
Osmotic Computing:

A New Paradigm for Edge/Cloud Integration

Massimo Villari∗, Maria Fazio∗, Schahram Dustdar†, Omer Rana‡, Rajiv Ranjan§

∗Università degli Studi di Messina, Italy
†Technical University of Vienna, Austria
‡Cardiff University, United Kingdom

§Newcastle University, United Kingdom

I. INTRODUCTION

With the promise of potentially unlimited power and scal-

ability, Cloud computing (especially IaaS) supports the de-

ployment of reliable services across a number of different

application domains. In the domain of Internet of Things

(IoT), Cloud solutions can improve the quality of services

moving towards new business opportunities, such as location-

based content delivery, data provisioning in distributed multi-

tenant environment, multi-tier enterprise applications. The

success of Cloud-centric IoT programming models and re-

source orchestration techniques is proven by available mature

solutions, such as Amazon IoT and Google Cloud Dataflow.

However, recent technological advances have disrupted the

current centralized Cloud computing model, moving Cloud

resources close to end users. This evolution is mainly re-

quired for the adaptation of the Cloud paradigm to the IoT

phenomenon. The increasing need for supporting interaction

between IoT and Cloud computing systems has also led to the

creation of the Edge Computing model, which aims to provide

processing and storage capacity as an extension of available

IoT devices, without the need to move data/processing to a

central datacenter. This reduces communication delays and

the overall size of data that needs to be migrated across the

Internet and public/private datacenters.

We discuss benefits and challenges in orchestrating Cloud

and Edge resources according to a new paradigm which we

refer to as ”Osmotic Computing”. This paradigm is driven

by the significant increase in resource capacity/capability at

the network edge, along with support for data transfer proto-

cols that enable such resources to interact more seamlessly

with data center-based services. The approach is aimed at

highly distributed and federated environments, and enables

the automatic deployment of microservices that are composed

and interconnected over both Edge and Cloud infrastructures.

Borrowed from chemistry, “osmosis” represents the seamless

diffusion of molecules from a higher to a lower concentration

solution, which we believe should represent how services can

be migrated across data centers to the network edge. Hence,

Osmotic Computing implies the dynamic management of

services and microservices across Cloud and Edge datacenters,

addressing issues related to deployment, networking and secu-

rity, thus to provide reliable IoT support with specified levels

of Quality of Service (QoS). Osmotic Computing inherits chal-

lenges and issues related to elasticity in Cloud datacenters, but

adds several proper features due to the heterogeneous nature

of Edge microdatacenters and Cloud infrastructures. More-

over, the reference scenario includes different stakeholders

(Cloud providers, Edge providers, IoT providers, Application

providers,etc) that contribute to the provisioning of IoT service

and applications in a federated environment. In the following

sections, we provide a clear description of the basic principles

of Osmotic Computing, highlighting research and business

opportunities arising from such a new computing paradigm.

II. MOTIVATIONS

Current Cloud computing programming models and re-

source orchestration techniques are immensely challenged by

the recent evolution of the IoT phenomenon. IoT comprises

many billions of Internet Connected Devices or Things where

devices (sensors, actuators, mobile phones, routers, gateways,

switches) monitor cyber and physical world. While the IoT

is seen as the means for connecting disparate sensing and

actuation devices (via the Internet) with applications and

services, Cloud computing offers computation and storage

capabilities required by IoT applications and services. This

complex fusion of IoT devices and Cloud resources has led to

creation of new Edge applications in the domains of supply

chain management, transport, monitoring of built environment

and energy grids. These diverse applications are expected to

exponentially increase the number of IoT devices connected

to Clouds. For example, CISCO estimates that currently 15

billion devices are connected to the Internet, and this number

is set to explode to 50 billion by 2020. In another estimate,

researchers at HP Labs estimate that by 2030, there will be

1 trillion sensors. Such an explosion in IoT device ecosystem

will lead to production of data at the Edge in increasingly

significant volumes and also at very high velocity.

Despite an increase in availability of IoT devices, Cloud-

centric IoT programming models (e.g., Amazon IoT and

Google Cloud Dataflow) and resource orchestration techniques

are inappropriate in the context of emerging Edge applications

for the principal reason that they assume that the intelligence

and resource capacity necessary for data processing reside



predominantly in the Cloud datacenter. Thus, to implement

complex IoT-oriented computing systems, both Cloud and

Edge resources should be exploited setting up a hybrid virtual

infrastructure, as shown in Figure 1. Cloud and Edge data-

centers will me managed in a federated environment, where

different Providers share their resources for IoT services and

application support.

Fig. 1: Edge and Cloud Computing for IoT.

The burden of data upload towards datacenters leads to inef-

ficient use of communication bandwidth and energy consump-

tion, and a recent study by CISCO (http://goo.gl/M09Ucj)

shows that total datacenter traffic will triple by 2019, worsen-

ing the situation further. To save network bandwidth store-and

process later approaches can not be adopted, because this un-

dermines real-time decision making, which is often a necessary

requirement behind IoT. On the contrary, Edge computing aims

to lay computing needs on the resource constrained Edge de-

vices, as shown in Figure 1. Edge applications are highly time-

sensitive (e.g., hazard warning application to help communities

with prediction and preparation for environmental conditions

such as storms, landslides, and flooding) because they perform

immediate analysis of, or response to, collected sensing data.

However, even if Cloud-based programming models cannot

support the desired degree of sensitivity for IoT applications,

they can strongly increase computation and storage availability

whenever necessary. As a result, the prevailing Cloud-centric

IoT programming model needs to be revised into something

that is more adaptable and decentralized to meet the needs of

emerging IoT applications.

III. OSMOTIC COMPUTING

Osmotic Computing aims to decompose applications into

microservices and perform a dynamic tailoring of microser-

vices in smart environments exploiting resources in Edge and

Cloud infrastructures. Application delivery follows an osmotic

Fig. 2: Basic Concepts of Osmotic Computing

behavior where microservices in containers are deployed op-

portunistically in Cloud and Edge systems. Like the movement

of solvent molecules through a semi-permeable membrane into

a region of higher solute concentration to equalize the solute

concentrations on the two sides of the membrane i.e., osmosis

(in the context of chemistry), in Osmotic Computing the

dynamic management of resources into Cloud and Edge data-

centers evolves towards the balanced deployment of microser-

vices satisfying well defined low-level constrains and high-

level needs, as shown in Figure 2. However, differently from

the chemical osmotic process, Osmotic Computing allows a

tunable configuration of the resource involvement, following

resource availability and application requirements (see Figure

3). This is an important distinction, i.e. how the difference

in configuration (very much infrastructure and application de-

pendent) is set up to determine whether microservices should

migrate from Cloud to Edge or vice versa.

The Osmotic Computing goes beyond the simple elas-

tic management of deployed resources, because deployment

strategies are related to requirements of both infrastructure

(e.g., load balancing, reliability, availability) and applications

(e.g., sensing/actuation capabilities, context awareness, prox-

imity, QoS) requirements, and they can also change during

the time. Due to the high heterogeneity of physical resources,

the microservice deployment task needs to adapt the virtual

environment to the involved hardware equipment. Thus, a

bidirectional flow of adapted microservices from Cloud to

Edge (and vice versa) has to be managed. Moreover, the

migration of microservices in the Edge/Cloud system implies

the need of a dynamic and efficient management of virtual

network issues, in order to avoid application breakdown or

degradation of QoS.

A breakthrough approach to address the above issues is

to decouple the management of user data and applications

from the management of networking and security services.

Osmotic Computing aims to move in this direction, providing

a flexible infrastructure, by providing an automatic and se-

cure microservice deployment solution. Specifically, Osmotic

Computing is based on an innovative application-agnostic

approach, exploiting lightweight container-based (e.g., Docker,

Kubernetes) virtualization technologies, for the deployment of

microservices in heterogeneous Edge and Cloud datacenters.



Fig. 3: Osmotic Computing Osmotic Computing in Cloud and

Edge Datacenters

IV. OSMOTIC ECOSYSTEM

Figure 4 illustrates some of the key concepts in Osmotic

Computing with reference to service deployment. Osmotic

Computing spans two main infrastructure layers. The L1 layer

consists of Cloud datacenters, where several types of service

and microservice are provided. For the Osmotic Computing

purposes, at this layer, microservices are composed according

to end users high-level requirements. The L2 layer identifies

the Edge computing environment, that includes data capture

points and gateway nodes, able to undertake operations (av-

erage, min, max, filtering, aggregation etc.) on local data.

These devices capture data with a pre-defined frequency

(often dictated by the rate of change of the phenomenon

being observed), depending on the capacity of the device to

record/collect data and also based on specific system require-

ments that need to be satisfied. Devices at L2 can carry out var-

ious more advanced operations on the raw data collected in the

environment, such as encryption of an incoming data stream

or encoding/transcoding operations before forwarding this data

for subsequent analysis to L1. Due to different properties of

systems at L1 and L2, we envision a distributed heterogeneous

Cloud composed of different types of resources located at each

of the two layers. Understanding how a microservice hosted on

a Cloud at L1 can interact and coordinate with a microservice

in L2 is a key research challenge in such systems. Each level

has its own objective functionalities which influences the types

of operations carried out. For instance, L2 generally consists

of resource constrained devices (i.e., limited battery power,

network range, etc.) and network elements, which must carry

out tasks without overloading available resources.

Datacenters at L1 and micro-datacenters at L2 can belong

to different providers. However, according to a federated

scenario, providers can establish relationships and cooperate

to share resources and services, thus increasing their business

opportunities [1], [2]. In this scenario an Osmotic Computing

framework is application agnostic, offering user applications

with run-time environment working in a distributed and secure

way. Thus, the main types of microservices that the Osmotic

Computing framework has to orchestrate and deploy into

Cloud and Edge infrastructue are: 1) general purpose microser-

vices (MS), that are strictly related to the specific applicative

goal; 2) microservices for network management (MS Net) for

setting up virtual networks among microservices deployed in

the distributed and federated Cloud/Edge system; 3) microser-

vices for security management (MS Sec), to support cross-

platform development of security-enabled microservices.

The microservice provisioning solution can benefit from

aggregating different types of resources in the L1 and L2

deployment environments. Understanding how these systems

could be aggregated to support particular application require-

ments (particularly non-functional requirements, such as la-

tency, throughput, security, budget, etc.) remains an important

challenge. In particular, the proposed solution follows an ad-

vanced approach where microservices are opportunistically de-

ployed in virtual components, called ”containers”. Container-

based virtualization technologies (e.g., LXC, Docker, PXE,

Google Container and Amazon Compute Cloud Container)

have emerged as a lightweight alternative to hypervisor-

based approaches (e.g., Xen, Microsoft Hyper-V) used in

the Cloud. A container permits only well-defined software

components (e.g., database server) to be encapsulated, which

leads to significant reduction of deployment overhead and

much higher instance density on a single device as compared

to a hypervisor. Hence, the new container-based approaches

permit deployment of lightweight microservices on resource

constrained and programmable smart devices on the network

Edge such as gateways (Raspberry Pi, Arduino), network

switches (HP OpenFlow) and routers (e.g., CISCO IOx), but

also to increase performance in the dynamic management of

microservices in Cloud datacenters.

The Osmotic Computing attempts to characterize how:

• composed microservices must be automatically adapted

to the deployment sites, considering location and context

of deployment, since containers are strictly related to the

capabilities of the physical host.

• a decision maker has to map microservices to the rele-

vant location. Such a decision would be influenced by



Fig. 4: A two Layer (L1/L2) Federated Cloud Environment in Osmotic Computing .

constraints identified by the specific application and the

infrastructure provider, such as utilization of specialist

resources (e.g., a GPU cluster), improving revenue or

reducing management overheads (e.g., system adminis-

tration and/or energy costs).

• adaptation of microservices to fluctuations in the comput-

ing environment must be performed over time – during

the execution of microservices. It implies that a feedback

driven orchestration is necessary to detect changes in

infrastructure performance and QoS metrics.

V. RESEARCH DIRECTIONS

To make most effective use of the Osmotic Computing

paradigm, the following research directions are proposed.

A. Runtime Microservice Deployment

Osmotic Computing can benefit from the extension of

virtualization capability to IoT devices. Recently, research

activities in Cloud based solutions for IoT and Edge devices

presented container-based virtualization as an alternative to

virtual machines in the Cloud [3]. Such virtualization approach

can be usefully adopted in IoT scenarios. For example, Docker

[4] provides container-based virtualization, initially based on

Linux Containers (LXC), that can completely encapsulate an

application and its dependencies within a virtual container,

Docker Swarm [5] provides a native orchestration framework

for multi Docker deployments, and Kubernetes [6] is an open-

source system for automating deployment, operations, and

management of containerized applications.

An Osmotic Computing framework for the deployment of

services in a PaaS is DRACO [7]. It extends the Von Neumann

stored program control (SPC) computing model to create self-

configuring, self-monitoring, self-healing, self-protecting and

self-optimizing (self-managing or self-*) distributed software

systems. As opposed to self-organizing systems that evolve

based on probabilistic considerations, this approach focuses

on the encapsulation, replication, and execution of distributed

and managed tasks that are precisely specified.

An Osmotic Computing framework should provide a mi-

croservice Engine, allowing users and developers to deploy

containers running microservices on IoT and Edge devices, en-

abling microservice execution and deployment. The innovation

deliveded by Osmotic Computing will facilitate the creation of

a market of virtual IoT based applications. Software adaptation

and versioning mechanisms will allow Edge Cloud providers

to deploy microservices consisting of a heterogeneous pool

of physical devices. Benefits of Osmotic Computing include

deployment of distributed IoT oriented microservices, software

consolidation, and service optimization.

B. Microservice configuration

Branded price calculators are available from public Cloud

providers (Amazon [8], Azure [9]) and academic projects

(Cloudrado [10], CloudRecommender [11]), which allow com-

parison of Cloud datacenter resource leasing costs. Existing

work in the Cloud datacenter context supports provider eval-

uation methods but lacks microservice and Edge datacenter

configuration support. Multiple approaches have applied opti-

mization [12] and performance measurement techniques [13]

for selecting Cloud datacenter resources for deploying VM im-

ages according to QoS criteria (throughput, availability, cost,

reputation, etc.). While doing so, they have largely ignored

the need for VM images, a migration process with transparent

decision support and adaptability to custom criteria, and,

hence, lack flexibility. However, the configurations and QoS

criteria for selecting and ranking microservices and datacenter

resources on the network Edge differ from VM deployment

on Cloud data centers.

In Osmotic Computing developing holistic decision-making

frameworks that automate configuration selection across mi-



croservices and resources in Cloud and Edge datacenters to

meet QoS constraints is necessary. To this end, novel decision-

making techniques based on multi-criteria optimization (e.g.,

Genetic Algorithms) and multi-criteria decision making (e.g.,

Analytic Network Process) techniques should be investigated.

C. Microservice Networking

Both Software Defined Networks (SDN) and Network

Function Virtualization (NFV)[14], offer useful solutions for

supporting in-network/in-transit processing of data (between

Edge/Data Centre) and providing network management ab-

straction independent of the underlying technology. Osmotic

Computing would benefit from both of these, to enable more

seamless data exchange between the data centre and network

edge.

OpenStack through the Neutron component allows to setup

intra-domain VLANs using Open Virtual Network (OVN

[15]). OVS is a technology that provides a logical network

abstraction on top of a physical network. OVN in particu-

lar provides Layer 2/Layer 3 virtual networking, to define

logical switches and routers giving the possibility to setup

security groups, Access Control Lists, multiple tunnel overlays

(Geneve, STT, and VXLAN), TOR-based and software-based

logical-physical gateways. OVN works with Linux (KVM

and Xen), containers and the Data Plane Development Kit

(DPDK [16]). DPDK, creating an Environment Abstraction

Layer (EAL). OVN is becoming the de-facto standard as a set

of data plane libraries and network interface controller drivers

for fast packet processing. However, OVN fails in creating

inter-domain and federated networks.

Osmotic Computing is based on an abstraction of networks

that spawn from Cloud to Edge and vice versa for improving

the performance of the communication among microservices.

The network here represents an enabler that allows us to dy-

namically adjust the overall microservices behavior according

to user requirements. The network management advances in

Osmotic Computing should include the development of an

interoperability layer for remote orchestration of heteroge-

neous Edge devices, for example, exploiting Software De-

fined Networking (SDN) and Network Function Virtualization

(NFV) capabilities, accessible through an API. Moreover, the

characterization of federated networks in the domain of Cloud

and Edge is a concept totally missing in the scientific literature.

In Osmotic Computing a specific metadata ontology for

overcoming this issue should be assessed.

D. Microservice Security

Significant literature exists on supporting security within

Cloud and IoT systems, but a Cloud-Centric approach is

often used [17],[18]. The challenges of integrating IoT devices

with Cloud systems (coining the term “Cloud of Things”)

are outlined in [19]. The authors discuss a business model

for such an architecture as well as the limitations and issues

related to the security of IoT devices. Bui investigates the

security level of Docker in [20] by considering two main

areas: (1) the internal security of Docker, and (2) how Docker

interacts with the security features of the Linux kernel, such as

SELinux and AppArmor, in order to harden the host system.

The proposed analysis shows that Docker provides a high level

of isolation and restricts access to physical resources used for

containers using namespaces, cgroups, and its copy-on-write

file system, even with the default configuration. An Osmotic

Computing framework needs a coherent security policy that

must be supported within both a Cloud data center and an edge

computing environment, to enable microservice execution and

migration. Ensuring that the same security considerations are

observed, for a particular microservice, across both of these

environments remains a challenge.

Such security features will enable self-identification pro-

cesses that will make the deployment of microservices inside

Cloud and Edge devices easier and more secure, also facilitat-

ing the wide adoption of the Osmotic Computing technology.

In addition, another objective of Osmotic Computing is to add

security capabilities to the container engine in order to enable

the secure deployment of containers including microservices

on IoT devices. More specifically, an Osmotic Computing

framework should allow developers to build chains of trust

involving both Edge devices and Cloud systems by means of

a transversal security.

E. Edge Computing

Recent efforts in creating an open source “IoTCloud” (pro-

viding sensors-as-a-service) and middleware oriented efforts in

the European Open IoT project indicates significant interest in

this area from the academic community. In the same context,

HTTP/REST-based APIs, such as Xively, Open Sen.se, Think

Speak etc. indicate strong commercial interest, in applications

ranging from smart cities to intelligent homes. This also aligns

with the Fog Computing efforts involving Cloudlets (from

Cisco), which involve ”small Clouds” which are geographi-

cally scattered across a network and act as ”small datacenters”

at the Edge of the network [21]. Cloudlets aim to give support

to IoT devices by providing increased processing and storage

capacity as an extension of those devices, but without the

need to move data/processing to a central datacenter [22],

[23]. This leads to reduced communication delays and the

overall size of data that needs to be migrated to a datacenter.

Osmotic Computing is not an alternative to such efforts,

instead it focuses on seamless transfer/migration and execution

of microservices across cloudlets and data centers.

The related approach [24] of “mobile offloading” is centered

on the need to off-load complex and long running tasks from

mobile devices to Cloud-based datacenters. To reduce potential

battery power consumption and potential application delay

due to intermittent network connectivity, tasks from mobile

devices (which are considered to have lower computation and

storage capabilities compared to a datacenter) are executed at

a datacenter, with periodic synchronization between the Edge

device and the datacenter. An alternative approach (to achieve

the same outcome) involves creating a mobile device ”clone”

within a datacenter as a virtual machine, examples include

CloneCloud and Moitree.



Our approach suggests the need to combine “mobile offload-

ing” with “data centre offloading” i.e., we off-load computa-

tion initially carried out within a datacenter to a mobile device.

This “reverse” off-loading enables computation to be under-

taken closer to the phenomenon being measured (overcoming

latency and data transfer costs). The Osmotic Computing

approach is therefore focused on understanding the types of

microservices which would be more relevant to execute at the

Edge, rather than within a datacenter environment, and vice

versa.

F. Microservice workload contention and interference evalu-

ation

The co-deployed microservices on Cloud or Edge datacen-

ters can lead to contention problems which will affect QoS.

During deployment of microservices, orchestration techniques

must consider which microservices should be combined on a

datacenter resource, to minimize resource contention due to

workload interference. Workload resource consumption and

QoS are not additive, so understanding the nature of their

composition is critical to deciding which microservices can

be deployed together. Recent work has investigated several

approaches to minimize the impact of workload interference

on the QoS of hosted applications on Cloud datacenters.

Hardware-based approaches add complexity to the pro-

cessor architecture and are difficult to manage over time.

Govindan et al. [25] developed a scheme to quantify the

effects of cache contention between consolidated workloads.

However, the aforementioned techniques focus on contention

issues of only one hardware resource type (i.e. cache) while

ignoring others. Nathuji et al. [26] present a control theory-

based approach to consolidation that mitigates the effects

of cache, memory, and hardware pre-fetching contention of

co-existing workloads. However they focus on only CPU-

bound or compute-intensive applications. To the best of our

knowledge, none of the existing academic approaches nor

the container orchestration frameworks such as OpenShift

Origin, Amazon EC2 Container Service, and Kubernetes can

automatically detect and handle resource contentions among

co-deployed microservices across Cloud and Edge datacenter

resources. Software-based technique that learns microservice

contention via simulation and benchmarking, should be in-

vestigated, then apply that learned knowledge in real time to

detect contention between microservices via active monitoring

and prediction. Hence, research in Osmotic Computing should

be focus on novel microservice consolidation techniques that

can dynamically detect and resolve resource contention via

microservice performance characterization, workload prioriti-

zation and coordinated deployment.

G. Monitoring

Monitoring tools that were popular in the grid and cluster

computing era included R-GMA, Hawkeye, Network Weather

Service (NWS), and Monitoring and Directory Service (MDS).

These tools were concerned only with monitoring QoS met-

rics at the hardware resource-level (CPU percentage, TCP/IP

performance, available non-paged memory) not application-

level QoS metrics (e.g., end (network Edge)-to-end (Cloud

datacenter) request processing latency). Cluster-wide monitor-

ing frameworks (Nagios, Ganglia, Apache Hadoop, Apache

Spark) provide information about hardware metrics (cluster

utilization, CPU utilization, memory utilization and nature

of application: disk-, network-, or CPU-bound) of cluster re-

sources that may belong to public or private Cloud datacenter.

Monitoring frameworks used by Amazon Container Service

(Amazon CloudWatch) and Kubernetes (Heapster) typically

monitor CPU, memory, filesystem, and network usage statis-

tics, so they are not able to monitor microservice-level QoS

metrics (query processing latency of database microserver,

throughput of data compression microserver, etc.). To the best

of our knowledge, none of the approaches in literature can (i)

monitor and instrument data (workload input and QoS metrics,

disruptive event) across microservices, Cloud datacenter, in-

transit network, and Edge datacenter or (ii) detect root causes

of QoS violations and failures across the infrastructure based

on workload and QoS metrics logs. Researchers should in-

vestigate scalable methods (based on self-balanced trees) to

monitor QoS and security metrics across multiple-levels of

Osmotic Computing including microservices, Cloud datacen-

ters and Edge micro-datacenters.

H. Microservice orchestration and elasticity control

The run-time orchestration of microservices in a scalable

Edge/Cloud system is a complex research problem due to the

difficult to estimate microservice workload behavior in terms

of data volume to be analysed, data arrival rate, query types,

data processing time distributions, query processing time dis-

tributions, I/O system behavior, and number of users con-

necting to different types and mix of microservices. Without

knowing the workload behaviors of microservices, it is difficult

to make decisions about the types and scale of Cloud and

Edge datacenter resources to be provisioned to microservices

at any given time. Kubernetes [6] and OpenShift Origin [27]

offers a microservice container reconfiguration feature, which

scales by observing CPU usage (”scaling is agnostic to the

workload behavior and QoS targets of a microservice”). Ama-

zon’s autoscaling service [28] employs simple threshold based

rules or scheduled actions based on a timetable to regulate

infrastructural resources (e.g., if the average CPU usage is

above 40%, add an additional microservice container).

In Osmotic Computing , the traditional notion of run-time

control and reconfiguration which only considers resources

hosted in Cloud datacentes, to resources that are deployed

and available at the Edge, should be extended. Machine learn-

ing techniques for developing predictive models to forecast

workload input and performance metrics across multiple, co-

located microservices on Cloud and Edge datacenter resources

should be investigated. Additionally, intelligent, QoS-aware,

and contention-aware resource orchestration algorithms should

be developed based on the above models, monitoring systems,

and configuration selection techniques.



VI. CONCLUSIONS

The paper presented Osmotic Computing as a new paradigm

for orchestrating resource in IoT, Edge and Cloud systems.

Abstraction of microservices along with the use of a container-

based approach allows deployment of new advanced services

on heterogeneous infrastructures. Providing such services for

IoT-based devices aims at increasing the capabilities and

functionalities of existing Clouds and Edge systems. Ther-

fore, Osmotic Computing enables microservices and resource

orchestration mechanisms to be carried out over distributed

Clouds. The seamless migration of services which can adapt

their behaviour with resource properties, remains an important

challenge. Whereas significant emphasis has been placed on

(mobile) cloud off-loading (whereby software applications can

be off-loaded from a mobile device to a data centre), we

believe there is also the need for reverse off-loading – i.e.

movement of functionality from the cloud to the edge devices,

to counter for latency-sensitive applications and to mimise

data sizes that must be transferred over a network. We believe

Osmotic computing provides a useful basis for providing a

unifying paradigm for this.

REFERENCES

[1] M. Giacobbe, A. Celesti, M. Fazio, M. Villari, and A. Puliafito, “Towards
energy management in cloud federation: A survey in the perspective
of future sustainable and cost-saving strategies,” Computer Networks,
vol. 91, pp. 438 – 452, 2015.

[2] A. Celesti, M. Fazio, M. Giacobbe, A. Puliafito, and M. Villari,
“Characterizing cloud federation in iot,” in 2016 30th International

Conference on Advanced Information Networking and Applications

Workshops (WAINA), pp. 93–98, March 2016.

[3] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and linux containers,” in 2015

IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS),, pp. 171–172, March 2015.

[4] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, no. 3, pp. 81–84, 2014.

[5] Docker Swarm, https://docs.docker.com/swarm.

[6] Kubernetes - Horizontal Pod Autoscaler,
http://kubernetes.io/v1.1/docs/user-guide/horizontal-pod-autoscaler.html.

[7] A. Celesti, N. Peditto, F. Verboso, M. Villari, and A. Puliafito, “Draco
paas: A distributed resilient adaptable cloud oriented platform,” in 2013

IEEE 27th International Parallel and Distributed Processing Symposium

Workshops PhD Forum (IPDPSW), pp. 1490–1497, May 2013.

[8] “Amazon web services simple monthly calculator.” http://calculator.s3.
amazonaws.com/. Accessed: 2016-04-01.

[9] “Azure pricing calculator.” http://www.windowsazure.com/en-us/pricing/
calculator/. Accessed: 2016-04-01.

[10] “Cloud computing price comparison — cloudorado - find best cloud
server from top cloud computing companies.” http://www.cloudorado.
com/. Accessed: 2016-04-01.

[11] M. Zhang, R. Ranjan, S. Nepal, M. Menzel, and A. Haller, “A declarative
recommender system for cloud infrastructure services selection,” in
Proceedings of the 9th International Conference on Economics of

Grids, Clouds, Systems, and Services, GECON’12, (Berlin, Heidelberg),
pp. 102–113, Springer-Verlag, 2012.

[12] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 39, (Washington, DC, USA),
pp. 423–432, IEEE Computer Society, 2006.

[13] Q. Zhu and T. Tung, “A performance interference model for managing
consolidated workloads in qos-aware clouds,” in Cloud Computing

(CLOUD), 2012 IEEE 5th International Conference on, pp. 170–179,
June 2012.

[14] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” in Proceedings of the ACM SIGCOMM 2013 Conference

on SIGCOMM, SIGCOMM ’13, (New York, NY, USA), pp. 3–14, ACM,
2013.

[15] A. Levin, K. Barabash, Y. Ben-Itzhak, S. Guenender, and L. Schour,
“Networking architecture for seamless cloud interoperability,” in 2015

IEEE 8th International Conference on Cloud Computing, pp. 1021–
1024, June 2015.

[16] M. Paolino, N. Nikolaev, J. Fanguede, and D. Raho, “Snabbswitch user
space virtual switch benchmark and performance optimization for nfv,”
in Network Function Virtualization and Software Defined Network (NFV-

SDN), 2015 IEEE Conference on, pp. 86–92, Nov 2015.
[17] K. Lee, D. Kim, D. Ha, U. Rajput, and H. Oh, “On security and privacy

issues of fog computing supported internet of things environment,” in
Network of the Future (NOF), 2015 6th International Conference on

the, pp. 1–3, Sept 2015.
[18] I. Butun, B. Kantarci, and M. Erol-Kantarci, “Anomaly detection and pri-

vacy preservation in cloud-centric internet of things,” in Communication

Workshop (ICCW), 2015 IEEE International Conference on, pp. 2610–
2615, June 2015.

[19] P. PARWEKAR, “From Internet of Things Towards Cloud of Things,”
in Computer, pp. 329–333, 2011.

[20] T. Bui, “Analysis of docker security,” arXiv preprint arXiv:1501.02967,
2015.

[21] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,” IEEE

Pervasive Computing, vol. 14, pp. 24–31, Apr 2015.
[22] A. Celesti, M. Fazio, M. Villari, and A. Puliafito, “Adding long-term

availability, obfuscation, and encryption to multi-cloud storage systems,”
Journal of Network and Computer Applications, vol. 59, pp. 208 – 218,
2016.

[23] M. Fazio, A. Celesti, M. Villari, and A. Puliafito, “The need of a
hybrid storage approach for iot in paas cloud federation,” in 2014

28th International Conference on Advanced Information Networking and

Applications Workshops (WAINA), pp. 779–784, May 2014.
[24] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, “Cloud-based

augmentation for mobile devices: Motivation, taxonomies, and open
challenges,” IEEE Communications Surveys Tutorials, vol. 16, pp. 337–
368, First 2014.

[25] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta:
Quantifying effects of shared on-chip resource interference for consoli-
dated virtual machines,” in Proceedings of the 2Nd ACM Symposium on

Cloud Computing, SOCC ’11, (New York, NY, USA), pp. 22:1–22:14,
ACM, 2011.

[26] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai,
and M. Tawarmalani, “Cloudward bound: Planning for beneficial mi-
gration of enterprise applications to the cloud,” SIGCOMM Comput.

Commun. Rev., vol. 40, pp. 243–254, Aug. 2010.
[27] “Openshift origin.” https://www.openshift.org/. Accessed: 2016-04-01.
[28] AWS - Autoscaling, https://aws.amazon.com/autoscaling/.


