
OSLC Resource Shape

A language for defining constraints on Linked Data
Arthur G. Ryman

IBM Rational
DE, Chief Architect, Reporting &

Portfolio and Strategy Management
+1 (905) 413-3077

ryman@ca.ibm.com

Arnaud J Le Hors
IBM

Software Standards
Architect

+1 (720) 396-5228

lehors@us.ibm.com

Steve Speicher
IBM

STSM
OSLC Lead Architect
+1 (919) 254-0645

sspeiche@us.ibm.com

ABSTRACT

IBM has for several years been employing a read/write usage of

Linked Data as an architectural style for integrating a suite of

applications. [1]

We are encouraged by the work done by the W3C Linked Data

Platform Working Group which is chartered to produce a W3C

Recommendation for HTTP-based (RESTful) application

integration patterns using read/write Linked Data .

The Linked Data Platform Recommendation will provide the

industry with a solid foundation to build on. Yet, more work will

need to be done to address in a standard way the needs of

enterprise solutions that use Linked Data as an application

integration platform. One such need is a type definition language

that can be used to communicate and validate constraints on RDF

data.

This paper explains the need for such a language, why standards

like RDFS and OWL are not suitable answers and, finally,

introduces OSLC Resource Shapes as a proposed solution.

General Terms
Management, Design, Standardization

Keywords
Linked Data, Type Definition, Integrity Constraints, Validation,

Application Integration, Standards

1. INTRODUCTION
The W3C Linked Data Platform (LDP) Working Group (WG) [2]

is chartered to produce a specification which builds on Tim

Berners-Lee's 4 rules [3] and defines a standard way of

manipulating RDF resources over HTTP [4] in a RESTful manner.

[5]

The LDP specification [6] defines several additional rules LDP

client and servers must comply with. The specification describes

how each HTTP verb is to be handled - what is to be submitted by

the client, what the server must do, and what the client is to expect

as a result.

The LDP specification introduces the notion of LDP Resource

with additional constraints over what RDF [7] requires to increase

interoperability. For instance, LDP requires a resource type to be

set explicitly.

However, the LDP specification falls short of defining how

applications that build on LDP are to find the constraints that

govern these resource types – how an LDP client might discover

which properties are required on a given type and how an LDP

server might validate content submitted by a client.

W3C provides several standards such as RDFS [8] and OWL [9]

to describe vocabularies and ontologies in RDF but these

techniques are not suitable to the problem at hand. Indeed, these

standards are primarily designed to support reconciliation of

different vocabularies to facilitate integration of various data sets

and reasoning engines which have the ability to infer new

information from given information.

Unfortunately, as we will demonstrate, although powerful, this

ability means that reasoning engines function in a way that is

actually contrary to what is necessary to enable the type of

validation robust applications development requires.

For that reason, IBM developed as part of the Open Services for

Lifecycle Collaboration (OSLC) initiative [10] a technique called

Resource Shape [11] which we will briefly present in this paper.

This technique consists of an RDF vocabulary that can be used for

specifying and validating constraints on RDF graphs. Resource

Shapes provide a way for servers to programmatically

communicate with clients the types of resources they handle and

to validate the content they receive from clients.

In some sense Resource Shapes do what naive users expect of

RDFS and OWL.

2. RELATED WORK
There is surprisingly little literature to be found on the subject of

RDF validation and language constraints for RDF. Notable

exceptions include Jiao Tao's Adding Integrity Constraints to the

Semantic Web for Instance Data Evaluation proposal [12] which

provides for good background on the topic and refers to what is

being discussed here as “integrity constraint” validation.

However, the paper proposes to address the need for integrity

constraints validation by reusing OWL with a different semantics.

Validating RDF with OWL Integrity Constraints from Clark &

Parsia, LLC [13] builds on the same idea.

While there is certainly an appeal to reusing existing technology,

using the same syntax with two different semantics isn't without

disadvantages. So, instead, the proposal discussed here chooses a

path that stays clear of OWL which was designed for a different

Copyright is held by the author/owner(s).

LDOW2013, May 14, 2013, Rio de Janeiro, Brazil.

purpose. Other approaches such as that based on the use of a rule

engine like SPIN [14] are also worth considering.

3. THE NEED FOR A CONSTRAINT

LANGUAGE
Linked Data fuses REST and RDF by requiring that resources

should be identified with dereferenceable HTTP URIs and that

HTTP clients should be able to get RDF representations of

resources.

LDP takes this concept further and defines a broadly applicable

RESTful RDF based platform. With this platform developers will

be able to build applications by integrating different components

that function as REST services exchanging data in RDF.

RDF has the happy characteristic that "it can say anything about

anything." This means that, in principle, any RDF resource can

have any property and there is no requirement that any two

resources have the same set of properties, even if they have the

same type or types.

In practice, though, the properties that are set on resources usually

follow regular patterns that are dictated by the uses of those

resources. Although a particular resource might have arbitrary

properties, when viewed from the perspective of a particular

application or use case, the set of properties and property values

that are appropriate for that resource in that application will often

be predictable and constrained.

In this context, it is natural for developers to expect to be able to

define the constraints governing the RDF resources they use in

their application and to be able to validate against those

constraints the content sent by clients to servers.

Defining the content of RDF payloads (HTTP request or response

) is part of the REST service interface.

It is sound engineering practice to define interfaces between

components in a system. The interface definition defines the

contract between the provider and consumer of a component. For

software systems, the main part of the interface definition is a

precise specification of the inputs and outputs.

Type definition languages are used for this purpose, both to

programmatically communicate the data an application can

receive and to validate the data it receives.

LDP resources are represented as RDF graphs around which

REST service interfaces are defined. A type definition language

for LDP would therefore let us describe RDF graphs. Such a

description would help consumers and providers determine if a

given graph satisfies the REST interface contract.

Consider a simple Web application that hosts resources about

change requests. We’ll use the class oslc_cm:ChangeRequest to

define the class of change requests. Assume there is a REST

service where we can POST HTTP requests to create new

oslc_cm:ChangeRequest resources. The REST service looks at the

HTTP request, and if it contains an oslc_cm:ChangeRequest

resource, it will create a new resource and copy the properties

from the HTTP request to it. The following HTTP POST request

body should succeed:

Example 1. HTTP POST changeRequest.ttl

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix oslc_cm: <http://open-services.net/ns/cm#> .

<http://example.com/resource>

 a oslc_cm:ChangeRequest ;

 dcterms:title “Null pointer exception in web ui” ;

 oslc_cm:status “Submitted” .

A type definition language would provide a way of ensuring that

the resource that is submitted is of type oslc_cm:ChangeRequest

and has the necessary properties.

Unfortunately there is currently no such type definition language

for RDF.

4. WHY RDFS AND OWL ARE NOT

SUITED FOR THE TASK
RDF Schema (RDFS) is a language for describing vocabularies

and is often misconstrued as being to RDF what XML Schemas

[15] are to XML. Despite the similar names these two

technologies serve two very different roles. While XML Schemas

are well suited to validate inputs, RDFS is not.

RDFS defines the classes rdfs:Class and rdf:Property which are

used to classify terms as either classes or predicates. This limited

subset of RDFS constitutes a very simple type definition

language.

However, RDFS also contains other terms, such as rdfs:domain,

rdfs:range, rdfs:subClassOf, and rdfs:subPropertyOf, which go

beyond mere vocabulary definition and enter into the world of

ontologies. The primary difference between a vocabulary and an

ontology is that an ontology includes inference rules which let

you infer new information from given information. This is where

RDFS and OWL, which provides augmented capabilities, diverge

from traditional type definition languages such as XML Schemas.

Technically, the inferences are computed by a software component

called a reasoner.

The function of a reasoner is very different from that of a validator

and trying to use a reasoner as a validator can prove to be a very

frustrating exercise.

Considering our example of a Web application handling change

requests, the designer of the service could declare the domain of

the oslc_cm:status property to be oslc_cm:ChangeRequest using

the following RDFS statement:

oslc_cm:status rdfs:domain oslc_cm:ChangeRequest .

However, the semantics of the rdfs:domain assertion is not a

constraint that says you can only use oslc_cm:status on

oslc_cm:ChangeRequest resources. Rather, it is an inference rule

that says if you use oslc_cm:status as a property on any resource,

then that resource is classified as an oslc_cm:ChangeRequest.

More precisely, the meaning of this statement is that if any

statement uses the predicate oslc_cm:status then we can infer that

the subject of the statement is a member of the class

oslc_cm:ChangeRequest.

Similarly to rdfs:domain, RDFS also defines the predicate

rdfs:range which lets us infer the class membership of the object

of any statement that uses a given predicate.

Consider the following HTTP POST request, where the explicit

triple stating that the resource is an oslc_cm:ChangeRequest has

been omitted:

Example 2. HTTP POST changeRequest-implicit.ttl

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix oslc_cm: <http://open-services.net/ns/cm#> .

<http://example.com/resource>

 dcterms:title “Null pointer exception in web ui” ;

 oslc_cm:status “Submitted” .

From the traditional viewpoint, this HTTP POST request should

fail because the server can’t find an oslc_cm:ChangeRequest

resource. However, from the ontology viewpoint, it should

succeed because of the semantics of RDFS.

An RDFS reasoner would infer from the explicit triples in the

HTTP POST request and the service ontology that the HTTP

POST request implied a triple stating that the resource was an

oslc_cm:ChangeRequest.

RDFS contains several other terms, e.g. rdfs:subClassOf,

rdfs:subPropertyOf, that look like common type definition

language constraints, but are in fact inference rules. OWL also

looks like a type definition language but in fact greatly expands

on the set of inference rules and is equally unsuited to validating

inputs to REST services.

OWL is so much more expressive than RDFS that it is possible

for an OWL reasoner to infer mutually contradictory triples from a

given graph, in which case the graph is said to be inconsistent.

This ability looks, at first glance, like a potentially useful

constraint checking mechanism. Unfortunately, an OWL reasoner

will go to great lengths to make some superficially inconsistent-

looking graphs consistent.

For example, consider the following ontology:

Example 3. OWL Ontology hasOwner.ttl

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix ex: <http://example.org/ns#> .

ex: a owl:Ontology .

ex:ChangeRequest a owl:Class ;

 rdfs:isDefinedBy ex: .

ex:Owner a owl:Class ;

 rdfs:isDefinedBy ex: .

ex:hasOwner a owl:ObjectProperty,

 owl:FunctionalProperty ;

 rdfs:isDefinedBy ex: .

ex:Joe a ex:Owner .

ex:Bob a ex:Owner .

ex:MyRequest a ex:ChangeRequest ;

 ex:hasOwner ex:Joe, ex:Bob .

This ontology defines the classes ex:ChangeRequest and

ex:Owner and the property ex:hasOwner. This property is asserted

to be a functional property, which means that it is single-valued,

i.e. for any given subject there must be at most one object. The

ontology also describes two owners, ex:Joe and ex:Bob, as well as

a change request, ex:MyRequest, and asserts that this change

request has two owners, ex:Joe and ex:Bob. This looks like a

contradiction. It would be nice if a type checker could flag this.

An OWL reasoner will not say that this ontology is inconsistent

because OWL does not make the “Unique Name Assumption”.

This is a fundamental aspect of Web architecture [16] since there

is no requirement that every resource have a unique URI. In fact,

it is common for synonyms to be defined in different vocabularies.

Given the above ontology, an OWL reasoner will find no

inconsistency.

An OWL reasoner will judge an ontology to be consistent if there

is some world in which the ontology makes sense. In this case, the

ontology makes sense when ex:Joe and ex:Bob identify the same

resource. The ontology is said to entail this implication. OWL has

the property owl:sameAs which asserts that its subject and object

identify the same resource. Thus the following triple is entailed by

the ontology.:

ex:Joe owl:sameAs ex:Bob .

Although logical, this entailment makes reasoners unsuitable to

the task of validating RDF content sent to an LDP server.

5. OSLC RESOURCE SHAPES

Linked Data programmers have a legitimate need to be able to

specify constraints on data, e.g. as preconditions in REST APIs.

OO programmers are used to specifying constraints on data with a

variety of traditional type definition languages such as Java,

UML, and XML Schema. As previously discussed RDFS and

OWL are very different from traditional type definition languages

and are therefore not the solution. The OSLC Resource Shape

specification is a proposed solution for specifying constraints on

RDF data.

A resource shape is a set of grammar rules, expressed in RDF, an

RDF graph must comply with to be correct. A resource shape lists

the properties that are expected or required in a graph, their

occurrence, range, allowed values, etc.

A resource shape lets you determine if a given graph is valid or

invalid. A resource shape checker could be implemented as a set

of SPARQL ASK queries [17] on the graph. A SPARQL ASK

query is a query whose result is either true or false. If all the

SPARQL ASK queries return true then the graph is valid,

otherwise it is invalid.

To briefly illustrate shapes, suppose that in our

oslc_cm:ChangeRequest example we require that when a new

resource is created, it must have exactly one dcterms:title property

and zero or one oslc_cm:status property. These constraints are

expressed in the following simplified resource shape:

Example 4. OSLC Resource Shape changeRequest-shape.ttl

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix oslc: <http://open-services.net/ns/core#> .

@prefix oslc_cm: <http://open-services.net/ns/cm#> .

@base <http://example.com/shape/oslc-change-request> .

<> a oslc:ResourceShape ;

 dcterms:title "Creation shape of OSLC Change Request" ;

 oslc:describes oslc_cm:ChangeRequest ;

 oslc:property <#dcterms-title>, <#oslc_cm-status> .

<#dcterms-title> a oslc:Property ;

 oslc:propertyDefinition dcterms:title ;

 oslc:occurs oslc:Exactly-one .

<#oslc_cm-status> a oslc:Property ;

 oslc:propertyDefinition oslc_cm:status ;

 oslc:occurs oslc:Zero-or-one .

This resource shape specifies constraints governing an

oslc_cm:ChangeRequest resource. It uses the property oslc:occurs

to specify the occurrence constraints of the dcterms:title and

oslc_cm:status properties. Specifying the occurence of a property

as either oslc:Exactly-one or oslc:Zero-or-one constrains the

property to be functional, which is what we were trying to achieve

through the use of owl:FunctionalProperty in Example 3. OWL

Ontology hasOwner.ttl.

As mentioned above, each constraint can be expressed as a

SPARQL ASK query. For example, the following query checks the

occurrence of the oslc_cm:status property:

Example 5. SPARQL Query ask-oslc_cm-status-occurs.rq

prefix oslc_cm: <http://open-services.net/ns/cm#>

ask {

 select ?resource

 where {

 ?resource a oslc_cm:ChangeRequest.

 ?resource oslc_cm:status ?status

 }

 group by ?resource

 having (count(?status) <= 1)

}

This query uses SPARQL aggregation to count the occurrence of

the oslc_cm:status property and compare it to the constraint

specified in the shape document.

Running this query on the HTTP POST body in Example 1. HTTP

POST changeRequest.ttl returns true. This result confirms that the

shape is valid with respect to this occurrence constraint.

For a counter-example, consider the following HTTP POST which

has two values for the oslc_cm:status property:

Example 6. HTTP POST changeRequest-2.ttl

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix oslc_cm: <http://open-services.net/ns/cm#> .

<http://example.com/resource> a oslc_cm:ChangeRequest ;

 dcterms:title "Null pointer exception in web ui" ;

 oslc_cm:status "Submitted", "Working" .

Running the same query returns false, because oslc_cm:status

occurs twice.

OSLC Resource Shapes let you express many other common

constraints in addition to occurrence constraints.

A Resource Shape lists the properties that are allowed or required

for a specific type of resource. For each property, it specifies the

type of its value, the number of times it is expected to occur, and

whether it is required. A default value as well as a list of possible

values can be provided. In addition, for properties for which the

value is a resource, a shape can be provided for that resource,

allowing for a recursive model.

The following table lists some of the property constraints that can

be specified. See OSLC 2.0 Appendix A: Common Properties [11]

for the complete specification.

Name Description

valueType The type of value the property can have. This can

be one of the following:

 Literal value-types:

• Boolean

• DateTime

• Decimal

• Double

• Float

• Integer

• String

• XMLLiteral

 Resource value-types:

• Resource

• Local Resource

• AnyResource

When omitted, the value type is unconstrained.

range When valueType is a resource value-type, this

can be used to specify the resource type allowed.

The default is Any.

valueShape When valueType is a resource value-type, this

can be used to specify the Resource Shape for the

value.

Note that this allows various shapes to be

associated with the same type.

allowedValues Specifies an oslc:AllowedValues resource which

lists the allowed values for the property.

allowedValue A value allowed for the property. If there are both

allowedValue elements and an allowedValue

resource, then the full-set of allowed values is the

union of both.

defaultValue A default value for the property.

maxSize For String properties only, this specifies as an

integer the maximum number of characters

allowed. If not set, then there is no maximum or

maximum is specified elsewhere.

occurs Either Exactly-one (the property is required),

Zero-or-one (the property is optional), Zero-or-

many (the property is optional), or One-or-many

(the property is required)

http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA?sortcol=0;table=8;up=0#sorted_table

Name Description

readOnly A Boolean specifying whether the property is

read-only. If omitted, or set to false, then the

property is writable.

Although implementations of the specification are not required to

use SPARQL to check constraints the meaning of each constraint

can be expressed in terms of a suitable SPARQL ASK query in a

way similar to what we showed in Example 5. SPARQL Query

ask-oslc_cm-status-occurs.rq.

As part of the OSLC initiative various Resource Shapes have been

developed and successfully used in different application domains

including Application Lifecycle Management (ALM) and

Integrated Service Management (ISM) to describe resources such

as a Change Request [18], a Test Case [19], a Requirement [20],

or a Performance Monitoring Record [21]. We have found this

technique to adequately address the need for describing the data

that application specific Linked Data services expect, and for

these services to validate the data they received from clients.

6. CONCLUSION

Linked Data fuses REST with RDF. Sound software engineering

practices dictate that we clearly specify REST interfaces.

Traditional approaches, such as XML Schema, don’t apply to

RDF, and RDF ontology languages such as RDFS and OWL are

not suitable to the task. We therefore need an RDF-friendly way

to describe Linked Data REST interfaces that we will be able to

use with LDP. Based on our experience in OSLC, we believe

Resources Shapes are a possible solution to this need but more

importantly we believe the industry needs a standard solution to

this problem.

7. ACKNOWLEDGMENTS
This paper contains material and concepts that come from our

work in OSLC and Arthur Ryman's Linked Data Interfaces article

[22].

8. REFERENCES
[1] Arnaud J Le Hors and al. Using read/write Linked Data for

Application Integration. LDOW2012, April 16, 2012.

http://events.linkeddata.org/ldow2012/papers/ldow2012-

paper-04.pdf

[2] W3C Linked Data Platform Working Group

http://www.w3.org/2012/ldp

[3] Tim Berners-Lee. Linked Data Design Issues. 2006

http://www.w3.org/DesignIssues/LinkedData.html

[4] R. Fielding and al. Hyper-text Transfer Protocol (HTTP/1.1),

IETF RFC2616, 1999.

http://tools.ietf.org/html/rfc2616

[5] Fielding, Roy Thomas. Architectural Styles and the Design

of Network-based Software Architectures. Doctoral

dissertation, University of California, Irvine, 2000.

[6] Steve Speicher, John Arwe. Linked Data Platform 1.0. W3C,

2012. http://www.w3.org/2012/ldp/hg/ldp.html

[7] Graham Klyne, Jeremy J. Carroll. Resource Description

Framework (RDF).W3C, 2004

http://www.w3.org/TR/rdf-concepts/

[8] Dan Brickley and al. RDF Vocabulary Description

Language 1.0: RDF Schema. W3C, 2004

http://www.w3.org/TR/rdf-schema/

[9] W3C OWL Working Group. OWL2 Web Ontology Language

Overview. W3C, 2012

http://www.w3.org/TR/owl2-overview/

[10] Open Services for Lifecycle Collaboration (OSLC)

http://open-services.net

[11] Dave Johnson, OSLC 2.0 Appendix A: Common Properties.

OSLC, 2012

http://open-

services.net/bin/view/Main/OSLCCoreSpecAppendixA

[12] Jiao Tao, Adding Integrity Constraints to the Semantic Web

for Instance Data Evaluation, in Proceedings of the 9th

International Semantic Web Conference (ISWC 2010),

Shanghai, China, November 7-11, 2010.

http://www.cs.rpi.edu/%7Etaoj2/2010/iswc2010dc.pdf

[13] Héctor Pérez-Urbina an al. Validating RDF with OWL

Integrity Constraints.Clark & Parsia, LLC. 2010-2012.

http://stardog.com/docs/sdp/icv-specification.html

[14] Holger Knublauch and al, SPIN Member Submission, W3C,

2011. http://www.w3.org/Submission/spin-overview/

[15] Paul Biron, Ashok Malhotra. XML Schema Part 2:

Datatypes, Second Edition, W3C, 2004

http://www.w3.org/TR/xmlschema-2/

[16] Ian Jacobs, Norman Walsh. Architecture of the World Wide

Web, W3C. 2004.

http://www.w3.org/TR/webarch/

[17] Lee Feigenbaum and al. SPARQL 1.1 Protocol, W3C, 2013

http://www.w3.org/TR/sparql11-protocol/

[18] Steve Speicher. Open Services for Lifecycle Collaboration

(OSLC) Change. OSLC, 2010.

http://open-services.net/bin/view/Main/CmSpecificationV2

[19] Paul McMahan. Open Services for Lifecycle Collaboration

(OSLC) Quality Management Version 2.0. OSLC, 2011.

http://open-services.net/bin/view/Main/QmSpecificationV2

[20] Ian Green. Open Services for Lifecycle Collaboration (OSLC

) Requirements Management Version 2.0, OSLC, 2012.

http://open-services.net/bin/view/Main/RmSpecificationV2

[21] Julianne Bielski, John Arwe. Open Services for Lifecycle

Collaboration (OSLC) Performance Monitoring Version 2.0.

OSLC, 2013.

http://open-services.net/wiki/performance-monitoring/OSLC-

Performance-Monitoring-Specification-Version-2.0/

[22] Arthur Ryman. Linked Data Interfaces. developerWorks, 19

March 2013

http://www.ibm.com/developerworks/rational/library/linked-

data-oslc-resource-shapes/index.html

http://www.w3.org/TR/webarch/Arnaud
http://open-services.net/wiki/performance-monitoring/OSLC-Performance-Monitoring-Specification-Version-2.0/
http://open-services.net/wiki/performance-monitoring/OSLC-Performance-Monitoring-Specification-Version-2.0/
http://open-services.net/
http://open-services.net/
http://open-services.net/
http://open-services.net/
http://open-services.net/
http://open-services.net/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/Submission/spin-overview/
http://stardog.com/docs/sdp/icv-specification.html
http://www.cs.rpi.edu/~taoj2/2010/iswc2010dc.pdf
http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA
http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA
http://open-services.netIan/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-concepts/Dublin
http://www.w3.org/2012/ldp/hg/ldp.html
http://tools.ietf.org/html/rfc2616
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/2012/ldp
http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-04.pdf
http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-04.pdf
http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA?sortcol=6;table=8;up=0#sorted_table

	ABSTRACT
	1. INTRODUCTION
	2. RELATED WORK
	3. THE NEED FOR A CONSTRAINT LANGUAGE
	4. WHY RDFS AND OWL ARE NOT SUITED FOR THE TASK
	5. OSLC RESOURCE SHAPES
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

