
omputer networks are the hallmark of 21st cen-
tury society and underpin virtually all infrastruc-
ture in the modern world. Consequently, society
relies on the correct operation of these net-

works. To achieve compliant and functional equipment,
effort is put into all parts of the network equipment life
cycle. Testing validates new designs, equipment is tested
throughout the production process, and new deployments
are rigorously tested for compliance and correctness. In
addition, many owners of network equipment employ a
relentless battery of testing and measurement to ensure that
the infrastructure operates correctly.

The continuous innovation that is such a desirable property
of the Internet has also led to a dilemma for network testing.
For a typical piece of new networking equipment there are a
multitude of related IEEE standards and standards-track
Internet Engineering Task Force (IETF) RFCs, each requir-
ing test cases to ensure correctness for network equipment.
This has led to a multi-billion-dollar industry in network test

equipment, giving rise to companies such as Ixia, Spirent,
Fluke, and Emulex/Endace, among others.

However, such equipment has evolved with a number of
undesirable characteristics: commonly closed and proprietary
systems with limited flexibility well outside the reach of most
universities and research laboratories. Even a modest two-port
10GbE network tester capable of full line-rate costs upward of
$25,000, and adding support for additional protocols, large
numbers of TCP streams, and nontrivial traffic profiles quick-
ly increases this price.

This has been the case for two reasons. First, network test
equipment capable of full-line rate with high-precision time -
stamping is a significant engineering challenge, leading to
state-of-the-art and specialist physical components. Second,
test equipment is often developed simultaneously with early
prototype network equipment. Thus, modest numbers of units
sold mean an expensive and slow time to develop test hard-
ware and software.

This slow development cycle and high expense opens an
opportunity for an open source network tester. It is no longer
necessary to build network testers on top of specialized, pro-
prietary hardware. There are multiple open source hardware
platforms with the potential for line-rate across many 10GbE
ports, for example, the NetFPGA-10G,1 Xilinx VC709,2 and
Terasic DE5-Net.3 Each of these fully reprogrammable cards
purports to be capable of running at line-rate. For example,
the NetFPGA-10G has 4 10GbE interfaces, is based on a Xil-

C

6 IEEE Network • September/October 2014

Abstract
Despite network monitoring and testing being critical for computer networks, cur-
rent solutions are both extremely expensive and inflexible. Into this lacuna we
launch the Open Source Network Tester, a fully open source traffic generator and
capture system. Our prototype implementation on the NetFPGA-10G supports 4 ×
10 Gb/s traffic generation across all packet sizes, and traffic capture is supported
up to 2 × 10Gb/s with naïve host software. Our system implementation provides
methods for scaling and coordinating multiple generator/capture systems, and sup-
ports 6.25 ns timestamp resolution with clock drift and phase coordination main-
tained by GPS input. Additionally, our approach has demonstrated lower-cost than
comparable commercial systems while achieving comparable levels of precision
and accuracy; all within an open-source framework extensible with new features to
support new applications, while permitting validation and review of the implemen-
tation.

OSNT: Open Source Network Tester
Gianni Antichi, Muhammad Shahbaz, Yilong Geng, Noa Zilberman, Adam Covington,

Marc Bruyere, Nick McKeown, Nick Feamster, Bob Felderman, Michaela Blott,
Andrew W. Moore, and Philippe Owezarski

C

0890-8044/14/$25.00 © 2014 IEEE

Gianni Antichi, Noa Zilberman, and Andrew W. Moore are with the Uni-
versity of Cambridge.

Yilong Geng, Adam Covington, and Nick McKeown are with Stanford
University.

Muhammad Shahbaz and Nick Feamster are with Georgia Tech.

Marc Bruyere is with DellForce10 and Université de Toulouse, CNRS and
LAAS.

Bob Felderman is with Google.

Michaela Blott is with Xilinx.

Philippe Owezarski is with Université de Toulouse, CNRS and LAAS.

1 http://www.netfpga.org.

2 http://www.xilinx.com/products/boards-and-kits/EK-V7-VC709-CES-
G.htm.

3 http://www.de5-net.terasic.com.

4 http://www.osnt.org.

ANTICHI_LAYOUT.qxp_Layout 1 9/10/14 12:41 PM Page 6

inx field programmable gate array (FPGA), and is available to
the research and teaching community for less than $2000,
including firmware and software.

We therefore present the Open Source Network Tester
(OSNT),4 primarily for the research and teaching community.
Such a tester needs to be able to achieve full line-rate, pro-
vide sufficiently accurate timestamping, and be flexible
enough to allow new protocol tests to be added to the system.

We believe that, as an open source community grows, a
low-cost open source network tester will also prove valuable
to the networking industry. We also envisage the enabling of
new testing and validation deployments that are simply finan-
cially impractical using commercial testers. Such deployments
may see the use of hundreds or thousands of testers, offering
previously unobtainable insights and understanding.

In this article we present an architecture for OSNT,
describe our first prototype based on the NetFPGA open
source hardware platform, and present early-day benchmarks
illustrating the tester in operation. OSNT is portable across a
number of hardware platforms, maximizing reuse and mini-
mizing reimplementation costs as new hardware, physical
interfaces, and networks become available. By providing an
open source solution we invite everyone from the community
to audit (and improve) our implementation as well as adapt it
to their needs.

Related Work
Network testers, and open source networks, are not new;
uniquely, OSNT brings the incorporation of designs that oper-
ate intimately with the hardware. Our efforts ride the estab-
lished tradition of network measurement and testing that
exists in the network research and academic communities.

A small sample of open source and community projects
include Iperf [1] and later Netperf [2], developed to provide
performance tests of throughput and end-to-end latency. Traf-
fic loads from previously captured pcap files could be trans-
mitted using Tcpreplay [3]. Netalyzer [4] uses bespoke server
and client infrastructure to measure many aspects of Internet
performance and behavior. Swing [5] provided a closed-loop
traffic generator: first monitoring and characterizing, and then
regenerating system load replicating the measured characteris-
tics. Early attempts at both flexible and feature-rich traffic
generation led to the Ostinato [6] traffic generator. The
netmap [7] achieves near-optimal host throughput, but is still
restricted by the underlying hardware for timestamps, traffic
shaping, and maximum rate capacity. As a final example,
Bonelli et al. [8] describe near-line-rate traffic on a 10 Gb/s
link that uses multi-core multi-queue commodity hardware,
albeit without the flexibility or guarantee of full line-rate
throughput, precise traffic replay timing, and sufficient packet
capture timestamp accuracy and precision.

Commercial network testers are provided by a number of
companies: Ixia and Spirent dominate, but other test equip-
ment manufacturers also have network test offerings. Despite
their ability to perform at high line-rate, a criticism common
to all these systems regards cost and inflexibility. Supporting
newly designed protocols is often expensive, while supporting
a newly designed physical line standard can result in an
entirely new system.

In the measurement community the ubiquitous pcap pro-
gram, tcpdump, has been the tool of choice for network cap-
ture. However, capture system performance (and rates of loss)
are dictated by the underlying host: a combination of hard-
ware, operating system, device drivers, and software. Addi-
tionally, it is rare for these software systems to provide any
common clock across the captures, making end-to-end latency

measurements complicated and inaccurate. There have been
software/hardware efforts in the past to incorporate GPS-
coordinated high-precision hardware timestamps and use
device-driver designs intended to mitigate loss under load [9].
However, this work was limited to 1GbE and serves now only
to provide a motivating example. NTP is a mature time syn-
chronization method; however, it can only achieve an accuracy
better than 1 ms under limited conditions [10], making it
unsuitable for high-precision traffic characterization.

In contrast to the large range of commercial offerings avail-
able to generate traffic, the high-precision capture market has
few commercial systems and is dominated by the Endace
DAG card.

Several previous NetFPGA-based projects using the previ-
ous generation NetFPGA 4 × 1GbE platform have also pro-
vided traffic generation [11] and traffic monitoring [12]. The
architecture of OSNT has been heavily informed by the
designs, limitations, and experience with these systems.

The OSNT Architecture
The OSNT architecture is motivated by limitations in past
work: closed source/proprietary solutions, high costs, lack of
flexibility, and the omission of important features such as
timestamping and precise packet transmission.

Alongside flexibility there is a need for scalability; while
our prototype work has focused on single-card solutions, our
desire to reproduce real operating conditions means we must
have a system that can test beyond single network elements. A
production network needs to be tested as close as possible to
its real operating conditions; this means the OSNT system
must also be able to recreate such real operating conditions.

From the outset it has been obvious that flexibility must be
a key part of the OSNT approach. This flexibility is needed to
accommodate the variety of different uses for OSNT. Four
distinct modes of use have become clear.

OSNT traffic generator: a single card, capable of generat-
ing and receiving packets on four 10GbE interfaces. By incor-
porating timestamps into each outbound packet, information
on end-to-end delay and loss can be computed. Such a system
can be used to test a single networking element (e.g., switch
or router) or a network encompassed within a sufficiently
small area that different inputs and outputs from the network
can be connected to the same card.

OSNT traffic monitor: a single card, capable of capturing
packets arriving through four 10GbE ports and transferring
them to the host software for analysis and further processing.
Alongside a range of techniques utilized to reduce the bottle-
neck of PCIe bandwidth (packet batching, ring receivers, and
pre-allocated host system memory), packets are optionally
hashed and truncated in hardware. The card is intended to
provide a loss-limited capture system with both high-resolution
and high-precision timestamping of events in a live network.

Hybrid OSNT system: Our architecture allows the combi-
nation of the traffic generator and traffic monitor into a single
FPGA device and a single card. Using high-precision time -
stamping of departing and arriving packets, we can perform
full line-rate per-flow characterization of a network (device)
under test.

Scalable OSNT system: our approach to coordinating large
numbers of multiple traffic generators and traffic monitors
synchronized by a common time base to provide the resources
and port -count to test larger network systems. While still
largely untested, such a coordinated system has been a design
objective from the outset.

The OSNT architecture is designed to support these needs
for network testing using a scalable architecture that can uti-

IEEE Network • September/October 2014 7

ANTICHI_LAYOUT.qxp_Layout 1 9/10/14 12:41 PM Page 7

lize multiple OSNT cards. Using one or more syn-
chronized OSNT cards, our architecture enables a
user to perform measurements throughout the
network, characterizing aspects such as end-to-end
latency and jitter, packet loss, congestion events,
and more.

It is clear that our approach must be capable of
full line-rate operation. To this end we built our
prototype on the NetFPGA-10G platform, an
open source hardware platform designed to be
capable of full line-rate. We describe our proto-
type implementation later.

While there is a clear need for one or both of
the traffic capture and traffic generator cores in
our OSNT system to be present in each use case,
these two subsystems have orthogonal design
goals: the capture system is intended to provide
high-precision inbound timestamping with a loss-
limited path that gets (a subset of) captured pack-
ets into the host for further processing, whereas
the traffic generator requires precision transmis-
sion of packets according to a generator function
that may include closed-loop control (e.g., TCP) and even
(partial) application protocol implementation.

Given we already had a proven starting design for both
generator and capture engines [11, 12], along with a keen
desire to employ component reuse, we were led to develop
the NetV approach that virtualizes the underlying hardware
platform.5 The approach, shown in Fig. 1, extends a hardware
xlatform such as the NetFPGA, using P2V: physical to virtual
and V2P: virtual to Pphysical wrappers. The V2P hardware
wrapper is a per-port arbiter that shares access among each of
the 10GbE and PCIe interface pipelines. This permits multi-
ple NetFPGA pipelines within a single FPGA fabric on a sin-
gle board, in turn providing support for seamless integration
of existing pipelines with strong isolation characteristics. For
example, a traffic generator can coexist with a high-precision
capture engine. Each pipeline is tagged with a unique ID to
ensure that register accesses can be distinguished among dif-
ferent pipelines. In this manner, traffic generation and moni-
toring can be implemented as either standalone units or a
combined system on a single card. Using multiple pipelines in
the same design does not affect the overall performance as
long as they do not share data structures. The only limitation
is given by the available FPGA resources.

Our design has focused on one particular architectural
approach; this direction was selected to maximize code reuse
at the expense of potential redundant gate logic. Other OSNT
architectures may be appropriate but are not explored here
for sake of brevity.

Traffic Generation
The OSNT traffic generator both generates packets and ana-
lyzes return statistics. It is designed to generate full line-rate
per card interface, and is scalable in a manner that allows for
multiple traffic generators to work in parallel within a single
OSNT environment. Traffic generation features include:
• Support for a large number of different traffic flows
• Flexible packet header specification over multiple headers
• Support of several standard protocols
• Sufficient flexibility to test future protocols

• Simulation of multiple networking devices/end systems (e.g.,
routers running BGP)

• Allowing timestamping of in- and out-bound packets
• Allowing per-packet traffic-shaping
• Statistics gathered per-flow or flow-aggregate
• Support for negative testing through malformed packets

In addition to the above features, OSNT can be customized
to support different protocols, numbers of flows, and many
other features in each given application context.

Figure 2 illustrates the high-level architecture of the traffic
generation pipeline. The center of the pipeline is a set of
micro-engines, each used to support one or more protocols at
network and transport layers such as Ethernet, TCP, and
UDP, and application protocols such as BGP. Each micro-
engine either generates synthetic or replays captured traffic for
one or more of the selected egress interfaces. A basic micro-
engine is a simple packet replay: a set of predefined packets
are sent out a given number of times as configured by the soft-
ware. Each micro-engine contains three building blocks: traffic
model (TM), flow table (FT), and data pattern (DP). The TM
contains information about the network characteristics of the
generated traffic, such as packet size and inter-packet delay
(IPD). It is a compiled list of these characteristics, extracted by
the host software and installed into the hardware. Each param-
eter is software defined, permitting arbitrary rate distribution
patterns such as constant bit rate (CBR) or Poisson distribu-
tion. The FT contains a list of header template values used by
the micro-engine when generating a packet. Each packet -
header is defined by the FT. In this manner, multiple flows
with different header characteristics can be generated by a sin-
gle micro-engine. The micro-engine takes each header field
and manipulates it in one of several ways before setting it: a
field may remain constant, incrementally increase, interleave,
or be set randomly or algorithmically. The number of flows
supported by the FT depends on the trade-off between trace
complexity and the number of fields to be manipulated. The
DP module sets the payload of a generated packet. The pay-
load can be set to a random or prespecified pattern. A pre-
specified pattern allows a user to set the payload of packets to
a unique pattern so that the user can execute specific network
tests such as continuous-jitter measurement. It also provides
in-payload timestamping of departing packets and capabilities
for debugging/validating received packets.

Packets generated by the micro-engine are sent to a per-
port arbiter. The arbiter selects among all the packets des-

IEEE Network • September/October 20148

5 Our reference prototype is the NetFPGA, but we believe that the
architecture including approaches such as NetV will be generic across a
range of hardware platforms.

Figure 1. NetV — an approach for NetFPGA virtualization.

Wrapper

Pipeline 1
(generation) 10Gbe Tx

Tag’d IO

10Gbe Tx

10Gbe Tx

10Gbe Tx

PCle Tx

10Gbe Rx

10Gbe Rx

10Gbe Rx

10Gbe Rx

PCle Rx

Wrapper
V2PP2V

Pipeline 2
(monitoring)

Pipeline N
(other)

ANTICHI_LAYOUT.qxp_Layout 1 9/10/14 12:41 PM Page 8

IEEE Network • September/October 2014 9

tined for a port from each micro-engine. Ordering is based on
the required packet departure time. A delay module (DM)
located after the arbiter will delay packets by each flow’s IPD.
A rate limiter (RL) guarantees that no flow exceeds the rate
assigned to it at each port. Lastly, the packet goes to the
(10GbE) medium access control (MAC), from which it is
transmitted to its destination.

The traffic generator implementation can also receive
incoming packets and provide statistics on them at either the
port or flow level. This allows use of the traffic generation
subsystem as a standalone unit without an additional external
capture subsystem. To this end, packets entering the card
through a physical interface are measured, the statistics gath-
ered, and the received packets discarded. The gathered statis-
tics are relayed to host software using the programmed
input/output (PIO) interface.

The traffic generator has an accurate timestamping mecha-
nism located just before the transmit 10GbE MAC. The
mechanism, identical to the one used in the traffic monitoring
unit and described next, is used for timing-related measure-
ments of the network, permitting characterization of measure-
ments such as latency and jitter. The timestamp is embedded
within the packet at a preconfigured location and can be
extracted at the receiver as required.

As for the software side, we provide an extensible graphical
user interface (GUI) to interact with the hardware (load a
PCAP trace to replay in hardware, define the per-packet
inter-departure time, etc.).

Traffic Monitoring
The OSNT traffic monitor provides four functions:
• Packet capture at full line-rate
• Packet filtering, permitting selection of traffic of interest

• High-precision, accurate packet
timestamping

• Statistics gathering
Figure 3 illustrates the architec-

ture of the monitoring pipeline that
provides the functionality enumerat-
ed above. The 5-tuple (protocol, IP
address pair, and layer four port
pair) extraction is performed using
an extensible packet parser able to
recognize both virtual LAN (VLAN)
and multiprotocol label switching
(MPLS) headers along with IP-in-IP
encapsulation. Further flexibility is
enabled by extending the parser
implementation code as required.

A module positioned immediately
after the physical interfaces and
before the receive queues timestamps
incoming packets as they are received
by hardware. Our design is an archi-
tecture that implicitly copes with a
workload of full line-rate per port of
minimum sized packets. However,
this will often exceed the capacity of
the host (processing, storage, etc.),
or may contain traffic of no practical
interest. To this end we implement
two traffic-thinning approaches. The
first of these is to utilize the 5-tuple
filter implemented in the “core mon-
itoring” module. Only packets that
are matched to a rule are sent to the

software, while all other packets are dropped. The second
mechanism is to record a fixed-length part of each packet
(sometimes called a snap-length) along with a hash of the
entire original packet. The challenge here is that if a user is
interested in all packets on all interfaces, it is possible to
exhaust the host resources. We quantify the PCIe bandwidth
and the trade-off for snap-length selection mentioned later.

As for the software side, we provide a Python-based GUI
that allows the user to interact with the hardware components
(e.g., enable cut/hash, set filtering rules, check statistics). A C-
based application that comes with it records the received traf-
fic in both PCAP or PCAPNG format. This allows offline use
of common libpcap-based tools (e.g., TCPDump, Wireshark.)
These tools do not work directly with OSNT: the device driver
secures performance by bypassing the Linux TCP/IP stack.
We refer the reader to the OSNT website for further informa-
tion about the software application programming interface
(API).

Timestamping
Providing an accurate timestamp to (incoming) packets is a
critical objective of the traffic monitoring unit. Packets are
timestamped as close to the physical Ethernet device as possi-
ble in order to minimize first-in first-out (FIFO)-generated jit-
ter and permit accurate latency measurement. A dedicated
timestamping unit stamps packets as they arrive from the
physical (MAC) interfaces. Each packet is appended with a
64-bit timestamp.

Motivated by the need to have minimal overhead while also
providing sufficient resolution and long-term stability, we have
chosen to use a 64-bit timestamp divided into two parts: the
upper 32 bits count seconds, while the lower 32 bits provide a
fraction of a second with a maximum resolution of approxi-
mately 233 ps; the practical prototype resolution is 6.25 ns.

Figure 2. The architecture of the OSNT traffic generation system.

Per port
arbiter

DM: Delay module
RL: Rate limiter
TS: Timestamp
RM: Traffic model
DP: Data pattern
FT: Flow table
PIO: Programmed
input/output

10G
Rx

10G
Rx

10G
Rx

10G
Rx

PCle
Rx

PIO

TM

DM

RL

TS

10G
Tx

DP

uEngine

FT TM DP

uEngine

FT TM DP

uEngine

FTPcap
replay

uEngine

Input arbiter

DM

RL

TS

10G
Tx

DM

RL

TS

10G
Tx

DM

RL

TS

10G
Tx

DM

RL

TS

PCle
Tx

SRAM Statistics collectorMemory
controller

ANTICHI_LAYOUT.qxp_Layout 1 9/10/14 12:41 PM Page 9

Integral to accurate timekeeping is the need to correct the
frequency drift of an oscillator. To this end, we use direct dig-
ital synthesis (DDS), a technique by which arbitrary variable
frequencies can be generated using synchronous digital logic
[13]. The addition of a stable pulse-per-second (PPS) signal
such as that derived from a GPS receiver permits both high
long-term accuracy and the synchronization of multiple OSNT
elements. The selection of a timestamp with this precision was
a conscious effort on our part to ensure that the abilities of
the OSNT design are at least as good as the currently avail-
able commercial offerings.

OSNT NetFPGA-10G Prototype
Our prototype implementation of the OSNT platform has
been on the NetFPGA-10G open source hardware platform.
The NetFPGA system provides an ideal rapid prototyping tar-
get for the work of OSNT. Since its original inception as an
open source high-speed networking platform for the research
and education community [14] and through its second genera-
tion [15], the NetFPGA has proven to be an easy-to-use plat-
form. The NetFPGA project supplies users with both basic
infrastructure and a number of pre-worked open source

designs intended to dramatically simplify
a user’s design experience.

The NetFPGA-10G card, as shown in
Fig. 4, is a 4-port 10GbE PCIe adapter
card incorporating a large FPGA fabric.
At the core of the board is a Xilinx Vir-
tex-5 FPGA: XC5VTX240T-2 device.
Additionally, there are five peripheral
subsystems that complement the FPGA:
four 10 Gb/s SFP+ Ethernet interfaces, a
Gen1 PCIe subsystem providing the host-
bus adapter interface, and memory con-
sisting of a combination of both SRAM
and DRAM devices. The memories were
selected to provide minimal latency and
maximal bandwidth over the available
FPGA I/Os. The fourth and fifth subsys-
tems are expansion interfaces and the
configuration subsystem. The board is
implemented as a three-quarter-length
PCIe adapter, but can also operate as a
standalone unit outside the server envi-
ronment.

Experiences with Our
Prototype
By building our prototype on the Net -
FPGA-10G platform, we have inherited
several platform constraints. Despite hav-
ing a large FPGA device, design decisions
must trade resources. One example of
this is in the sizing of TCAM tables for
filtering. Table size is traded directly
against overall design size. In our proto-
type implementation, the tuple-based fil-
tering table is limited to 16 entries.

While the internal NetFPGA datapath
has been designed to accommodate full
line-rate, minimum-sized packets, the
PCIe interface lacks the bandwidth to
transmit all traffic to or from the host.
The NetFPGA-10G provides a first-gen-

eration 8-lane PCIe implementation. This interface uses an
maximum transmission unit (MTU) of 128 bytes, and without
careful packing a naïve implementation of DMA and device
driver may achieve as low as 33.5 percent utilization (for
transactions of 129-byte packets). Furthermore, even for an
ideal scenario, this interface imposes a limit of around 13.1
Mpkts/s for an MTU of 128 bytes or a little over 15 Gb/s. It is
clear that capture-to-host of all four interfaces when operating
at 10 Gb/s into the host is not practical. Alongside flow filter-
ing, the traffic-thinning technique of selecting a snap-length
places a known limit on the maximum amount of data that
needs to be transferred over the PCIe to the host.

The option to add a hash of the original packet, along with
a fixed snap-length, means that we can reduce the potential
number of bytes per packet to a known upper bound.
Although the hash adds an overhead of 128 b/pkt, it permits
practical packet identification, which in turn means we can
perform end-to-end latency measurements as well as identify-
ing specific loss events. The ability to do bandwidth limiting in
this way allows us to achieve a maximum rate of approximate-
ly 21.7 Mpkts/s provided we use non-naïve DMA and device
driver mechanisms.

Fortunately, there has been considerable progress in non-

IEEE Network • September/October 201410

Figure 3. The architecture for OSNT traffic monitoring system.

10G
Rx

10G
Tx

RxQ

10G
Rx

RxQ

10G
Rx

RxQ

10G
Rx

Time
stamper

Statistics
collector

Decision
module

Filtering stage

Packets
FIFO

Cut/
hash

TCAM

Header
extraction

Core monitoring Aggregate
statistics to

host software

TCAM
rule

manager

Cut/hash
setting
from
host

Host
analysis
software

Input arbiter

RxQ

Output queues

PCI
Express

Selected
flows

ANTICHI_LAYOUT.qxp_Layout 1 9/10/14 12:41 PM Page 10

naïve DMA and device-driver mechanisms to reduce the bot-
tleneck of PCIe bandwidth; packet batching, ring receivers,
and pre-allocated host system memory have all seen use in
past dedicated capture systems [9]. Recent efforts such as
netmap achieve rates of 14.8 Mpkt/s into user space for sin-
gle-port commodity 10GbE interface cards. Our architecture
is not limited to a current hardware implementation; the
OSNT system, when running on more advanced hardware
such as the Xilinx VC709, using the third generation PCIe,
has sufficient bandwidth to support full size payloads for all
four 10GbE ports. In fact, the open source nature of OSNT
means that having this system operate effectively on any
future NetFPGA platform, or other platforms from Xilinx or
indeed from other FPGA vendors, is no more complicated
than the porting of any open source project.

Figure 5 shows the capture engine performance results.
The system has been validated for one and two ports against
100 percent line utilization (packets sent back to back) across
a range of packet sizes. In the first case, OSNT is able to
record all received traffic, without loss, independent of packet
length. Additionally, using two ports at the same time, the sys-
tem is able to record traffic without experiencing any kind of
loss up to 14 Gb/s (PCIe Gen1 limitation); the impact of the
cut/hash feature at reducing traffic across the PCIe is clear.

We validated the OSNT performance against the IXIA
400T and similtaneously confirmed these results via a parallel
capture using optical-port splitters to an Emulex Endace
DAG 9.2, each equipped with 2x10G ports. IXIA provides the
capability of both generating full line-rate traffic and full line-
rate monitoring, permitting validation of both capture
and generation capabilities. The Endace DAG provides
full line-rate capture and high-precision, and offers a fur-
ther confirmation mechanism.

Testing of the traffic generator confirmed to our satis-
faction that the OSNT traffic generator is able to gener-
ate full line-rate over two ports independent of the
packet length. Tests were conducted over a range of
packet sizes with results compared directly against IXIA-
based generators. In all experiments data was generated
(and measured) on all four NetFPGA ports with a com-
bination of IXIA and Endace packet capture and mea-
surement.

Conclusions
In this article we have introduced OSNT, an open source
network tester. We have described the OSNT architec-
ture, which permits a flexible combination of multiple
packet processing pipelines using a new virtualization
technique, NetV. While the NetV virtualization approach
was designed with the NetFPGA in mind, this technique
is not bound to that hardware and should be able to pro-

vide flexibility and versatility across a range of
uses. Using the NetV approach, we have shown
how the OSNT system can implement both traf-
fic generator and network monitor functions. We
have also described our prototype implementa-
tion using the rapid-prototyping NetFPGA plat-
form and characterized aspects of that
implementation.

The OSNT platform provides a network tester
that is able to combine desirable software flexi-
bility with the advantages of being built on an
open source hardware platform. The versatility
of OSNT is in its suitability for a range of appli-
cations, from the testing of single items of net-
working equipment to the characterizing of large

distributed networks.
The OSNT system is available to the research community

through the NetFPGA project. Any user who owns a Net -
FPGA card can simply use it, with no additional hardware
expense. We envisage the project being extended and
enhanced by the research community, and users are encour-
aged to contribute further features and capabilities, as well as
to share their own experience using OSNT.

The promise of OSNT is exciting. In the field of network
measurement alone, high-precision loss-limited capture has
led to remarkable progress in the characterization and under-
standing of the modern Internet. The OSNT traffic monitor
overcomes the two biggest s with these capture deployments
to date — the cost and lack of flexibility — while also, by
virtue of being open source, providing an auditable test sys-
tem that encourages repeatability in network science.

Acknowledgments
We thank the NetFPGA community, David Fermor, Scott
Whyte, and Richard Hay for inspiring and assisting with this
work. The language and form of this article has been improved
immeasurably by feedback from Jon Crowcroft and the anony-
mous reviewers. This project is jointly supported by the NSF
CRI program under contract 0855268 and by the EPSRC
INTERNET Project EP/H040536/1.

References
[1] iperf, TCP and UDP Bandwidth Performance Measurement Tool,

http://code.google.com/p/iperf.
[2] Netperf, http://www.netperf.org.

IEEE Network • September/October 2014 11

Figure 5. The OSNT per-packet capture engine performance for
various presented traffic loads.

Packet size (bytes) — log10 scale
64

5

0

U
ti

liz
at

io
n

(G
b/

s)

10

15

20

128 256 512 1024

OSNT with 40B cut/hash 2-ports max rate (without loss)
OSNT 2-port max rate (without loss)
OSNT 1-port max rate (without loss)
Max rate PCle Gen1

Figure 4. The NetFPGA-10G board.

ANTICHI_LAYOUT.qxp_Layout 1 9/10/14 12:41 PM Page 11

[3] Tcpreplay, https://github.com/synfinatic/tcpreplay.
[4] C. Kreibich et al., “Netalyzr: Illuminating The Edge Network,” ACM Inter-

net Measurement Conf., 2010.
[5] K. V. Vishwanath and A. Vahdat, “Swing: Realistic and Responsive Net-

work Traffic Generation,” IEEE/ACM Trans. Net., vol. 17, no. 3, 2009.
[6] P. Srivats, “OSTINATO: An Open, Scalable Packet/Traffic Generator,”

FOSS.IN, 2010.
[7] L. Rizzo, “Netmap: A Novel Framework for Fast Packet I/O,” USENIX

Annual Technical Conf., 2012.
[8] N. Bonelli et al., “Flexible High Performance Traffic Generation on Com-

modity Multi-Core Platforms,” Traffic Monitoring and Analysis, Springer,
2012.

[9] A. Moore et al., “Architecture of a Network Monitor,” Passive & Active
Measurement Wksp., 2003.

[10] M. Ussoli and G. Prytz, “Sntp Time Synchronization Accuray Measure-
ments,” IEEE Int’l. Conf. Emerging Technologies and Factory Automation,
2013.

[11] A. Covington et al., “A Packet Generator on the NetFPGA Platform,”
IEEE Symp. Field Programmable Custom Computing Machines, 2009.

[12] G. Antichi et al., “Enabling Opensource High Speed Network Monitor-
ing on NetFPGA,” IEEE/IFIP Network Operations and Management
Symp., 2012.

[13] P. Saul, “Direct Digital Synthesis,” Circuits and Systems Tutorials, 1996.
[14] J. W. Lockwood et al., “Netfpga — An Open Platform for Gigabit-Rate

Network Switching and Routing,” IEEE Int’l. Conf. Microelectronic Sys.
Education, 2007.

[15] M. Blott et al., “FPGA Research Design Platform Fuels Network
Advances,” Xilinx Xcell J., no. 73, 2010.

Biographies
GIANNI ANTICHI received B.E. and M.E. degrees in telecommunications engi-
neering and a Ph.D. degree in information engineering from the University of
Pisa, Italy, in 2005, 2007, and 2011, respectively. He is currently a research
associate at the Computer Lab of the University of Cambridge. His research
interests are in the area of hardware accelerated networking systems, network
design, network monitoring, packet classification, and software defined net-
works.

MUHAMMAD SHAHBAZ is a Ph.D. student in the Department of Computer Sci-
ence at the Georgia Institute of Technology. His research focuses on the appli-
cation of software-defined networking in large-scale IP networks, SDN
performance optimization, network testing, and programmable hardware. Pre-
viously, he worked as a research assistant at the University of Cambridge on
the CTSRD and MRC2 projects, and is currently a core member of the Net -
FPGA-10G project initiated by Stanford University.

YILONG GENG is a Ph.D. student in the Electrical Engineering Department of
Stanford University. During his first year at Stanford he worked with Prof. Nick
Mckeown on the NetFPGA-10G project and the Open Source Network Tester
project. After that he joined Prof. Balaji Prabhakar’s group and started work-
ing on the Societal Networks projects, which try to influence the behavior of
users in practical networks (e.g., traffic networks) by applying incentives.

NOA ZILBERMAN received her B.Sc., M.Sc. (both magna cum laude), and Ph.D.
degrees in electrical engineering from Tel-Aviv University, Israel. Since 1999
she has filled several development, architecture, and managerial roles in the
telecommunications and semiconductor industries. She is currently a research
associate in the Systems Research Group, Computer Laboratory, University of
Cambridge.

ADAM COVINGTON is a research associate in Nick McKeown’s group at Stan-
ford University. He has been working on the NetFPGA project since 2007. He
has been helping run the NetFPGA project, both 1G and 10G, since 2009.
His current research interests include reconfigurable systems, open source
hardware and software, artificial intelligence, and dynamic visualizations of
large-scale data. Previously, he was a research associate with the Reconfig-
urable Network Group (RNG) at Washington University in St. Louis, Missouri.

MARC BRUYERE is a technical consultant at DellForce10 and a Ph.D. student at
the CNRS, LAAS at Toulouse. He started his carrier in 1996 working for Club-
Internet.fr, and for Cisco, Vivendi Universal, Credit Suisse First Boston, Air-
bus/DimensionData, Force10 Networks, and Dell. He is a Cisco Certified
Internetwork Expert #16651. He has been involved in the NetFPGA project
for a few years, and his thesis is about measurement in an IXP OpenFlow/
SDN environment.

NICK FEAMSTER is an associate professor in the College of Computing at Georgia
Tech. He received his Ph.D. in computer science from MIT in 2005, and his S.B.
and M.Eng. degrees in electrical engineering and computer science from MIT in
2000 and 2001, respectively. His research focuses on many aspects of comput-
er networking and networked systems, with a focus on network operations, net-
work security, and censorship-resistant communication systems.

NICK MCKEOWN [F] is a professor of electrical engineering and computer sci-
ence at Stanford University. In recent years most of his time has been devoted
to SDN, including research, transfer of ideas to industry, and evangelism. He
co-founded the Open Networking Foundation (ONF), the Open Networking
Lab (ON.Lab), and Nicira and, more recently, Barefoot. He is a member of
the U.S. National Academy of Engineering (NAE), the U.K. Royal Academy of
Engineering, and a Fellow of the ACM.

BOB FELDERMAN spent time at both Princeton and the University of California at
Los Angeles (UCLA) before venturing out into the real world. After a short stint
at the Information Sciences Institute he helped to found Myricom, an early
leader in cluster computing networking technology. Later he applied high-per-
formance computing ideas to the Ethernet/IP space while working at Packet
Design and Precision I/O. That experience led him to Google, where he has
spent the past eight years working on issues in data center networking and
general platforms system architecture.

MICHAELA BLOTT graduated from the University of Kaiserslautern in Germany.
She worked in both research institutions (ETH and Bell Labs) as well as devel-
opment organizations, and was deeply involved in large-scale international
collaborations such as NetFPGA-10G. Today, she works as a senior research
scientist at the Xilinx labs in Dublin, Ireland, heading a team of international
researchers with a focus on FPGAs in data centers, high-speed networking,
and emerging memory technologies.

ANDREW W. MOORE is a senior lecturer with the Computer Laboratory, Universi-
ty of Cambridge, where he is part of the Systems Research Group on issues of
network and computer architecture. His current research interests include open
network research and education using the NetFPGA platform, low-power ener-
gy-aware networking, and novel network and systems data center architectures.

PHILIPPE OWEZARSKI is director of research at CNRS (the French center for sci-
entific research), working at LAAS (the Laboratory for Analysis and Architec-
ture of Systems), Toulouse, France. He got a Ph.D. in computer science in
1996 from Paul Sabatier University, Toulouse III. His main interests deal with
high-speed networking and, more specifically, IP network monitoring, and
quality of service enforcement and security based on measurements.

IEEE Network • September/October 201412

ANTICHI_LAYOUT.qxp_Layout 1 9/10/14 12:41 PM Page 12

