
OSIRIS: A Three-Dimensional, Fully Relativistic
Particle in Cell Code for Modeling Plasma Based

Accelerators

R.A.Fonseca1, L.O.Silva1, F.S.Tsung2, V.K.Decyk2, W.Lu2, C.Ren2,
W.B.Mori2, S.Deng3, S.Lee3, T.Katsouleas3, and J.C.Adam4

1 GoLP/CFP, Instituto Superior Técnico, Lisboa, Portugal,
zamb@cfp.ist.utl.pt,
http://cfp.ist.utl.pt/golp/

2 University of California, Los Angeles, USA
http://exodus.physics.ucla.edu

3 University of Southern California, Los Angeles, USA
4 École Polytechnique, Paris. France

Abstract. We describe OSIRIS, a three-dimensional, relativistic, mas-
sively parallel, object oriented particle-in-cell code for modeling plasma
based accelerators. Developed in Fortran 90, the code runs on multiple
platforms (Cray T3E, IBM SP, Mac clusters) and can be easily ported
to new ones. Details on the code’s capabilities are given. We discuss the
object-oriented design of the code, the encapsulation of system depen-
dent code and the parallelization of the algorithms involved. We also
discuss the implementation of communications as a boundary condition
problem and other key characteristics of the code, such as the mov-
ing window, open-space and thermal bath boundaries, arbitrary domain
decomposition, 2D (cartesian and cylindric) and 3D simulation modes,
electron sub-cycling, energy conservation and particle and field diagnos-
tics. Finally results from three-dimensional simulations of particle and
laser wakefield accelerators are presented, in connection with the data
analysis and visualization infrastructure developed to post-process the
scalar and vector results from PIC simulations.

1 Introduction

Based on the highly nonlinear and kinetic processes that occur during high-
intensity particle and laser beam-plasma interactions, we use particle-in-cell
(PIC) codes [1, 2], which are a subset of the particle-mesh techniques, for the
modeling of these physical problems. In these codes the full set of Maxwell’s
equations are solved on a grid using currents and charge densities calculated
by weighting discrete particles onto the grid. Each particle is pushed to a new
position and momentum via self-consistently calculated fields. Therefore, to the
extent that quantum mechanical effects can be neglected, these codes make no
physics approximations and are ideally suited for studying complex systems with
many degrees of freedom.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 342−351, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Achieving the goal of one to one, two and three dimensional modeling of lab-
oratory experiments and astrophysical scenarios, requires state-of-the-art com-
puting systems. The rapid increase in computing power and memory of these
systems that has resulted from parallel computing has been at the expense of
having to use more complicated computer architectures. In order to take full
advantage of these developments it has become necessary to use more complex
simulation codes. The added complexity arises for two reasons. One reason is that
the realistic simulation of a problem requires a larger number of more complex
algorithms interacting with each other than in a simulation of a rather simple
model system. For example, initializing an arbitrary number of lasers or particle
beams in 3D on a parallel computer is a much more difficult problem than ini-
tializing one beam in 1D or 2D on a single processor. The other reason is that the
computer systems, e.g., memory management, threads, operating systems, are
more complex and as a result the performance obtained from them can dramat-
ically differ depending on the code strategy. Parallelized codes that handle the
problems of parallel communications and parallel IO are examples of this. The
best way to deal with this increased complexity is through an object-oriented
programming style that divides the code and data structures into independent
classes of objects. This programming style maximizes code reusability, reliability,
and portability.

The goal of this code development project was to create a code that breaks
up the large problem of a simulation into a set of essentially independent smaller
problems that can be solved separately from each other. This allows individu-
als in a code development team to work independently. Object oriented pro-
gramming achieves this by handling different aspects of the problem in different
modules (classes) that communicate through well-defined interfaces.

This effort resulted in a new framework called OSIRIS, which is a fully par-
allelized, fully implicit, fully relativistic, and fully object-oriented PIC code, for
modeling intense beam plasma interactions.

2 Development

The programming language chosen for this purpose was Fortran 90, mainly be-
cause it allows us to more easily integrate already available Fortran algorithms
into this new framework that we call OSIRIS. We have also developed techniques
where the Fortran 90 modules can interface to C and C++ libraries, allowing
for the inclusion of other libraries that do not supply a Fortran interface. Al-
though Fortran 90 is not an object-oriented language per se, object-oriented
concepts can be easily implemented [3–5] by the use of polymorphic structures
and function overloading.

In developing OSIRIS we followed a number of general principles in order to
assure that we were building a framework that would achieve the goals stated
above. In this sense all real physical quantities have a corresponding object in the
code making the physics being modeled clear and therefore easier to maintain,
modify and extend. Also, the code is written in a way such that it is largely

343OSIRIS: A Three-Dimensional, Fully Relativistic Particle

independent from the dimensionality or the coordinate system used, with much
of the code reused in all simulation modes.

Regarding the parallelization issues, the overall structure allows for an arbi-
trary domain decomposition in any of the spatial coordinates of the simulation,
with an effective load balancing of the problems in study. The input file defines
only the global physical problem to be simulated and the domain decomposition
desired, so that the user can focus on the actual physical problem and does not
need to worry about parallelization details. Furthermore, all classes and objects
refer to a single node (with the obvious exception of the object responsible for
maintaining the global parallel information), which can be realized by treating
all communication between physical objects as a boundary value problem, as de-
scribed below. This allows for new algorithms to be incorporated into the code,
without a deep understanding of the underlying communication structure.

3 Design

3.1 Object-Oriented Hierarchy

Figure 1 shows the class hierarchy of OSIRIS. The main physical objects used are
particle objects, electromagnetic field objects, and current field objects. The par-
ticle object is an aggregate of an arbitrary number of particle species objects. The
most important support classes are the variable-dimensionality-field class, which
is used by the electromagnetic and current field classes and encapsulates many
aspects of the dimensionality of a simulation, and the domain-decomposition
class, which handles all communication between nodes.

Particles

Species

Species
Diagnostics

Species
Profile

Species
Boundary

Particles
Diagnostics

EM Field Current

EM
Diagnostics

EM
Boundary

Current
Diagnostics

Current
Boundary

Current
Smooth

Pulse
Sequence

Laser Pulse

Antenna
Array

Antenna

Diagnostic Utilities VDF Domain Decomposition

System Support Classes

Physical Classes

Fig. 1. Osiris main class hierarchy

344 R.A. Fonseca et al.

Benchmarking of the code has indicated that the additional overhead from
using an object oriented framework in Fortran 90 leads to only a 12% slowdown
in speed.

3.2 Parallelization

The parallelization of the code is done for distributed memory systems, and it is
based on the MPI message-passing interface [10]. We parallelize our algorithms
by decomposing the simulation space evenly across the available computational
nodes. This decomposition is done by dividing each spatial direction of the sim-
ulation into a fixed number of segments (N1, N2, N3). The total number of nodes
being used is therefore the product of these three quantities (or two quantities
for the 2D simulations).

The communication pattern follows the usual procedure for a particle-mesh
code [11]. The grid quantities are updated by exchanging (electric and magnetic
fields) or adding (currents) the ghost cells between neighboring nodes. As for
the particles, those crossing the node boundary are counted and copied to a
temporary buffer. Two messages are then sent, the first with the number of
particles, and the second with the actual particle data. This strategy allows for
not setting an a priori limit on the number of particles being sent to another
node, while maintaining a reduced number of messages. Because most of the
message are small, we are generally limited by the latency of the network being
used. To overcome this, and whenever possible, the messages being sent are
packed into a single one, achieving in many cases twice the performance.

We also took great care in encapsulating all parallelization as boundary value
routines. In this sense, the boundary conditions that each physical object has
can either be some numerical implementation of the usual boundary conditions
in these problems or simply a boundary to another node. The base classes that
define grid and particle quantities already include the necessary routines to han-
dle the later case, greatly simplifying the implementation of new quantities and
algorithms.

3.3 Encapsulation of System Dependent Code

For ease in porting the code to different architectures, all code that is machine
dependent is encapsulated in the system module. At present we have different
versions of this module for running on the Cray T3E, the IBM SP, and for
Macintosh clusters, running on both MacOS 9 (MacMPI [8]) and MacOS X
(LAM/MPI [9]) clusters. The later is actually a fortran module that interfaces
with a POSIX compliant C module and should therefore compile on most UNIX
systems, allowing the code to run on PC-based (Beowulf) clusters. The MPI
library has also been implemented on all these systems requiring no additional
effort.

345OSIRIS: A Three-Dimensional, Fully Relativistic Particle

3.4 Code Flow

Figure 2 shows the flow of a single time step on a typical OSIRIS run. It closely
follows the typical PIC cycle [2]. The loop begins by executing the diagnostic rou-
tines selected (diagnostics). It follows by pushing the particles using the updated
values for the fields and depositing the current (advance deposit). After this step,
the code updates the boundaries for particles and currents, communicating with
neighboring nodes if necessary. A smoothing of the deposited currents, accord-
ing to the specified input file, follows this step. Finally, the new values of the
Electric and Magnetic field are calculated using the smoothed current values,
and its boundaries are updated, again communicating with neighboring nodes,
if necessary.

6.678 6.726 6.775 6.824 6.873 6.922 6.971

current smooth field solver update jay boun

advance depositdiagnostics update emf boun update particle

0

1

Fig. 2. A typical cycle, one time step, in an OSIRIS 2 node run. The arrows show the
direction of communication between nodes.

If requested, at the end of each loop, the code will write restart information,
allowing the simulation to be restarted later on at this time step.

4 OSIRIS Framework

The code is fully relativistic and it presently uses either the charge-conserving
current deposition schemes from ISIS [6] or TRISTAN [7]. We have primarily
adopted the charge-conserving current deposition algorithms because they allow
the field solve to be done locally, i.e., there is no need for a Poisson solve. The
code uses the Boris scheme to push the particles, and the field solve is done

346 R.A. Fonseca et al.

locally using a finite difference solver for the electric and magnetic fields in both
space and time.

In its present state the code contains algorithms for 2D and 3D simulations in
Cartesian coordinates and for 2D simulations in azimuthally symmetric cylindri-
cal coordinates, all of which with 3 components in velocity (i.e. both 2D modes
are indeed 21

2D or 2D3V algorithms). The loading of particles is done by dis-
tributing the particles evenly on the cell, and varying the individual charge of
each particle according to the density profile stipulated. Below a given threshold
no particles are loaded. The required profile can be specified by a set of multiply-
ing piecewise linear functions and/or by specifying Gaussian profiles. The initial
velocities of the particles are set according to the specified thermal distribution
and fluid velocity. The code also allows for the definition of constant external
electric and magnetic fields.

The boundary conditions we have implemented in OSIRIS are: conducting,
and Lindmann open-space boundaries for the fields [17], and absorbing, reflec-
tive, and thermal bath boundaries for the particles (the later consists of rein-
jecting any particle leaving the box with a velocity taken from a thermal distri-
bution). Furthermore, periodic boundary conditions for fields and particles are
also implemented.

This code also has a moving window, which makes it ideal for modeling high-
intensity beam plasma interactions where the beam is typically much shorter
than the interaction length. In this situation simulation is done in the laboratory
reference frame, and simulation data is shifted in the direction opposite to the
window motion defined whenever an integer number of cells corresponds to this
motion in the number of time steps elapsed. Since this window moves at the speed
of light in vacuum no other operations are required. The shifting of data is done
locally on each node, and boundaries are updated using the standard routines
developed for handling boundaries, thus taking care of moving data between
adjacent nodes. The particles leaving the box from the back are removed from
the simulation and the new clean cells in the front of the box are initialized as
described above.

OSIRIS also incorporates the ability to launch EM waves into the simula-
tion, either by initializing the EM field of the simulation box accordingly, or
by injecting them from the simulation boundaries (e.g. antennas). Moreover, a
subcycling scheme [18] for heavier particles has been implemented, where the
heavier species are only pushed after a number of time steps using the averaged
fields over these time steps, thus significantly decreasing the total loop time.

A great deal of effort was also devoted to the development of diagnostics for
this code that goes beyond the simple dumps of simulation quantities. For all the
grid quantities envelope and boxcar averaged diagnostics are implemented; for
the EM fields we implemented energy diagnostics, both spatially integrated and
resolved; and for the particles phase space diagnostics, total energy and energy
distribution function, and accelerated particle selection are available. The output
data uses the HDF [12] file format. This is a standard, platform independent, self-
contained file format, which gives us the possibility of adding extra information

347OSIRIS: A Three-Dimensional, Fully Relativistic Particle

to the file, like data units and iteration number, greatly simplifying the data
analysis process.

5 Visualization and Data-Analysis Infrastructure

It is not an exaggeration to say that visualization is a major part of a parallel
computing lab. The data sets from current simulations are both large and com-
plex. These sets can have up to five free parameters for field data: three spatial
dimensions, time and the different components (i.e., Ex, Ey, and Ez). For parti-
cles, phase space has seven dimensions: three for space, three for momentum and
one for time. Plots of y versus x are simply not enough. Sophisticated graphics
are needed to present so much data in a manner that is easily accessible and
understandable.

We developed a visualization and analysis infrastructure [13] based on IDL
(Interactive Data Language). IDL is a 4GL language, with sophisticated graphics
capabilities, and it is widely used in areas such as Atmospheric Sciences and
Astronomy. It is also available on several platforms and supported in a number
of systems, ranging from Solaris to the MacOS.

While developing this infrastructure we tried simplifying the visualization
and data analysis as much as possible, making it user-friendly, automating as
much of the process as possible, developing routines to batch process large sets of
data and minimizing the effort of creating presentation quality graphics. We im-
plemented a full set of visualization routines for one, two and three-dimensional
scalar data and for two and three dimensional vector data. These include auto-
matic scaling, dynamic zooming and axis scaling, integration of analysis tools,
animation tools, and can be used either in batch mode or in interactive mode. We
have also developed a comprehensive set of analysis routines that include scalar
and vector algebra for single or multiple datasets, boxcar averaging, spectral
analysis and spectral filtering, k-space distribution function, envelope analysis,
mass centroid analysis and local peak tools.

6 Results

The code has been successfully used in the modeling of several problems in the
field of plasma based accelerators, and has been run on a number of architectures.
Table 1 shows the typical push times on two machines, one supercomputer and
one computer cluster.

We have also established the energy conservation of the code to be better
than 1 part in 105. This test was done in a simulation where we simply let a
warm plasma evolve in time; in conditions where we inject high energy fluxes
into the simulation (laser or beam plasma interaction runs) the results are better.
Regarding the parallelization of the code, extensive testing was done on the EP2

cluster [19] at the IST in Lisbon, Portugal. We get very high efficiency, (above
91% in any condition), proving that the parallelization strategy is appropriate.

348 R.A. Fonseca et al.

Table 1. Typical push time for two machines, in two and three dimensions. Values are
in µs/particle × node

Machine 2D push time 3D push time

Cray T3E-900 4.16 7.56
EP2 Cluster 4.96 9.82

Also note that this is a computer cluster running a 100 Mbit/s network, and
that the efficiency on machines such as the Cray T3E is even better

One example of a three-dimensional modeling of a plasma accelerator is pre-
sented on figure 3. This is a one-to-one modeling of the E-157 Experiment [14]
done at the Stanford Linear Accelerator Center, where a 30 GeV beam is accel-
erated by 1 GeV. The figure shows the Lorentz forces acting on the laser beam
e.g. E + z×B, where z is the beam propagation direction, and we can clearly
identify the focusing /defocusing and accelerating/decelerating regions

Fig. 3. Force field acting on the 30 GeV SLAC beam inside a plasma column.

Another example of the code capabilities is the modeling of the Laser Wake-
field Accelerator (LWFA). In the LWFA a short ultrahigh intensity laser pulse
drives a relativistic electron plasma wave. The wakefield driven most efficiently
when the laser pulse length L = cτ is approximately the plasma wavelength
λp = 2πc/ωp - Tajima-Dawson mechanism [15]. Figure 4 shows the plasma wave
produced by a 800 nm laser pulse with a normalized vector potential of 2.16,
corresponding to an intensity of 1019W/cm2 on focus, and a duration of 30 fs,
propagating in an underdense plasma.

349OSIRIS: A Three-Dimensional, Fully Relativistic Particle

Fig. 4. Plasma Wave produced in the LWFA. Isosurfaces shown for values of 0.5, 1.2,
2.0 and 5.0 normalized to the plasma background density.

7 Future Work

In summary, we have presented the OSIRIS framework for modeling plasma
based accelerators. This is an ongoing effort; future developments will concen-
trate on the implementation of true open-space boundaries [16] and ionization
routines. Regarding the visualization and data analysis infrastructure, a Web-
Driven visualization portal will be implemented on the near future, allowing for
efficient remote data analysis on clusters.

8 Acknowledgements

This work was supported by DOE, NSF (USA), FLAD, GULBENKIAN, and by
FCT (Portugal) under grants PESO/P/PRO/40144/2000, PESO/P/INF/40146
/2000, CERN/P/FIS/40132/2000, and POCTI/33605/FIS/2000.

References

1. Dawson, J.M.: Particle simulation of plasmas. Rev. Mod. Phys., vol.55, no. 2, April
1983, p. 403-47.

350 R.A. Fonseca et al.

2. Birdsall, C.K., Langdon, A.B.: Plasma physics via computer simulation. Bristol,
UK: Adam Hilger, 1991, xxvi+479 pp.

3. Decyk, V. K., Norton, C. D., Szymanski, B. K.: How to express C++ concepts in
Fortran 90. Scientific Programming, Vol. 6, no. 4, 1998, p. 363.

4. Decyk, V. K., Norton, C. D., Szymanski, B. K.: How to support inheritance and
run-time polymorphism in Fortran 90. Comp. Phys. Com., no. 115, 1998, pp. 9-17.

5. Gray, M. G., Roberts, R. M.: Object-Based Programming in Fortran 90. Computers
in Physics, vol. 11, no. 4, 1997, pp. 355-361.

6. Morse, R.L., Nielson, C.W.: Numerical simulation of the Weibel instability in one
and two dimensions. Phys. Fluids, vol.14, no.4, April 1971. pp.830-40.

7. Villasenor, J.; Buneman, O.: Rigorous charge conservation for local electromagnetic
field solvers. Computer Physics Communications, vol.69, no. 2-3, March-April 1992.

8. Decyk, V.K., Dauger, D.E.: How to Build an AppleSeed: A Parallel Macin-
tosh Cluster for Numerically Intensive Computing. Presented at the International
School for Space Simulation ISSS-6, Garching, Germany September 2001; also at
http://exodus.physics.ucla.edu/appleseed/appleseed.html

9. http://www.lam-mpi.org/

10. Message Passing Interface Forum.: MPI: A message-passing interface standard.
International Journal of Supercomputer Applications, vol. 8, no. 3-4, 1994.

11. Gropp, W., Lusk, E., Skjellum, A.: Using MPI. MIT Press, 1999. xxii+371 pp.
12. http://hdf.ncsa.uiuc.edu/

13. Fonseca, R. et al.: Three-dimensional particle-in-cell simulations of the Weibel
instability in electron-positron plasmas. IEEE transactions in plasma science Special
Issues on Images in Plasma Science, 2002

14. Muggli, P. et al.: Nature, vol. 411, 3 May 2001
15. Tajima, T., Dawson, J. M.: Laser Electron Accelerator, Phys. Rev. Lett., vol. 43,

1979, pp. 267-270
16. Vay, J.L.: A new Absorbing Layer Boundary Condition for the Wave Equation. J.

Comp. Phys., no. 165, 2000, pp. 511-521.
17. Lindmann, E. L.: Free-space boundary conditions for the time dependent wave

equation. J. Comp. Phys., no. 18, 1975, pp. 66-78.
18. Adam, J. C.; A. Gourdin Serveniere, and A. B. Langdon: Electron sub-cycling in

particle simulation of Plasmas J. Comp. Phys., no. 47, 1982, pp. 229-244.
19. http://cfp.ist.utl.pt/golp/epp/

351OSIRIS: A Three-Dimensional, Fully Relativistic Particle

	1 Introduction
	2 Development
	3 Design
	3.1 Object-Oriented Hierarchy
	3.2 Parallelization
	3.3 Encapsulation of System Dependent Code
	3.4 Code Flow

	4 OSIRIS Framework
	5 Visualization and Data-Analysis Infrastructure
	6 Results
	7 Future Work
	8 Acknowledgements
	References

