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Osmotic pressure induced tensile forces
in tendon collagen
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Water is an important component of collagen in tendons, but its role for the function of

this load-carrying protein structure is poorly understood. Here we use a combination of

multi-scale experimentation and computation to show that water is an integral part of the

collagen molecule, which changes conformation upon water removal. The consequence is a

shortening of the molecule that translates into tensile stresses in the range of several to

almost 100MPa, largely surpassing those of about 0.3MPa generated by contractile muscles.

Although a complete drying of collagen would be relevant for technical applications, such as

the fabrication of leather or parchment, stresses comparable to muscle contraction already

occur at small osmotic pressures common in biological environments. We suggest, therefore,

that water-generated tensile stresses may play a role in living collagen-based materials such

as tendon or bone.
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T
endons are known to transmit force between muscles and
bone. They are composed of collagen and proteoglycans
and—not least—of 62wt% water1. Given that tendons

work in a hydrated environment, the role of water generally does
not attract wide interest, except when dehydration is considered
explicitly, as in the fabrication of leather or parchment2,3. It is
well-known that the mechanical properties of collagen change
drastically upon dehydration, but the origin of this effect is poorly
understood. Even less clear is whether there is a direct role of
water for the function of collagen in the native (hydrated)
state4–7. Collagen is known to be built in a hierarchical fashion
with triple-helical collagen molecules being assembled in a
staggered fashion into fibrils, which are embedded in a
proteoglycan-rich matrix and further assembled into fibres and
fascicles8–11. The axial molecular staggering (D) in fibrils is
typically 67 nm in wet type I collagen and reduces to about 64 nm
when dry5. Laterally, the molecules are packed with a spacing in
the order of 1.5 nm, which reduces to 1.1 nm when water is
removed12,13.

When loaded in tension, collagen fibrils deform in a complex
scale-dependent fashion where fibrils stretch more than the
molecules and the whole tendon more than fibrils14–17. This has
been explained through a side-by-side gliding of molecules and
fibrils, enabled by the multi-scale structure of the tendon, based
on in situ experimentation with synchrotron radiation15 and on
multi-scale computational modelling18. Polarized Raman imaging
has been shown to complement the picture with information
about molecular conformation and orientation under load19.

Here we combine all of these experimental and theoretical
approaches to unravel the role of water in type I collagen
structure and mechanical behaviour. The approach consists of
measuring the hydration-dependent molecular features of
collagen, both with and without applied load, using X-ray
diffraction and Raman spectroscopy. To allow the quantitative
control of the osmotic pressure acting on the collagen fibre, we
studied it in a chamber with controlled relative humidity (RH)
that was then converted to osmotic pressure P, using the
well-known relation P¼RT/vm � ln(RH), where R is the gas
constant, T the temperature and vm the molar volume of water.
Changes in fibril structure are assessed by small-angle X-ray
scattering (SAXS) and diffraction, techniques used over the past
few decades to study the molecular and supramolecular structure
of collagen20,21. Complementary information on collagen
conformation is obtained through the targeted re-analysis of
previously described molecular dynamics (MD) modelling
results22. We find major water-induced conformational changes
of the collagen molecule, which are very inhomogeneous
along its length. We also show that the resulting shortening is
capable of producing tensile stresses, which—depending on
osmotic pressure—may get up to 100MPa, much larger
than that generated by muscles (peak stresses in the order of
0.3MPa (ref. 23)).

Results
Structural characterization. In order to assess tendon collagen
structure at various length scales, we employ several in situ
methods under controlled environmental conditions (tempera-
ture and humidity, Fig. 1a). In particular, tendon is composed of
fibrils with a diameter typically on the order of a hundred or a few
hundred nanometers. Within these fibrils, triple helical collagen
molecules are staggered with an axial D-period of 67 nm (ref. 24).
Given that the length of the molecule is not an integer multiple of
the D-period, the staggering leads to a succession of gap and
overlap zones along the fibril length, where the gap zones have a
lower molecular density (see Fig. 1a). The effects of hydration on

collagen backbone conformation in rat tail tendon (RTT) are
monitored by Raman scattering (Fig. 1b), whereas changes in
triple helix parameters (radius, pitch and lateral spacing) are
measured using synchrotron X-ray diffraction (Fig. 1c). SAXS
reveals hydration-dependent changes of the collagen staggering
period (D) and of the relative lengths of gap and overlap in the
fibrils, whereas macroscopic deformation and forces generated
are measured using a custom built micromechanical tensile tester
(Fig. 1d). By means of full atomistic MD, we have gained further
insight into molecular level changes of collagen structure with
and without loading, and with varied amounts of water molecules
present.

RTT contraction and force generation upon dehydration.
Figure 2a–c shows characteristic diffraction patterns of wet RTT
(Fig. 2a) and after drying either without load (Fig. 2b) or at
constant length (Fig. 2c). Shifts of the scattering maximum due to
the collagen triple-helix (as indicated by red crosses in Fig. 2a–c)
can clearly be observed. By means of these patterns, quantitative
structural molecular and supramolecular parameters in both axial
and lateral directions were assessed as functions of humidity
and macroscopic loading conditions (Fig. 2e–h, see also
Supplementary Figs 1–4). In Fig. 2e,f, changes of fibril length (as
measured by the axial staggering period of the collagen, blue) and
of the molecule length (as measured by the average helix pitch,
red) are plotted together with the macroscopic length of the
tendon for a zero-stress experiment (black). In addition, this
figure also shows the stress (expressed as force per unit collagen
molecule, violet curve) generated in a dehydration experiment at
constant length. The forces generated on the order of tens of pN
are sufficiently large to yield conformational changes of collagen
molecular structure, as the force exceeds the critical range for
purely entropic forces and induces unwinding mechanisms,
estimated to be around 20–30 pN (ref. 25). Unfolding under
tensile stress is found for other components of the extracellular
matrix, such as fibronectin26, where the conformational change
was shown to be associated with a different biochemical
signalling. Although tendon shrinks by up to B5% at the
macroscopic level (Fig. 2e, black), fibrils contract only 2.5% as
measured by changes in the axial staggering. The extent of change
in axial parameters is even less at the level of the triple helix (helix
pitch, Fig. 2e, red) where only B1.3% contraction was found.
Interestingly, in the experiment at constant length (Fig. 2f), both
fibrillar and molecular level parameters, as well as the gap to
overlap ratio (reflected in the ratio of 2nd to 3rd order peaks,
Fig. 2d), do not significantly change. The intensity changes are
only found when the tendon is dried without applied load (red
curve, Fig. 2d) indicating that dehydration alters the gap/overlap
ratio at the fibrillar level only if the tendon is left to strain axially.
Hindering the strain by clamping the fibre is, however,
accompanied by a remarkable stress generation that reaches
106±16 pN per molecule at 5% RH (Fig. 2f, violet).

In the lateral direction (Fig. 2g,h), very similar percentage
changes (around 20%) were found in both experimental
conditions (zero-stress and iso-strain) for all investigated levels
of structure (macroscopic fibre diameter (black), the lateral
spacing between molecules (blue) and the diameter of the triple-
helix (red)). Latter results are in agreement with data reported in
the literature where the packing of the collagen molecules at
fibrillar level27 and thinning of the fibre at macroscopic scale
were observed. However, the average changes in helix diameter
(up to 25% for completely dry tendon in both experimental
configurations) are surprising, as such an increase on the helix
radius at constant chain length would imply a dramatic decrease
in the triple helix length.
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Water as an integral part of the collagen molecule. A better
understanding of the changes that the collagen molecule under-
goes when surrounding water is removed can be obtained by
re-drawing the X-ray scattering patterns to extract the helix
parameters (as defined in Fig. 3a) at different hydration
conditions (details on the data treatment can be found in

Supplementary Fig. 1 and Supplementary Methods section. The
equations reported in Supplementary Fig. 1 and used to calculate
the helix parameters from the scattering patterns are derived
following the comprehensive treatment by Okuyama28). In Fig. 3,
the distribution of helix pitches and helix radii for the collagen
fibre (Fig. 3b–d) together with the marginal distributions
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Figure 2 | Multilevel analysis of the mechanical behaviour of rat tail tendon. (a) 2D X-ray scattering in the wet state and after drying (b) without

load (zero-stress) or (c) at constant length (iso-strain). The cross in a–c indicates the position of the scattering maximum of the collagen triple-helix

in the wet state (a). Note the shift and deformation of the triple helix feature during drying. (d) Second and third order reflection from axial staggering,

normalized to the same intensity in the first order. The curves for the hydrated and the iso-strain case overlap (blue and violet), whereas the peak

position and intensities are changed after drying with no load (red). (e–h) Humidity dependence of structural parameters at different length scales

represented as changes relative to the fully hydrated state. (e,f) Dimensions in axial direction are shown, the macroscopic length of the tendon (black),

the axial staggering period of the molecules (blue) and the average helix pitch inside the molecule (red). In the case of drying at constant length,

(f) the force per unit molecule is also reported (violet curve). (g,h) Dimensions in lateral direction are shown, the macroscopic diameter (black),

the lateral spacing between molecules (blue) and the diameter of the triple-helix (red). (e,g) The dehydration without load and (f,h) at constant length

are presented. The forces generated on the order of tens of pN are sufficiently large to yield unfolding of collagen molecules, as the force exceeds

the critical range for purely entropic forces and induces unwinding mechanisms, which was estimated to be around 20–30pN (ref. 25).
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(Fig. 3e,f) obtained by projecting the two-dimensional (2D)
distributions on the marginal variable axes are reported.
Rigorously, these projections are influenced by size and
imperfections of the domains of constants helix pitch (finite-
size broadening). As the data do not allow us to deconvolute these
effects, we can only give a qualitative interpretation of some of the
observations. The variations of the raise per residue within the
collagen molecule were very nicely modelled by Cameron et al.29

and results are consistent with our findings, given the limitations
of our measurements: the Cameron model predicts a 25%
variation in the raise per residue, while the width of the peak
corresponds to 40%. The fact that the measured value is larger
probably reflects the additional finite-size broadening. Moreover,
water molecules are bound to the triple-helical collagen molecules
in the hydrated state and ‘decorate’ it in such a way that water
contributes to the helix diffraction spot. Hence, the radius of the
helix may appear wider, that is, with a larger radius (blue arrow in
Fig. 3b). Furthermore, the distribution of helix pitches widens
with de-hydration, suggesting that the structure of the collagen
triple helix is affected by the presence of water. In particular,

water molecules seem to stabilize the collagen triple helix, as the
pitch distribution is more homogeneous in the wet state.
Although these structural changes are substantial, the average
pitch of the helix decreases only by 1.3% from the wet to the dry
state, as shown in Fig. 2e. In an experiment where the tendon is
not allowed to strain in axial direction, the average helix pitch
remains constant and the pitch distribution is broadened almost
symmetrically.

Local conformational changes of the collagen backbone. The
effects of water on the collagen molecular structure can also be
observed using in situ Raman spectroscopy. Significant changes in
the band shape and position of the amide bands (see
Supplementary Fig. 5) as well as the C–H and C–C vibrational
modes (Fig. 3g–i) are detected while dehydrating. These effects, as
expected, are very pronounced for the amide bands, as these are
very sensitive to the electron density change of the collagen
backbone induced by the formation/disruption of H-bonds with
water molecules (see Supplementary Fig. 5). Although the
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analysis of the polarized Raman spectra of amide bands could be
carried out following the methodologies developed in some recent
papers19,30, this treatment is complicated by the possible
simultaneous occurrence of changes in electronic structure and
in molecular orientation. Moreover, the broadening observed for
the C–H and the C–C stretching as well as the C–H bending
modes indicates that the local structure around these molecular
moieties becomes more heterogeneous when water is removed
from the surrounding of the triple helix, confirming our
X-ray and previous nuclear magnetic resonance findings31.
Also, as these vibrations are almost unaffected by electronic
effects, the shifts in the band position confirm that the triple helix
backbone undergoes extensive conformational changes.

To explore the molecular level transformations in greater
details, we analyse the data obtained previously in MD
simulations of the collagen fibril, which includes N-, C-telopetide
domains and full type I collagen sequence in hydrated and
dehydrated conditions22. This atomistic collagen microfibril
model provides further insights into the structural changes
induced by water and allows us to extract atomic-level structural
information. Comparing the unit heights of the wet and dry triple
helix along the polypeptide chain, the numerical model shows
that the removal of water induces a modification of the local
structure of almost every residue (Fig. 3j), although the average
unit height decreases only by 1.3% (Fig. 3h). This result is in
excellent agreement with the helix pitch changes obtained from
our X-ray data.

Interestingly, the model predicts that local unit height changes
are heterogeneous (Fig. 3j): residues in the overlap regions
undergo mostly elongation deformation, whereas those in the gap
shrink. Moreover, the calculations show a more homogeneous
distribution of unit heights in the hydrated condition, which is in
agreement with experimental results29. The model also reveals
that unit height collapse in the gap region (identified by the
segments with a unit height less than 0.45 nm in the dry
conditions) occurs only in specific, mostly charged, segments of
the collagen molecule (see Supplementary Fig. 6), suggesting that
water plays an important role in preserving the triple-helical
structure of these segments and screening interactions between
side-chain charges.

Significance for physiologically relevant conditions. Finally, the
resulting shortening of the collagen is able to generate remarkable
stresses even at high RH (495%) corresponding to osmotic
pressure changes, which are sufficiently low that they might occur
even inside a fully hydrated environment. Indeed, the relation
between tensile and osmotic stress close to origin (see inset of
Supplementary Fig. 2d) shows that for a typical osmotic pressure

of 0.4MPa occurring in extracellular matrix32, the resulting
tensile stress on collagen, about 0.25MPa if calculated on the
basis of the fibre dry area or about 0.15MPa if the swelling of the
collagen fibre is taken into account, should be in the order of peak
muscle stresses.

Unfortunately, the structural changes occurring with such
small loads could not have been revealed by our methodology,
which is why we chose to work with larger dehydrations that can
only be achieved by adjusting the relative water vapour pressure
around the collagen fibre. However, applying osmotic pressure
through other means should give similar effects33. To support
these considerations, we performed in vitro experiments where
fibrolamellar cortical bone samples were cyclically subjected to
osmotic pressure changes in completely hydrated conditions
using polyethylene glycol typically used in osmotic stress
experiments. Results are reported in Fig. 4 and demonstrate
that even in the fully hydrated state, osmotic pressure induces
tensile force in (mineralized) collagen.

Discussion
From the experiments and from the model calculations, we
conclude that water plays a crucial role in stabilizing the structure
of the collagen molecule and is an essential and active part of the
protein unit. The observations by in situ X-ray and Raman
scattering are consistent with the full atomistic MD and lead to
the following features of the drying process. First, the molecule
and the fibril shrink by different amounts, 1.3% and 2.5%,
respectively. Second, the dehydration is accompanied by a
reduction of the gap/overlap ratio of the collagen fibrils. Third,
the shrinkage of the triple-helix is inhomogeneous, as shown by
the distribution of helix pitches and confirmed by MD
simulations. Finally, Raman spectroscopy indicates conforma-
tional changes of the backbone upon drying.

These observations are translated into a simple model as shown
in Fig. 5a. A priori, two possibilities exist that would explain the
first two observations mentioned above. Indeed, a homogeneous
shrinkage of the triple helix accompanied by a side-by-side
gliding can reproduce all measured length changes as well as the
change in gap/overlap ratio (Fig. 5a-DRY A). This type of
structural change would just be the inverse of the deformation
found by uniaxial stretching of fully hydrated collagen
fibrils14,15,34,35. During passive stretching experiments, side-by-
side gliding of neighbouring molecules was found at higher loads
after the removal of an initial kinking of the molecules15. Our
analysis of MD modelling results on drying collagen22 provides
the insight that the triple-helix shrinks substantially in the gap
region while it even extends in the overlap when water is removed
(third observation). To illustrate the conformational changes, two
snapshots of the collagen molecular structure in the gap region
extracted from the full atomistic microfibril model in wet and dry
conditions are shown in Fig. 5b,c, respectively. These results led
us to propose a different model (Fig. 5a-DRY B) for contraction
induced by dehydration than for extension under an applied
force. Instead of a side-by-side gliding of the molecules, the
change in gap/overlap ratio is rather achieved by shrinkage of the
triple-helical molecules in the gap region, partially compensated
by an expansion in the overlap region. This removes the need for
the molecules to glide alongside each other to achieve the
observed changes in gap/overlap ratio. In the case of dry tendons,
water that may serve as ‘lubricant’ for a side-by-side gliding is
actually removed so that is satisfying to see that the gap/overlap
ratio change has another explanation. Some of the results of MD
modelling hint towards the fact that, in reality, there could be a
compromise between the two models with (a very small) residual
side-by-side gliding accompanying the inhomogeneous shrinkage.
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These molecular and supramolecular changes are responsible
for the generation of very large stresses (up to 100MPa) when the
collagen undergoes a complete dehydration. However, our results
indicate that also smaller changes in the osmotic pressure
surrounding the collagen molecules (in the range of typical
osmotic pressures exerted by proteoglycans, that is, 0.4MPa)
should produce macroscopic stresses comparable with peak muscle
stresses. Whether this has a physiological importance in tendon,
bone or other connective tissue is currently unknown, but the
presence of proteoglycans typically associated with collagen in
most extracellular tissues suggests that collagen is subjected to
osmotic pressures in physiological conditions. Moreover, it is well-
documented that collagen also contracts by the interaction with
ions to the point that one can build machines based on
this effect36,37. This ionic interaction is, however, likely to be
even more complex at the molecular level than the simple
dehydration which is of interest here. Moreover, the fact that the
collagen staggering period in bone corresponds to the dry state of
collagen38 strongly supports the idea that this mechanism could be
operational in creating compressive residual stresses39,40 onto the
mineral phase. Indeed, drying induces enormous tensile stress in
collagen, up to 100MPa, close to the strength of bone and tendon.
Much like steel fibres in armoured concrete, collagen that shrinks
axially during mineralization would put compressive load on the
rest of the structure, protecting the mineral phase from tensile
loads. All in all, these considerations suggest a potential and still
unexplored active function of collagen fibrils, rather than a purely
passive elastic behaviour.

Methods
Rat tail tendons. Fascicles of approximately 20mm in length and 200 mm in
thickness were dissected from the proximal end of the tail of Sprague–Dawley
female rats aged 12 months. Animals were euthanized in deep anaesthesia by
intracardial injection of 1ml Rompun. The animal welfare as well as method of
euthanasia was approved by the local authority Landesamt für Gesundheit und
Soziales (Berlin, Germany).

Mechanical testing. Samples were tested in a sealed chamber of volume of about
140 cm3. The chamber was kept at a constant temperature of 23� or 25� by means
of cooling bath circulation thermostat (Huber). The humidity inside the chamber

was controlled by means of ‘Wetsys (Setaram)’ humidity generator, which was
working with a flow of 200mlmin� 1. Temperature and humidity were monitored
via a SHT75 digital humidity and temperature sensor (Sensirion) that was placed in
the vicinity of the sample. Samples were clamped to two aluminium holders.
The strain was controlled by one of the holders that connects to a PI (Physik-
Instrumente) M-404 linear motor stage (resolution of 2 mm), whereas the axial
tensile force was measured using a Honeywell R-30 load cell (50N max. load),
attached to the other holder.

The standard deviation of the measured force background noise over more than
60,000 points was 7.5mN. The force changes associated with step changes in
humidity were always more than three times standard deviation of the force
background noise.

The mechanical tests have been performed in zero-stress and successively in
iso-strain mode measurements for each sample. In a typical test, the length change
(zero-stress) or the arising force (iso-strain) were measured, whereas the RH in the
chamber was changed stepwise. For all measurements, a wet sample was clamped
initially at a length of about 10–15mm and equilibrated for at least 30min in wet
conditions, driving the motors to keep a constant force of about 50mN (which is
less than 2–3% of the typical highest forces reached after completely drying out the
sample at fixed length). After the equilibrium wet length L0 was reached, the
motors were stopped and the arising force was measured during stepwise changes
of RH. In contrary, in zero-stress experiments, the motors continued driving
keeping the low force (50mN) constant while the humidity was changed.
At humidity higher than 20% RH, for each step, a 2-h time was allowed for
equilibration, although the environmental equilibrium of the chamber was reached
already after 30min. At lower humidity, the time for sample equilibrium at each
step was increased to 3–5 h.

Custom written software was developed in house to continuously monitor
distances on calibrated optical images (precision on the length determination was
about 1 mm). With this, in both zero-stress and iso-strain experiments, the changes
in the fibre diameter, as well as the axial strains, could be determined by means of
video extensometry. For the strain determination [eL¼ (L� L0)/L0], the length
L0 and thickness in wet condition were taken, whereas for the stress, the fibre size
in dry state was used. The precise areas of the irregular fibre cross-sections were
measured by means of m-computed tomography (CT). CT data were acquired
rotating the samples of 180� every 2� and using 1 s as acquisition time and the
image pixel size (4.5 mm per pixel) was calibrated using a standard. For the force
per molecule calculation, the macroscopic stress was multiplied by the area of a dry
molecule 1.0479 nm2 per molecule, which results from the assumption of a
hexagonal equidistant arrangement of molecules in a distance of 1.1 nm (1.55 for
wet condition). For the assessment of the molecular stress, we repeated the force
measurement in iso-strain conditions 12 times, measuring the area of the fascicle
with CT every time, and the values we report are the average value with the
standard deviation of the calculated stress distribution.

Raman spectroscopy. For Raman microspectroscopy, a continuous laser beam
was focused down to a micrometre-sized spot on the sample through a confocal
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Figure 5 | Models reflecting the X-ray scattering observations. (a) The top and the bottom drawings show two deformations of the fibril after

drying without applied stress, both compatible with our results. The molecular arrangement in the hydrated fibril is shown in the centre. Molecular

segments in the overlap region of the fibril are depicted in dark. The length of the triple-helix is L and the axial staggering period (including gap and

overlap) is D. In both drying models, L decreases by 1.3%, D decreases by 2.5% and the gap region decreases relative to the overlap (dashed lines).

In the first model (Dry A), we assume that the triple-helix shrinks homogeneously (emg ¼ emo ¼ � 1:3%) with a side-by-side gliding of neighbouring

molecules, resulting in a relative shift of the dark segments. In the second model (Dry B), there is no side-by-side gliding but the molecule changes

length inhomogeneously with an increase in the overlap (emo ¼ þ 10%) and a shortening in the gap (emo ¼ � 15%). Panels b and c show examples

of collagen molecular structure extracted from the collagen microfibril MD model in wet (b) and dry (c) conditions, respectively.
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Raman microscope (CRM200, WITec) equipped with a piezo-scanner (P-500,
Physik Instrumente). A diode-pumped 785-nm near-infrared laser excitation
(Toptica Photonics AG) was used in combination with a � 20 (Nikon, numerical
aperture¼ 0.4) microscope objective. The spectra were acquired using a
CCD (PI-MAX, Princeton Instruments Inc.) behind a grating (300 gmm� 1)
spectrograph (Acton, Princeton Instruments Inc.) with a spectral resolution of
B6 cm� 1. Thirty accumulations with integration time of 1 s were used for each
single spectrum. The ScanCtrlSpectroscopyPlus (version 1.38, WITec) and
WitecProjectPlus (version 2.02, WITec) were used for the experimental setup
and spectral data processing, respectively.

X-ray diffraction data. SAXS measurements applying synchrotron radiation were
performed at the mspot beamline, BESSY II, at the Helmholtz Zentrum Berlin.
X-ray patterns were recorded with a 2D CCD detector (MarMosaic 225, Rayonix
Inc. with a pixel size of 73mm and an array of 3,072� 3,072 pixels. For the
acquisition of the 2D pattern, the energy of the X-ray beam (100 mm in diameter) of
15 keV and a sample-to- detector distance of 652.3mm were calibrated using a
silver behenate (AgBeh) standard. In order to reach the small momentum transfer
needed to reach the first three meridional peaks, a smaller beam size of 30 mm was
used, an energy of 8 keV and a sample-to-detector distance of 851.9mm were
calibrate with the same standard. In both cases, short acquisition times were used
to collect the data in order to avoid possible radiation damage41. Per every
experimental condition, three 2D patterns of 60 s each from three different regions
(separated from each other 100 mm in z) were acquired and the same region was
never used twice to acquire a diffraction pattern. A force raise/decrease as a
consequence of the shining of the sample with the beam was never observed. For
detailed results see Supplementary Figs 3 and 4.

All patterns were corrected for empty beam background and variations in
incident beam intensity. For the evaluation of the first three meridional peaks, the
2D SAXS patterns were integrated in the equatorial direction using the Projection
function of Fit2D software42. The one-dimensional intensities I(qmer) of meridional
peaks were fitted by a Lorenzian curve to find the peak positions qmer for the
modulus of the scattering wave vector and its integrated intensity. The staggering
period D under different hydration conditions was calculated fitting the intensities
of the 20th reflection.

Collagen microfibril MD model. The collagen microfibril model is generated
based on the in situ structure of full-length collagen type I molecule43 (Protein
Data Bank identification code 3HR2), which has a triclinic unit cell (aE 40.0 Å,
bE27.0 Å, cE678Å, aE89.2�, bE94.6�, gE105.6�). The microfibril model
includes the N-, C-telopeptide domains and the full type I collagen sequences in
each chain. For further information, we refer the reader to a previous paper with
details on the in situ structure of collagen and on the development of the full
atomistic collagen microfibril model22.

Full atomistic simulations are carried out using the GROMACS 4.0 code with
the GROMOS 43a1 force field. An energy minimization is performed by a steepest
descent algorithm followed by NPT MD simulations at temperature of 310 K and
with 1 bar pressure. The mechanical properties of the collagen microfibril model
have been tested and shown to be in agreement with experimental measurements
as reported in ref. 22. Each chain of a collagen molecule is a repeating primary
sequence of (Gly-X-Y)n and the three chains are staggered with respect to each
other (Fig. 3a). The positions of the repeated Gly therefore capture the
characteristic structures of collagen molecules. We use the Ca atom of each Gly
residue as a measurement point to characterize molecular structure. The centre of
mass of Ca atoms of the i-th Gly residue in three chains is computed and the unit
height is measured by the distance between adjacent centre of masses. More
information on the analysis method has been reported in ref. 44.
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