and so on, as before.

No restrictions are placed on the form of the

transformation matrices; the scene graph is assumed

to be composed of arbitrary nodes with arbitrary affine

transformations between them. Specifically, let M
j
i be the

true relative transformation from node i to node j ,

M
j
i =









m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44









Each element can take arbitrary values.3 To parame-

terize such a general matrix, a number of authors have

developed methods to decompose an arbitrary matrix into

a set of primitive operations including rotation, transla-

tion and scale [12, 6]. However, these decompositions are

constructed by applying potentially expensive nonlinear

operations (such as single value decomposition). Because

the graph can be extremely large, a significant number of

these decomposition operations might be performed leading

to significant computational costs. Therefore, to simplify

the implementation, all errors are expressed directly in

terms of the elements of the transformation matrix. In other

words, the uncertainty is a 16-dimensional state which

corresponds to each element in the transformation matrix.

This is a straightforward generalization of the approach of

Bar-Itzhack for direction cosine matrices [3].

Mn
r is the cumulative transformation matrix from the root

node R to an arbitrary node N. This transformation is given

by:

Mn
r = ∏

∀i∈P

Mi
i−1, (1)

where p is the path from the root node R to an arbitrary

node N and i are nodes in this path.

However, the system does not have access to these true

values. Rather, it only has access to the estimated relative

transformation M̂
j
i . The difference between the two is due to

the sources of uncertainty outlined in Section 3. As a result,

the cumulative transformation calculated in the graph is:

M̂n
r = ∏

∀i∈P

M̂i
i−1 (2)

Therefore, the problem is to estimate the statistics of M̂n
r

given that error can be introduced at any transformation in

the tree.

3 It is not even possible to assume that m44 = 1.

The error introduced at a node is assumed to be an

additive matrix,

M̂
j
i = M

j
i +δM

j
i . (3)

Therefore, the error propagation equation is

Mi
r +δMi

r =
(

Mi
i−1 +δMi

i−1

)(

Mi−1
r +δMi−1

r

)

= Mi
i−1Mi−1

r +Mi
i−1δMi−1

r (4)

+δMi
i−1Mi−1

r +δMi
i−1δMi−1

r

Assuming that the error introduced at a node is

independent of the error introduced at preceding nodes, the

expected value of the last term will always evaluate to 0

and thus can be neglected. Therefore, the equation which

propagates the error down the scene graph is as follows:

M̂i
r = M̂i

i−1M̂i−1
r

δMi
r = Mi

i−1δMi−1
r +δMi

i−1Mi−1
r

(5)

However, this representation has two main difficulties:

• It is more computationally expensive. If one assumed,

for example, that the matrix only encoded translation

rotation and scale then only 9 or 10 parameters would

be required. However, this is at the cost of introducing

complicated nonlinear transformations at each node to

recover the parameters (and their uncertainties) after a

transformation is applied.

• The representation does not capture the nonlinear

constraints which exist between matrix elements.

For example, large orientation errors are not simply

additive. These could be partially overcome by using

more sophisticated models. For example, the error

could be treated as being multiplicative and of the

form I + δMi
i−1 where I is the identity matrix. A

recursive relationship exists in this case.4 However,

any representation is always an approximation

and, for this paper, we chose the simplest usable

approximation.

Despite these limitations, we believe this representation

is appropriate for the needs of OSGAR:

• The transformation operations on each node are

simple. The transformation consists of a single matrix

multiplication which only involves basic arithmetic

operations.

• The complexity of specifying nonlinearities (e.g.,

tracker errors) are only introduced at the nodes where

the errors occur.

4 The mean term is the same but the error propagation term becomes

δMi
r = δMi−1

r +
(

Mi−1
r

)−1
δMi

i−1Mi−1
r .
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OSG Runtime Graph Traversal
Three Basic Visitors: Application Callback, Cull, Render

OSG Programming Classes

OSGAR Runtime Graph Traversal
(Three New Visitors between OSG Application and Cull)
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Figure 2. The major components of OSGAR.

• If nodes do not introduce their own sources of error,

the first term in the error propagation is not needed,

reducing complexity even further.

• Any type of matrix operation can be supported. There-

fore, not just errors in the location of objects, but also

their sizes, the position and projection properties of the

viewer, etc., can be handled in a uniform way.

5. Architecture

OSGAR is an extension to OSG, a full featured 3D

scene graph library. The key difference between OSG

and OSGAR is that transformations is OSGAR can have

uncertainty associated with them; most of the functionality

of OSGAR builds on this conceptually simple change.

OSGAR also provides programmers with access to basic

AR technologies (e.g., live video-in-the-background,

real-time tracking devices, marker-based tracking in the

video stream).

The components of OSGAR are shown in Figure 2. The

core components are the three runtime Visitors that propa-

gate uncertainty and registration error estimates through the

scene graph (see Section 5.1), plus the subclass hierarchies

under OSGAR Transform (see Section 5.2) and OSGAR

Group (see Section 5.3). The Transform classes are used

to define nodes with uncertain transformations in the scene

graph. The Group classes control how the scene graph

reacts to registration errors (see Section 5.4 for examples

of specific Group classes).

The remaining classes provide facilities needed by AR

applications, and are described briefly in Section 5.5. The

Video Viewer is a specialized 3D viewer that takes video

from a camera and inserts it in the background of the scene.

The Camera, ARToolkit5 and VRPN6 interfaces provide

access to basic AR technology. The Space Manager and

Heads-up Display (HUD) are utility classes designed to

manage space on the display, and layout augmentations in a

2D HUD.

One deviation OSGAR makes from OSG is that we

require the camera location to be specified as a node in the

scene graph. Setting the camera location to a node in the

graph is a straightforward way to generate the uncertainty

estimate of the model-view matrix defining the camera’s

pose in the world.

5.1. Scene graph traversal

OSG is based on the notion of using a set of specialized

Visitors to traverse the scene graph each frame. OSGAR

adds three Visitors (i.e., three passes through a subset of the

scene graph) to the per-frame update loop, after application

callbacks are run, but before culling and rendering. The

three Visitors together implement the OSGAR runtime

functionality, as follows:

1. Optimization. This Visitor initializes the nodes in

the graph for error propagation, determines the subset of

the scene graph that needs to be examined by the other

two Visitors, and sets flags on the nodes to control those

traversals.

The Visitor uses a standard recursive, bottom-up damage

propagation technique to mark the nodes:

1. When a node is reached, its “requires error processing”

flag is set to false.

2. The children are visited.

3. If the node, or any child of the node, needs to be

processed, then this node is also marked as requiring

processing.

2. View-Independent Uncertainty Propagation. This

Visitor propagates uncertainty as it traverses the graph from

the root of the scene through all of the nodes marked by

the optimization visitor, using the algorithm described in

Section 4 (see Section 5.2). At each step, the accumulated

estimate is combined with the uncertainty at the current

5 Available from http://www.hitl.washington.edu/

artoolkit/

6 Available from http://www.cs.unc.edu/Research/vrpn/
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node using Equation 5, giving an estimate of the uncertainty

of that node expressed in the local coordinates of that node.

This computation is done for both OSG and OSGAR

transformation objects, with the OSG transformations

assumed to be precisely specified with no error.

Each time one of the OSGAR Group nodes is visited, the

accumulated uncertainty is stored at that node, for use in

the next traversal. (Note that since OSG supports directed

acyclic graphs, a single node could lie on multiple paths

from the root. The propagated uncertainty is stored for

each path to the root of the graph, and tagged with a path

identifier so it can be recovered when needed.) Any Trans-

formation Combiner nodes encountered during traversal are

also handled by this visitor (see Section 5.2.2).

3. Registration Error Visitor. Before starting this

Visitor, the uncertainty of the camera location (obtained

from the node representing the camera in the scene graph)

is combined with the projection matrix (which may also

include uncertainty). As the Visitor traverses the graph,

the camera uncertainty is combined with the uncertainty

at each OSGAR Group node, creating a view-dependent

estimate of uncertainty. This uncertainty estimate is used

to compute screen-space estimates of registration error

needed by the OSGAR Group nodes (see Section 5.3).

For efficiency, this Visitor collects the vertices of all

geometry in the subtree under each Group node (whenever

any part of the subtree is damaged) and stores a 3D convex

hull of those points in the Group itself. The points in the

3D hull are used by the Group nodes when computing the

view-dependent registration error estimates.

5.2. Transform nodes

The OSGAR Transform base class extends OSG

Transform by using its existing 4×4 transformation matrix

as the mean of the distribution of the transformation, and

associating uncertainty (in the form of a 16×16 covariance

matrix) with this 4×4 transformation. A collection of

utility methods are provided for setting and retrieving the

uncertainty information in various forms. The covariance

matrix can take on the special values perfect (to indicate that

there is no uncertainty associated with this transformation)

and infinite (to indicate that the value of the transformation

is unknown, and the link should not be followed). The latter

value could be used, for example, when a tracker is not

reporting (e.g., the user is out of range, or a fiducial marker

is not currently seen).

A programmer can use OSGAR Transform

directly, to create a node in the graph with some

fixed uncertainty. For example, if the location of an

object in the environment was measured relatively

carefully, a position of +/- a few millimeters and an

orientation of +/- a few degrees could be specified via

method calls to setPositionCovariance(dx, dy, dz) and

setOrientationCovariance(dh, dp, dr) (where dh, dp and dy

are the covariances for heading, pitch and roll respectively).

Several subclasses of the Transform node exist.

5.2.1. Tracked transform nodes One common source

of uncertain transformations is external tracking systems.

OSGAR TrackedTransform is a subclass of OSGAR

Transform whose values are updated automatically

from some tracking system. This class has methods

(implemented by each subclass) to determine if the

tracker is currently reporting or not. The value of the

transformations on each TrackedTransform is updated

by the tracker handler (see section 5.5). The current

implementation of OSGAR supports two subclasses of

TrackedTransform:

• vrpnTransform creates a VRPN tracker client to

connect to a sensor of a local or remote VRPN tracker

server. The application developer specifies the tracker

name and network address, and the specific sensor to

get transformations from.

• visionTransform implements a vision-based tracker,

currently using the ARToolkit. The application

developer specifies the marker that this Transformation

should be attached to. The transformations received

are the position of the fiducial relative to the camera,

so the visionTransform is typically attached to the

scene graph node representing the location of the

camera.

Currently, neither VRPN nor ARToolkit provide

uncertainty estimates for their trackers, so we set the

uncertainty manually on these nodes, typically based on the

manufacturers specifications and our experience. We are in

the process of adding uncertainty support to VRPN, and

enhancing specific VRPN servers to support it (e.g., many

GPS units provide an estimate of their current accuracy, and

one major tracking company is providing us with an SDK

to retrieve covariance information from their trackers).

Similarly, we are creating an accuracy estimator for the

ARToolkit.

5.2.2. Transformation combiner nodes The Transform-

Combiner class is designed for situations where multiple

pose estimates are available for an object. The program-

mer can set up a Combiner to automatically combine the

pose estimates, can leverage application or tracker specific

knowledge to improve the accuracy of the fusion, or can

simply choose between the poses.

If multiple poses are available for a node in a scene

graph, there will be a path from the root to the node for

each pose. Normally, if a node is linked to a scene graph

via more than one path, the scene graph semantics dictate
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Figure 3. The TransformCombiner C chooses which path to cube B1 (the near cube) to use for each

frame, based on the error propagated from T (a receiver for a fixed tracker) and F (a fiducial marker,

measured relative to the video camera V). In (a) the fiducial markers are visible, and has much lower

estimated error than the fixed tracker, so the branch through F is used. The second cube is attached

to C via an LOE L that only displays it when the error is small. In (b) the fiducial is not tracked, so the

fixed tracker is used (and the second cube is hidden by the LOE).

that it is rendered once for each path, usually at a different

location in the 3D world.

The TransformCombiner has different semantics. A

programmer-supplied callback function determines which

single incoming path to use for the subtree under the

Combiner. The function is given the pose estimates for all

of the paths leading into the Combiner, and returns a new

estimate along with an indication of which incoming path

to use for all subsequent passes. The effect is equivalent

to the children of the Combiner being attached to that

path from the root, and the other paths terminating at the

Combiner.

The most obvious scenario is when an object is tracked

by multiple sensors, and the Combiner should fuse the

poses using an approach such as the PDF intersection

method proposed by Hoff [7]. However, there are other

more mundane scenarios in which the combiner turns out to

be a very powerful way of structuring an AR scene graph.

For example, consider a user and object that are tracked

by some reasonably accurate tracker (such as an Intersense

IS600 or an RTK GPS system, both of which give 1-2cm

positional accuracy), and the object can also be tracked

using the camera on the user’s video-mixed AR display. If

the system wants to add augmentations to the object, sensor

fusion is not particularly useful — the absolute accuracy

of a system such as the ARToolkit is not particularly good,

but the registration obtained when using it is quite good.

(While both the translation error along the direction of

projection and the rotation error are large, the translation

error is small perpendicular to the direction of projection.)

In this situation, using the vision tracker when it reports,

and falling back to the less accurate tracker otherwise, is

probably the right thing to do, as illustrated in Figure 3.

Perhaps more interestingly, suppose an object is tracked

intermittently (such as by a vision tracker), but the object

always remains within a certain area, such as on a desk that

it is tethered to by a cable. In most AR prototype systems,

when the object is not tracked, its last known position is

used. OSGAR supports more systematic solutions to this

problem.

One simple solution would be to use a static Transform

to specify a second pose for the object, and use a

TransformCombiner to merge it with the tracked pose. The

Transform would be given a mean in the middle of the

desk and a large uncertainty, to capture the full range of the

object’s possible location.7 The Combiner would choose

this static transformation when the object is not tracked,

but use the tracked path when possible. In this case, the

Combiner would propagate the fixed transformation with

a large error estimate or the tracked transformation with

a very small error estimate. If the programmer simply

7 More complex solutions could also be implemented that take into
account the time since the object was last tracked, or leverage other
application-specific semantics.
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uses the provided transformation (i.e., the mean of the

distribution) to render the augmentation, the resulting

display would be nonsensical (the object would jump

between the tracked location and the arbitrary “middle of

the desk” location specified by the fixed transformation).

However, if the programmer makes use of the error

estimation nodes discussed below, the augmentation itself

can change automatically when the magnitude of the error

changes, and do so in a way that adapts to other aspects of

the viewing situation. If the fixed area is, say, the top of a

desk and the user is very close to the desk, the registration

error (the projection on the 2D display) will be huge,

requiring alternative display methods (such as using a 2D

inset window containing descriptive text). However, if the

user is far from the desk (say, on the other side of a large

lab), the magnitude of the registration error on the 2D

display may be quite small, allowing a 3D augmentation

to be used. By specifying a range of augmentations to

use, based on registration error on the 2D display, the

system can adapt automatically to these very different

situations. This example illustrates the power of OSGAR,

and the approach programmers should take when building

applications using it.

Implementation. The Optimization Visitor counts

the number of paths that enter any Combiner node, and

saves the counter in the Combiner. Then, during the

view-independent uncertainty propagation traversal,8 the

Combiner collects the error estimates for every path into

it. When this visitor enters the Combiner via the final

path, it activates the user specified callback function to

determine the final pose estimate and the path to use for the

subtree during the remaining traversals. Subsequent phases

(registration error computation, culling, rendering) only

traverse the subtree “under” the Combiner when they arrive

along this single path.

We are designing a range of sample callback functions

for common Combiner functions. Currently, we have

implemented a SmallestCovarianceCombiner that always

chooses the smallest covariance, and uses it and its path as

the values for the subtree.

5.3. Basic group nodes

The OSGAR Group class is abstract, and provides

accessor methods to retrieve the view-independent

uncertainty estimates that are computed by the propagation

Visitor. The Assessment and Region subclasses provide

8 This decision should be made in the registration error visitor,
using view dependent estimates, rather than in the view-independent
uncertainty propagation visitor, using the view independent estimates.
This will be changed in the near future when we re-implement
the visitors to solve a set of related problems, but the current
implementation is sufficient for illustrating the desired functionality.

Figure 4. The registration error of cubes

in the world. The blue ellipses represent

the registration error around the vertices of

the cubes. The green “outer” region is the

convex hull representing the area the entire

box will fall within, and the white “inner”

region is the convex hull representing the

area that some part of the box should occupy.

access to two different representations of the registration

error estimate of the objects in the tree under them.

Recall from Section 5.1 that the registration error Visitor

computes the 3D convex hull of the geometry in the subtree

underneath all OSGAR Group nodes. The OSGAR Group

nodes use the view-dependent error estimate to compute

a 2D view-dependent convex hull of the points in this 3D

hull. The points in the 2D hull are used to compute the

registration error estimates.

Region classes. Regions provide the programmer with

a collection of closed regions (illustrated in Figure 4):

an error ellipse for each vertex in the 2D hull, an outer

region (the convex hull of all points in the error ellipses)

representing the region that the object might intersect, and

an inner region representing the region the object should

intersect (see [11] for an explanation of how these regions

are computed).

Assessment classes. Assessments provide the

programmer with a single floating point value representing

an assessment of the magnitude of the registration error.

The assessment is computed using two user-defined

methods: metric is run on each of the vertices in the 2D

hull, giving a floating point value for each. An aggregator

is run on the set of vertices and floating point values, and

returns the single value for the object. There are many

possible metrics that could be used by an Assessment

object, such as the maximum of the main axis of the

ellipses, the area of the ellipse, etc. As an aggregator

function, one can consider the closest vertex, the average of

all vertices, etc.
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5.4. Specialized group subclasses

We have implemented one subclass of Assessment

(LOE) and two subclasses of Region (Bounding Regions,

Label Placer) as examples of how to extend the basic

Group classes.

Bounding Regions. Used to display graphical represen-

tations of the 2D convex hull: the vertex ellipses, the inner

region, the outer region, or any combination of them. It can

be used for prototyping, debugging or to create a simple

highlight of the region an object is expected to occupy.

Figure 4 shows two cubes with all regions displayed.

Level of Error (LOE) Switches. The LOE (originally

discussed in [10]) automatically chooses between different

subgraphs within the scene graph, allowing the application

developer to specify different augmentations corresponding

to the same physical object. At any time, one of the specified

subgraphs is enabled (visible) and the rest are disabled

(invisible). The location of the LOE in the scene graph

is used to determine the registration error estimate, but

the subgraphs do not need to be in the same part of the

graph. In our current implementation, the LOE chooses

between its children and children attached to the HUD

(discussed in Section 5.5), but it could easily be extended

to include subgraphs elsewhere in the scene graph. During

each traversal, one augmentation will be chosen based on to

the metric computed from the registration error estimate at

the LOE node.

Label Placer. The Label Placer computes where to

position the labels for a given object based on the computed

inner and outer regions of the model. A programmer can

choose to keep the label overlapping the object (by keeping

it inside the inner region) or guarantee that the label will

never block the object (by keeping it outside the outer

region). The Label Placer computes where to place the

labels each frame to enforce one of these constraints. The

Label Placer uses a callback that specifies how to position

the labels, for which we have implemented three simple

examples. The first implementation positions the label

where there is the most space available, computed from the

sides of the object to the limits of the screen. The second

implementation always tries to position the label in this

order: right, top, bottom and then left. If the label does not

fit on the right side, then it tries to position it at the top, and

so on. A third implementation favors edges closer to the

screen sides, to keep the middle clear. Labels that are not

positioned by the Label Placer are marked as not anchored

and passed to the Space Manager (described in section 5.5)

to be handled there.

5.5. Additional AR components

As mentioned above, OSGAR provides a collection of

facilities necessary for AR application development.

Video. Our current focus is on video-mixed AR exper-

iences, so the OSGAR Video Viewer class allows a video

stream to be texture mapped onto the background of the

window. The Camera Interface also feeds video to the

ARToolkit for fiducial recognition.

Trackers. OSGAR supports both the tracking of fiducial

markers and a wide variety of spatial trackers via the

VRPN tracker package. Both are handled internally by

a centralized tracker handler that performs the marker

detection on each new video image, polls VRPN once per

frame, and updates the values of the associated Tracker

Transformations in the scene graph when necessary.

Trackers will eventually provide uncertainty estimates with

their reports, although we have not finished extending

VRPN and the ARToolkit to do this.

HUD. The HUD class is used for displaying 2D

augmentations. It is implemented as an orthographic

projection attached to the camera position. Any kind of

OSG subgraphs can be attached to the HUD.

Space Manager. Currently a stand-in for a more

powerful space manager, such as that proposed by Bell and

Feiner [4]. The class collects the regions created by the

Error Region classes into a set of Hull objects, and uses the

HUD to display those that should be visible. Hull objects

store all the vertex error ellipses, the inner and outer hulls,

the path on the scene graph, and the object’s name. The

Space Manager is also responsible for positioning labels

that were not positioned explicitly by the Label Placers.

6. Discussion

Our method deals with the effects of dynamically

changing static uncertainty on spatial registration error;

OSGAR does not yet take into account temporal aspects

of such errors, nor does it try to take into account other

influencing factors, such as illumination.

We designed OSGAR to use several distinct Visitors

because we hope to eventually decouple the registration

error computation from the display loop. Even though the

system has proven to be sufficiently fast (we exceed 60

frames per second on a dual 2GHz Pentium4 Xeon with

an NVIDIA Quadro graphics card in our example and test

programs), we are concerned that a toolkit designed to

reduce the impact of registration error should not increase

the latency of the system (and thus increase registration

errors). Fortunately, the metrics we compute do not

generally need to be synchronized with the display loop;

if a Level-of-Error object or a Label Placement algorithm

works with data that is a few frames (i.e., a fraction of a
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second) old, the result should be almost imperceptible to

the user. Even the computation of the 2D convex hulls does

not need to be done synchronously, as long as the resulting

graphics are translated on the screen with the objects. If an

object is changing quickly, the computed regions may be

slightly wrong, but most of the uses we propose for such

regions would not be adversely affected by such latency.

7. Conclusions

There has been increasing interest in the AR community

on how to engineer solutions that support the real deploy-

ment of AR applications [9, 5]. We believe that the ability

to adapt to error estimates will form the foundation of AR

systems that are not tied to specific tracking and sensing

hardware, and are thus more robust and deployable in a

wide variety of situations.

In this paper, we have introduced an architecture that

integrates the uncertainty associated with the physical

world into 3D computer graphics. We use this information

to automatically and efficiently estimate the registration

error associated with each object in an AR system in real

time, and present a collection of sample programming

structures that demonstrate how these estimates can be used

to improve the quality of the information being conveyed

by the system.

We believe OSGAR represents an important step toward

the creation of real, robust AR systems in complex, mobile

environments. By allowing programmers to deal with

tracking technology (and other uncertainty) in a methodical

and structured way, they can focus on what the application

should do in different conditions, rather than tightly

coupling the system to a particular collection of devices.
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