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Joint attention related behaviors (JARBs) are some of the most important and basic

cognitive functions for establishing successful communication in human interaction. It

is learned gradually during the infant’s developmental process, and enables the infant to

purposefully improve his/her interaction with the others. To adopt such a developmental

process for building an adaptive and social robot, previous studies proposed several

contingency evaluation methods, by which an infant robot becomes able to sequentially

learn some primary social skills. These skills included gaze following and social

referencing, and could be acquired through interacting with a human caregiver model

in a computer simulation. However, to implement such methods to a real-world robot,

two major problems, that were not addressed in the previous research, have remained

unresearched: (1) dependency of histogram of the observed events by the robot to each

other, which increases the error of the internal calculation and consequently decreases

the accuracy of contingency evaluation; and (2) unsynchronized teaching/learning phase

of the teaching-caregiver and the learning-robot, which leads the robot and the caregiver

not to understand the suitable timing for the learning and the teaching, respectively. In

this paper, we address these two problems, and propose two algorithms in order to

solve them: (1) exclusive evaluation of policies (XEP) for the former, and (2) ostensive-cue

sensitive learning (OsL) for the latter. To show the effect of the proposed algorithms,

we conducted a real-world human-robot interaction experiment with 48 subjects, and

compared the performance of the learning robot with/without proposed algorithms. Our

results show that adopting proposed algorithms improves the robot’s performance in

terms of learning efficiency, complexity of the learned behaviors, predictability of the

robot, and even the result of the subjective evaluation of the participants about the

intelligence of the robot as well as the quality of the interaction.
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1. INTRODUCTION

Joint attention related behaviors (JARBs) include basic social

skills, such as following the gaze of others, pointing, intention

sharing, and social referencing. Humans gradually learn these
social skills during their developmental process in infancy and

childhood (Scaife and Bruner, 1975; Adamson, 1995; Corkum
and Moore, 1995), and become able to establish interaction
with others. Consequently, children become able to learn
more social skills, such as language communication and mind
reading (Moore and Dunham, 2014). The importance of JARBs
in human infant development (Tomasello et al., 1995) has made
it one of themost popular research topics in the fields of cognitive
science and developmental psychology (Butterworth and Jarrett,
1991; Mundy et al., 2000; Tomasello, 2009).

Additionally, owing to the important role of such behaviors in
achieving successful communication with humans, some robotic
research has focused on the study of JARBs in the development of
communicative robots (Imai et al., 2003; Breazeal, 2004; Kanda
et al., 2004; Kaplan and Hafner, 2006).

On the other hand, in the field of developmental robotics,
several studies based on synthetic approaches have tried to
explore and/or reproduce the developmental process of the
human infant, as well as to create autonomous developmental
robots. See Asada et al. (2009) for a review of these efforts.
Some of these research has been done on proposing learning
mechanisms based on the intrinsic motivation of the robot that
enables open-ended development (Oudeyer et al., 2007; Barto,
2013; Nehmzow et al., 2013), and some on dynamic Bayesian
networks to evaluate the contingency of the observed events,
which enables the robot to plan suitable action(s) to achieve
its goal utilizing the evaluated contingency (Degris et al., 2006;
Jonsson and Barto, 2007; Mugan and Kuipers, 2012).

Other studies (Nagai et al., 2003; Triesch et al., 2006) have
tried to explain the developmental process of the JARBs of
the human infant by using an infant robot. They have focused
on the causality of the infant robot’s observations, actions
and consequent experiences during interaction with a human
caregiver. They showed that learning of the causal sensorimotor
mapping from gaze patterns of the caregiver to the motor
commands of the robot lead the robot to acquire a primitive
JARBs, such as gaze following. However, the robot had a priori
knowledge of the set of sensory and motor variables to be
associated in order to acquire such a sensorimotor mapping.

Sumioka et al. proposed an informational measure based
on transfer entropy (Schreiber, 2000), by which the robot
become able to automatically distinguish the set of sensory-motor
variables for the sensorimotor mapping without such a priori
knowledge (Sumioka et al., 2010). Additionally, their presented
method could evaluate the contingency of a sequence of events,
so that the robot became able to learn a sequence of sensorimotor
mapping. The contingency of such sequence was defined as
contingency chain (c-Chain). By using computer simulation, they
showed that evaluating the c-Chains of the events led their infant
robot model to learn JARBs consisted of sequences of actions,
such as social referencing behavior. The social referencing was
defined as looking back at the caregiver’s face after producing

the gaze-following behavior. Hereafter, we refer to robot’s learned
behavior as a complex skill if it consists of more than two
sequences of actions (such as social referencing behavior), and
otherwise refer to it as a simple skill (such as gaze-following
behavior).

However, numerous time steps were required for the
contingency evaluations of previous work (Sumioka et al.,
2010), especially for complex skills, which resulted in the robot
not being able to acquire complex skills in the real-world
implementation (Sumioka et al., 2013). Mahzoon et al. (2016)
proposed a new informational measure based on what they called
transfer information, which enabled the local evaluation of the
contingency among the variable values. They realized a fast
contingency evaluation, evenwith a small number of sample data.
They showed that their infant robot model could acquire simple
and complex skills within short periods of interaction with the
caregiver model, in a computer simulation environment.

Nevertheless, to implement the proposed method on a real-
world robot, two basic issues are still remained: First, the
synchronization problem of the robot’s learning phase with the
human caregiver’s teaching phase in the real-world interaction
was not considered. As a result, the efficiency of the learning
process was decreased and therefore unexpectedly delayed.
Although understanding and detecting the teaching phase of the
human caregiver is not a simple issue, some research on “natural
pedagogy” has reported the phenomena of teaching/learning
timing of the human caregiver/infant (Csibra and Gergely, 2009)
and addressed “ostensive cues” as the key signals of efficient
teaching/learning in humans. In this paper, we propose a new
algorithm for robot learning inspired by these phenomena,
namely ostensive-cue sensitive learning (OsL), to overcome the
synchronization problem. Second, there was overestimation of
the contingencies related to actions/observations that occur
simultaneously with the usage of a learned behavior. This is
due to the confusion of the robot about the cause of the
consequent event; the robot could not distinguish whether the
reason for the event was the usage of the learned behavior
or simply the previous atomic action/observation. To solve
this problem, we propose another new algorithm, the exclusive
evaluation of policies (XEP), following which the robot evaluates
contingencies, so that the calculations related to the atomic
variables are separated from those of the learned behaviors.

To evaluate the performance of each proposed algorithm
in a real-world environment, we conducted human–robot
interaction experiments under four conditions: (1) the previous
method (Mahzoon et al., 2016), i.e., the robot uses neither of the
proposed algorithms; (2) the robot uses only the OsL; (3) the
robot uses only the XEP; and (4) the proposed method, i.e., the
robot uses both the OsL and XEP. Each condition was consisted
of 12 subject experiments, and each experiment was taken 800
time steps, i.e., approximately 40 min of interaction with the
robot. The performances of the systems was compared in terms
of the speed, coverage, and reliability of simple and complex skill
acquisition.

In addition, as described in Moore and Dunham (2014) and
Tomasello (2009), contingent and intelligent behavior of the
infant “induces” the caregiver to change its behavior, and teach
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new concepts to the infant. This inherent tendency of the human
caregiver leads to a potential for the open-ended learning and
development of the infant, even an infant robot (Oudeyer et al.,
2007). In our experiment, to evaluate if/how the human subjects
feel regarding the infant robot’s such intelligence, we conducted
a subjective evaluation during the experiment. We asked the
subjective opinion of the caregivers about the intelligence of
the robot as well as the quality of the interaction. For this, we
provided seven questions, each designed with a five-level Likert
scale answer. To see the effect of the proposed algorithms on the
subjective evaluation, we conducted a statistical analysis of the
answers. The result of the analysis is discussed in section 4.5.

2. PROBLEM SETTING AND
CONTINGENCY EVALUATION

2.1. Interaction Environment
A face-to-face interaction between a human caregiver and an
(infant) robot is assumed as our experimental environment
(Figure 1). There is a table between them and one or more
objects are placed on the table. The human caregiver plays and
interacts with the robot (based on their own strategy, if any) and
can move the position of the objects on the table. The robot
discretizes time. At each time step t, the robot observes the
environment and stores the observed data in the sensory variables
S
t = (St1, S

t
2, · · · , S

t
NS
)T , where NS denotes the number of sensory

variables. We also refer to these by “state variable” in this paper.
After the observation, it sends action commands to its joints and
saves them to the action variables A

t = (At
1,A

t
2, · · · ,A

t
NA

)T ,
where NA denotes the number of action variables, which would
be equal to the number of the joints of the robot. Next, the robot
observes the result of the taken action, and saves the resultant
observations to the resultant variables: Rt = (Rt1,R

t
2, · · · ,R

t
NR

)T

for the values of the resultant observation before taking the
action, and R

t+1 = (Rt+1
1 ,Rt+1

2 , · · · ,Rt+1
NR

)T for after taking the
action, where NR denotes the number of the resultant variables.
In the remainder of this section, we summarize and introduce
the basic idea of the contingency evaluation mechanism of our
previous work (Mahzoon et al., 2016).

2.2. Finding and Reproducing Contingency
Assume that in time step t, the robot observes sti and rt

k
, takes

the action atj , and as result, observes rt+1
k

; here, sti , a
t
j , r

t
k
, and

rt+1
k

indicate the values of the variables Sti , A
t
j , R

t
k
, and Rt+1

k
,

respectively. The quaternion e = (sti , a
t
j , r

t
k
, rt+1

k
) represents

such an experience of the robot, and is simply denoted as
experience in this paper. An experience e contains information
about “when (sti), what to do (a

t
j ), for which transition (r

t
k
to rt+1

k
).”

During the interaction with the human, the robot evaluates
the “contingency” of its experiences, which will be described
later, and distinguishes the “contingent” ones. After finding the
contingent experience(s), the robot tries to “reproduce” it by
acquiring a suitable sensorimotor mapping that enables the robot
to take suitable action atj in the specific state sti to reproduce

the specific transition of rt
k
to rt+1

k
. Inspired by previous works

on human infant behaviors concerning the process of finding

FIGURE 1 | Problem setting of the face-to-face interaction of the robot with a

human caregiver. They sit across a table, and there are some objects on the

table. The robot can produce actions such as moving head and hands as

illustrated with the arrows in the figure. During the interaction with the human,

the sensory data, taken actions, and resultant observations are stored in the

sensory, action, and resultant variables, respectively (S, A, and R).

and reproducing interaction contingencies (Watson, 1972), even
with a contingently responsive robot (Movellan and Watson,
2002), in our work, the ability to reproduce the contingency of
an interaction is considered to be one of the most essential social
skills for an interactional robot, which makes it able to interact
properly with the interacting human.

To evaluate the contingency of the experiences, the robot
updates and saves histograms of the values of the variables in each
step of the interaction, and calculates the following probabilities.
Assume there are two discrete-time stochastic processes X and Y ,
which can be approximated by stationary Markov processes. The
transitions of the processes from time t to t+1 can be represented
by the transition probabilities p(xt+1|xt) and p(yt+1|yt), where
the notifications xt , yt and xt+1, yt+1 indicate the values of the
processes at times t and t + 1, respectively. The contribution
of a specific value of process Y , such as yt , on the transition of
the process X from a specific value such as xt to a specific value
xt+1 can be estimated using transfer information (Mahzoon et al.,
2016):

Iy→x = log
p(xt+1|xt , yt)

p(xt+1|xt)
. (1)

For an experience e, the transfer information can be adopted as
follows to evaluate the contingency of the experience, i.e., the
contribution of the action atj in state sti to the transition of rt

k
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to rt+1
k

, or in other words the joint contribution of the state and
action in experience e:

CJ(e) = I(si ,aj)→rk = log
p(rt+1

k
|sti , a

t
j , r

t
k
)

p(rt+1
k

|rt
k
)

. (2)

Additionally, the single contributions of the state and action in
experience e can be calculated as follows:

CS(e) = Isi→rk = log
p(rt+1

k
|sti , r

t
k
)

p(rt+1
k

|rt
k
)
, (3)

CA(e) = Iaj→rk = log
p(rt+1

k
|atj , r

t
k
)

p(rt+1
k

|rt
k
)

. (4)

The purpose of the robot is to evaluate the joint contribution in
experiences to know if the action atj in state sti specifically leads to

the consistent result rt+1
k

, and acquire a sensorimotor mapping

of sti to atj . However, the value of Equation (2) can be also large

when the value of the single contribution of either the state or
action becomes large. Therefore, the joint contribution needs
to be compared with the single contributions to distinguish the
experiences in which the transition to rt+1

k
is due to both sti and

atj , and not simply one of them. It can be estimated as follows:

SC̃J(e) = CJ(e)− CS(e)

= log
p(rt+1

k
|sti , a

t
j , r

t
k
)

p(rt+1
k

|sti , r
t
k
)

, (5)

AC̃J(e) = CJ(e)− CA(e)

= log
p(rt+1

k
|sti , a

t
j , r

t
k
)

p(rt+1
k

|atj , r
t
k
)
, (6)

where SC̃J(e) and
AC̃J(e) compare the joint contribution with the

single contribution of the state and action, respectively. Finally,
themeasure named synergistic contribution of contingencies (ScC)
is proposed as follows to distinguish the “contingent” experiences,
i.e., the experiences in which the combination of the state and
the action is the cause of the transition, but not either of them is
individually the cause:

C̃J(e) = min{SC̃J(e),
A C̃J(e)}. (7)

When the value of C̃J(e) of a specific experience e becomes larger
than a specific threshold CT for a predefined duration, such as θ

time steps, the robot distinguishes it as a contingent experience
(or simply, a contingency) and acquires the sensorimotor
mapping (sti , a

t
j ). Then, it starts to “reproduce" the found

contingency by “using” the acquired sensorimotor mapping. The
sensorimotor mapping learned based on the experience e is
denoted as the policy π . During interaction with the human,
the robot may acquire several different policies. Note that θ is a
parameter to determine how carefully the observed contingency
is judged to be stable.

2.3. Evaluating the Contingency Chain
After the acquisition of a new m-th policy πm, the robot adds
a new Boolean variable Sπm to the set of state variables, which
indicates whether the policy πm was used. It takes the value 1 if π
was used, and 0 otherwise. To avoid confusion, we also denote the
value of the Sπm with π̄m when it takes the value 0, and with πm

when it is 1. Then, the robot continues updating the histograms
of the variables as well as calculating the contingency of the
experiences, including the new state variable Sπm . Using this
method, the robot becomes able to evaluate the contingency of
the c-Chains, and as a result, evaluate the contingency related to
the new behavior of the caregiver who observed the contingency
reproduction of the robot. In previous work (Mahzoon et al.,
2016), an example of such a c-Chain was the consistent response
of the caregiver to the social referencing behavior of the robot: the
robot found that after using the gaze-following skill, if it looks
at the caregiver’s face, the caregiver will look at the face of the
robot as an acknowledgement. Moreover, they showed that in
a more complex simulation environment, the robot acquires a
longer sequence of actions, up to five sequences.

3. PROPOSED METHOD

In this section, after discussing the two essential weak points
of the previous work (Mahzoon et al., 2016) and our solution
for each of them, we describe the mechanism of our proposed
method.

3.1. Ostensive-Cue Sensitive Learning
(OsL)
The first problem of previous work is the synchronization of
the teaching phase of the human caregiver with the learning
phase of the infant robot. Learning under the non-synchronized
environment decreases the learning efficiency of the robot, and
causes significant delays in the learning progress. Although
distinguishing the teaching phase of the human by the robot
seems to be a difficult issue owing to the probable variety of types
of teaching in different human subjects, there are several reports
in the fields of cognitive science and developmental psychology
regarding how human infants treat the synchronization problem
and increase the efficiency of learning from adults (see a
review Csibra and Gergely, 2011).

Csibra and Gergely addressed the “natural pedagogy”
as a human communication system for generic knowledge
transmission between individuals (Csibra and Gergely, 2009).
They proposed that human infants are “prepared to be at the
receptive side of natural pedagogy” and sensitive to learn from
the ostensive cues of human adults, such as mutual eye contact
between the adults and the infant, or adults’ infant-directed
speech (motherese). From this statement, we hypothesize that the
human adult may inherently or adaptively output the ostensive
cues when it tries to teach something to the human infant, or
even to the infant robot. Based on this hypothesis, we propose
the OsL algorithm for the infant robot as follows: (1) The robot
stops moving when it observes an ostensive cue from the human
and continues the observation of the human until the signal
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disappears. This is because the ostensive cue acts as a signal
(from our hypothesis) that informs the robot about the human’s
teaching phase, and notifies the robot to synchronize with it;
(2) The robot counts the histogram of the consequent experiences
right after the disappearance of the ostensive cue η times (i.e.,
the learning weight parameter of the OsL algorithm) instead of
one time in order to emphasize such experiences. This is because
(from our hypothesis) after the ostensive signals, the human
would be in the teaching phase and the experiences right after
the ostensive cues probably contain more informative concepts
compared with other experiences. Using OsL, we expect the robot
to increase the efficiency of learning and, as a result, the speed of
skill acquisition.

3.2. Exclusive Evaluation of Policy (XEP)
The second problem of the previous work is the overestimation
of the transition probabilities of the single contingencies, which
leads to an underestimation of SC̃J and/or

AC̃J , i.e., Equations (5)
and (6), when the robot uses an acquired policy. This leads
to the underestimation of the ScC of some experiences, i.e.,
C̃J : Equation (7). The reasons for the overestimation and the
underestimation are as follows. Assume that the robot acquired
its newm-th policy πm based on the contingent experience em =

(sti , a
t
j , r

t
k
, rt+1

k
). Before the robot starts to use πm, i.e., using the

sensorimotor mapping (sti , a
t
j ), the

SC̃J and
AC̃J of the experience

em can be written by the transition probabilities calculated based
on the histograms of the variables before acquiring and using πm,
i.e., pbef, as follows:

SC̃bef
J (em) = log

pbef(rt+1
k

|sti , a
t
j , r

t
k
)

pbef(rt+1
k

|sti , r
t
k
)

, (8)

AC̃bef
J (em) = log

pbef(rt+1
k

|sti , a
t
j , r

t
k
)

pbef(rt+1
k

|atj , r
t
k
)
. (9)

However, when the robot starts to use πm, the probability
of taking action atj in state sti increases. This fact increases

the value of the transition probabilities (1) p(rt+1|sti , r
t
k
) and

(2)p(rt+1|atj , r
t
k
), i.e., the numerator of the single contingencies:

Equations (3) and (4); and the denominator of SC̃J and AC̃J :
Equations (5) and (6). The reasons are (1) for p(rt+1|sti , r

t
k
):

in state sti , the probability of taking action atj increases owing

to the usage of πm, which is a contingent skill and leads the
transition to rt+1

k
with high probability; and (2) for p(rt+1|sti , r

t
k
):

the probability of having been in state sti when the action atj is

taken increases owning to the usage ofπm. Assume that the values
of the transition probabilities p(rt+1|sti , r

t
k
) and p(rt+1|atj , r

t
k
) after

the usage of πm, i.e., denoted by paft, increase by factors of α and
β , respectively, compared to pbef:

paft(rt+1
k

|sti , r
t
k) = α. pbef(rt+1

k
|sti , r

t
k) ; α > 1 (10)

paft(rt+1
k

|atj , r
t
k) = β . pbef(rt+1

k
|atj , r

t
k) ; β > 1 (11)

Assuming that the value of the transition probability
p(rt+1

k
|sti , a

t
j , r

t
k
) does not change before and after the usage

of πm (because the usage of πm as a sensorimotor mapping
(sti , a

t
j ) is included in the condition part of the transition

probability), the values of SC̃J and
SC̃J for the experience em after

the usage of πm can be written as:

SC̃ aft
J (em) = log

pbef(rt+1
k

|sti , a
t
j , r

t
k
)

α. pbef(rt+1
k

|sti , r
t
k
)

= SC̃ bef
J (em)− logα ; α > 1, (12)

AC̃ aft
J (em) = log

pbef(rt+1
k

|sti , a
t
j , r

t
k
)

β . pbef(rt+1
k

|atj , r
t
k
)

= AC̃ bef
J (em)− logβ ; β > 1. (13)

Therefore, ScC of the experience em after the usage of the πm will
become:

C̃ aft
J (em) = min{SC̃ bef

J (em)− logα, AC̃ bef
J (em)− logβ}

< C̃ bef
J (em). (14)

To avoid such an underestimation, we propose to separate the
contingency evaluations related to the acquired policies and
atomic variables, namely the XEP algorithm. In this algorithm,
the system adds an extra variable for each sensory and action
variable to the system, denoted by Ŝ ti and Ât

j . When an acquired

policy πm is used, the system sets the values of Ŝ ti and Ât
j to don’t

care. Therefore, the histogram of the values of these variables,
denoted by ŝti and âtj , are counted only if an acquired policy has

not been used. Using the histogram of these variables for the
calculation of the transition probabilities of Equations (10) and
(11), which are denoted by p̂, causes them not to increase even
after usage of the policy πm:

p̂ aft(rt+1
k

|sti , r
t
k) = paft(rt+1

k
|ŝti , r

t
k)

= pbef(rt+1
k

|sti , r
t
k), (15)

p̂ aft(rt+1
k

|atj , r
t
k) = paft(rt+1

k
|âtj , r

t
k)

= pbef(rt+1
k

|atj , r
t
k). (16)

Therefore, when the XEP algorithm is used, the value of SC̃J and
AC̃J for the experience em, which are denoted by SĈJ and

AĈJ ,
after the usage of πm will be:

SĈ aft
J (em) = log

pbef(rt+1
k

|sti , a
t
j , r

t
k
)

p̂ aft(rt+1
k

|sti , r
t
k
)

= SĈ bef
J (em), (17)

AĈ aft
J (em) = log

pbef(rt+1
k

|sti , a
t
j , r

t
k
)

p̂ aft(rt+1
k

|atj , r
t
k
)

= AĈ bef
J (em). (18)

As the result, the ScC of the experience em when the XEP
algorithm is used, which is denoted by ĈJ , after the usage of πm
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will be:

Ĉ aft
J (em) = min{SĈ aft

J (em),
AĈ aft

J (em)}

= Ĉ bef
J (em). (19)

With respect to Equation (19) and Inequation (14), it can
be concluded that the XEP algorithm is able to solve the
underestimation problem of the previous work (Mahzoon et al.,
2016), and is expected to increase the accuracy of the contingency
evaluation1.

3.3. Mechanism
Figure 2 shows the schema of the proposed system. It consists
of two main parts: the Contingency Detection Unit (CDU) and
the Action Producing Unit (APU). The APU is responsible for
determining the output action in each time step, while the CDU
evaluates the contingency of the experiences. At each time step t,
the robot observes the environment and stores the results of the
current observation in St and Rt (bottom part of the figure). They
are sent to the APU, and the APU decides about the outputting
action for each joint of the robot At , based on the input data
S
t and R

t . After taking the action, the robot again observes the
environment, and stores the resultant observation in the resultant
variable Rt+1 (bottom part of the figure). Simultaneously, in each
time step, the CDU gets the values of all of the variables, and
evaluates the contingency of the experiences. If the CDU detects
an experience as a contingent one, it adds a new Contingency
Reproducer (CR in Figure 2) to the APU, which enables the APU
to reproduce the found contingency. In the remainder of this
section, each component of the CDU and APU are explained in
detail.

3.3.1. Contingency Detection Unit (CDU)
In each time step, the CDU (1) evaluates the contingency of the
experiences, and (2) if a contingent experience is detected, it adds
a new CR to the APU, which enables the robot to reproduce the
found contingency. The CDU consists of three components: the
Contingency Evaluator, Ostensive Signal Detector (OS-D), and
the Skill Usage Detector (SU-D).

3.3.1.1. Contingency Evaluator
This unit calculates the contingencies of the experiences based on
the histograms of the experiences, using the method described in
section 2.2. If the experience e = (sti , a

t
j , r

t
k
, rt+1

k
) is distinguished

as a contingent one, it adds a new CR to the APU, which contains
the values of the variables of the found contingent experience
e, i.e., sti , a

t
j , r

t
k
and rt+1

k
. After that, the Contingency Evaluator

continues the evaluation of the contingencies, including the c-
Chains (see section 2.3), as well as the process of adding further
CRs to the system.

3.3.1.2. OS-D
The OS-D gets the current state of the robot (Sti and Rt

k
). If it

detects that these variables include an ostensive cue from the

1For the same reason, the system also uses the extra variables Ŝ ti and Ât
j when the

robot has used the policy in the previous time step, i.e., when Sπm = 1.

FIGURE 2 | System schema of the proposed mechanism, consisting of two

main parts: Contingency Detection Unit (CDU) and Action Producing Unit

(APU). Contingency Reproducer (CR), Reaction Producer (RP), and Action

Selector compose the APU, while the Contingency Evaluator, Ostensive Signal

Detector (OS-D) and Skill Usage Detector (SU-D) form the CDU. The new

components of the proposed mechanism are shown with the darker color

(OS-D and SU-D). V, X, and Aπ indicates the controlling signals described in

section 3.3.1. In each time step, the robot outputs the action At based on its

current states St and Rt, and observes the resultant transition of the

environment, i.e., Rt+1.

human, it sends the stop signal V to the Contingency Evaluator
as well as the Action Selector. This signal causes the Contingency
Evaluator to pause counting the histograms, and the Action
Selector to make the robot to keep looking at the human and
stop its movement. Additionally, it sends the learning weight
parameter η (see section 3.1) to the Contingency Evaluator.
When the ostensive cue disappears, the stop signal V is canceled
simultaneously, which makes the Contingency Evaluator and
Action Selector restart their functions. In this paper, mutual eye
contact with the human caregiver is implemented as the only
ostensive cue of the interaction.

3.3.1.3. SU-D
The SU-D gets the information regarding the usage of the policies
in each time step from the Action Selector, and informs the
Contingency Evaluator if any policy has been used at the current
moment. To this end, the SU-D gets the values of the Boolean
variable Aπm from the the Action Selector, which indicates if the
m-th policy is currently used, and sends the Boolean signal X to
the Contingency Evaluator, which is calculated as follows:

X =

Nπ∨

m=1

Aπm , (20)
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where Nπ denotes the number of the policies that the robot
has acquired until now. If the value of the signal X is true, the
Contingency Evaluator sets the value of the extra variables Ŝ ti and
Ât
j to don’t care, as described in section 3.2.

3.3.2. Action Producing Unit (APU)
As shown in Figure 2, the APU is equipped with three
components, the Reaction Producers (RP), Contingency
Reproducers (CR), and Action Selector. At the beginning of the
interaction, the APU contains no CRs and selects the actions
of the robot at each time steps from the suggested actions of
the RPs, denoted by A∗

1′ to A∗
n′ in Figure 2 where n′ indicates

the number of RPs in the system. Continuing the interaction
with the caregiver leads the CDU to find contingent experiences
and add CRs to the APU, which include specific sensorimotor
mappings, as described in section 3.3.1. Similar to the RPs,
the CRs send their suggested actions to the Action Selector,
denoted by A∗

1 to A∗
n in Figure 2, where n indicates the number

of CRs acquired by the robot. Therefore, after adding CRs to the
system, the Action Selector needs to choose the outputting action
command to each joint of the robot from all of the candidates:
Am ∈ {A∗

1 ,A
∗
2 , · · · ,A

∗
n,A

∗
1′ ,A

∗
2′ , · · · ,A

∗
n′} where m indicates the

m-th joint of the robot.

3.3.2.1. Contingency Reproducer (CR)
The CR gets the current state of the robot and outputs its
suggested action to the Action Selector, based on its sensorimotor
mapping. Additionally, it sends the reliability Z to the Action
Selector, which indicates the certainty of the transition to the
expected state if the Action Selector selects its suggested action
as the output action of the robot. Assume the m-th CR was
added to the system based on the contingent experience em =

(sti , a
t
j , r

t
k
, rt+1

k
). If the current state Sti and Rt

k
are the same as sti

and rt
k
of the CR, it outputs the candidate action atj to the Action

Selector. Otherwise, it does not send any candidate. In this paper,
the CR sends the ScC of the experience em, i.e., ĈJ(em), as its
reliability Zm to the Action Selector.

3.3.2.2. Reaction Producer (RP)
The RP gets the current state of the robot and outputs a pre-
programmed reaction, which is sent to the Action Selector as the
suggested action of the RP. Also it sends a constant value αm as its
reliability Zm to the Action Selector, where m indicates the m-th
RP. For the sake of simplicity, in this paper we considered only
one RP for the system, which outputs a random action for any
input state.

3.3.2.3. Action Selector
The Action Selector chooses the output action for each joint
of the robot at each time step. A soft-max action selection was
utilized to choose the output from the candidates. Assume that
for the j-th joint of the robot, the number of RPs and CRs
which send the candidate action to the Action Selector, namely
inputting components, are NR

j and NC
j , respectively. At each

time step, the probability of selecting the suggested action of the
inputting component i for the joint j is calculated based on their

reliability as follows:

P
j
i =

exp (Zi/τ )∑
k∈NR

j +NC
j
exp(Zk/τ )

, (21)

where Zi indicates the reliability of the inputting component i,
and τ is a temperature constant. Note that if Zi is less than the
omission threshold CO, the Action Selector does not consider

the inputting component i in Equation (21) and P
j
i for that

component is set to zero. This mechanism enables the robot to
have a chance to omit any acquired skill, whichmight be acquired
owing to the noise, lack of sufficient experiences, or other error
factors. We set CO = CT − ε, where the CT is the skill acquisition
threshold (see section 2.2), and ε is a constant value. Additionally,
when more than two CRs with the same suggested action and
different c-Chain length exist in the inputting components, the
Action Selector considers only the one with the longer c-Chain
length as the inputting component, and ignores the others, i.e.,

sets their P
j
i values to zero.

When the suggested output of them-th CR with the policy πm

is selected as the output, the Action Selector sets the value of the
Boolean variable Aπm to 1. It sends Aπm to the SU-D in each time
step to inform the SU-D about the usage of the skills. Also, when
the Action Selector gets the stop signal V from the OS-D, it stops
outputting new action commands to the joints of the robot until
the stop signal disappears.

4. EXPERIMENT AND RESULT

In this section, the results of the real-world robot experiment
with human subjects are reported. To evaluate the effect of
the proposed methods, i.e., the XEP and OsL algorithms,
the performances of four different learning mechanisms are
compared, of which the CDU consists of (1) neither the SU-
D nor the OS-D, (2) only the SU-D, (3) only the OS-D, and
(4) both the SU-D and the OS-D. In the remainder of this
paper, they are referred to as the previous method, XEP method,
OsL method, and proposed method, respectively. This study was
carried out in accordance with the recommendations of the ethics
committee for research involving human subjects at the Graduate
School of Engineering Science, Osaka University. The protocol
was approved by the ethics committee for research involving
human subjects at the Graduate School of Engineering Science,
Osaka University. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

4.1. Subjects, Apparatus, and Procedure
Figure 3 shows the environment of the experiment, which was
designed based on the concepts explained in section 2.1 and
Figure 1. The human subject was asked to sit opposite the
humanoid infant robot and interact with it naturally, as when
he/she interacts with a human infant. The subject was asked to
play with the robot using a toy on the table and draw the attention
of the robot to the toy by teaching the current position of the
toy as well as the name, color, shape, or other features of it. It is
explained to the subject that the robotmay learn some social skills
from the behavior of the subject, and start to use them. When
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FIGURE 3 | The environment of the subject experiment. The subjects were

asked to teach the current position of the toy to the robot. Also, they were

asked to push a button of the keyboard to express that they are smiling and

praising the robot at the moment. The consent for publication of this image

was obtained from the participant of this image by using a written informed

consent.

the robot uses a learned skill, the LEDs on the face of the robot
turn on temporarily. The subject was asked to praise the robot
by hitting a specific key on the keyboard when the robot finds
the toy by using an acquired skill, i.e., when the LEDs turn on.
Additionally, he/she was asked to change the position of the toy
around every 20 s. The experiment was conducted for 800 time
steps, i.e., around 40–50 min of interaction. After every 200 steps,
i.e., around 10 min, the experiment was paused and the subject
was asked to answer a simple questionnaire about the interaction,
which may take <2 min (see section 4.5).

Twelve sessions were conducted for each four conditions
described in section 4 using different human subjects, i.e., totally
48 adults: 30 males and 18 females. Before the main experiment,
a test phase of 2 min was conducted to make everything clear
for the subject. In this experiment, each time step was set to 2–
2.5 s based on the complexity of the robot’s internal calculations.
Additionally, when the robot used a complex skill, the LEDs were
set to temporally flash with frequency of f = 2Hz instead of just
turning on; but the subject was not told about it.

4.2. Variables and Parameters
In this experiment, the number of objects was set to 1, and the
position of the object on the table was quantized to 3 regions:
left side, right side, and the middle of the table. Based on our
experience, the other parameters were set as follows: for the CDU,
(CT , θ , η) = (0.7, 5, 2), and for the APU, (αm, τ , ε) = (0, 0.4, 0.1).

Table 1 shows the initial variables used in this experiment. For
the perception S, two variables were prepared: the gaze direction
of the caregiver (S1) and the observation of the object (S2). S1
takes the values f1, f2, and f3 when the robot recognizes that the
caregiver is looking at the left, right, and the middle of the table,
respectively. It takes the value fr when the robot detects that the
caregiver is looking at it, and the value fφ when the robot cannot
detect the direction of the gaze of the caregiver. S2 takes the value
o when the robot detects the object, and oφ when no object is
detected. A motion capture system was utilized to detect the gaze

TABLE 1 | Variables of the robot for the experiment.

Type Variable name Symbol Elements

S Caregiver’s gaze direction C S1 = {f1, f2, f3, fr , fφ }

Object Os S2 = {o,oφ }

A Gaze shifting G A1 = {g1, g2, g3, gc}

Hand Gesture H A2 = {h1, h2, h3, h4}

R Frontal face of caregiver F R1 = {r̄1, r1}

Profile of caregiver P R2 = {r̄2, r2}

Object Or R3 = {r̄3, r3}

Praise from caregiver W R4 = {r̄4, r4}

direction of the caregiver as well as the position of the object in
each time step.

For the actions of the robot A, two variables were prepared:
gaze shift (A1) and the hand gesture of the robot (A2). A1 takes
the values g1, g2, and g3 when the robot shifts its gaze and looks
at the left, right, and the middle of the table, respectively. It takes
the value gc when the robot looks at the caregiver’s face. A2 takes
the values h1, h2, h3, and h4, which indicate the different types
of hand gestures known by the robot. In this experiment, each
values of the hj were implemented as a different degree of the
pitch of the robot’s arm.

For the resultant perception R, four Boolean variables were
considered: the frontal face of the caregiver (R1), the profile (face)
of the caregiver (R2), the observation of the object (R3), and the
praise from the caregiver(R4). They take the value 1 if the frontal
face, the face in profile, the object and the smile of the caregiver
are observed by the robot. Otherwise, they take the value 0. To
avoid confusion, the values of R1, R2, R3, and R4 are also denoted
with r1, r2, r3, and r4 when they take 1, and with r̄1, r̄2, r̄3, and
r̄4 when they are 0, respectively. In the experiment, to detect the
values of R1, R2, and R3, the motion capture system was utilized,
while the praise from the caregiver, i.e., R4, was expressed by the
caregiver hitting a specific key on the keyboard. Also, to avoid
confusion of the variables and to facilitate further discussions,
each variable is mentioned with the symbol indicated in Table 1

in the remainder of the paper.

4.3. Developmental Process of Social Skill
Acquisition
Before the statistical comparison of performance of the different
methods, we first show the developmental process of social
skill acquisition by the robot using some examples from the
experimental results of three subjects. Tables 2–4 show the
acquired skills by the robot during the experiment with these
subjects, namely sbj-A, sbj-B, and sbj-C, respectively. While
the robot utilized the previous method in the case of sbj-A,
it used the proposed method for the case of sbj-B and sbj-C.
Additionally, Figure 4 shows the time course of the evaluated
amount of contingencies related to each acquired skills indicated
in Tables 2–4 .

In these tables, the “ID” column indicates the ID of the
contingency reproducer (CR),“Step” indicates the time-step
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TABLE 2 | Acquired social skills by the robot for the sbj-A.

ID Step Level Label rt st at rt+1 Interpreted function

π1 101 1 Gaze-Following-2 r̄3 f2 g2 r3 Gaze Following

(middle)

π2 340 1 Gaze-Following-1 r̄3 f1 g1 r3 Gaze Following

(right)

π3 370 1 Gaze-Following-0 r̄3 f0 g0 r3 Gaze Following

(left)

π4 519 2 Looking-Back-2 r̄4 π1 gc r4 Looking Back

(after Gaze-Following-2)

TABLE 3 | Acquired social skills by the robot for sbj-B.

ID Step Level Label rt st at rt+1 Interpreted Function

π1 191 1 Gaze-Following-2 r̄3 f2 g2 r3 Gaze Following

(middle)

π2 295 1 Gaze-Following-1 r̄3 f1 g1 r3 Gaze Following

(right)

π3 418 1 Gaze-Following-0 r̄3 f0 g0 r3 Gaze Following

(left)

π4 485 2 Looking-Back-0 r̄4 π3 gc r4 Looking Back

(after Gaze-Following-0)

π5 611 2 Looking-Back-1 r̄4 π2 gc r4 Looking Back

(after Gaze-Following-1)

π6 655 2 Looking-Profile-0 r̄2 π3 gc r2 Finding Profile

(after Gaze-Following-0)

TABLE 4 | Acquired social skills by the robot for the sbj-C.

ID Step Level Label rt st at rt+1 Interpreted Function

π1 100 1 Gaze-Following-2 r̄3 f2 g2 r3 Gaze Following

(middle)

π2 129 1 Gaze-Following-0 r̄3 f0 g0 r3 Gaze Following

(left)

π3 134 1 Frontal-Face r̄1 oφ gc r1 Finding Frontal Face

π4 220 1 Gaze-Following-1 r̄3 f1 g1 r3 Gaze Following

(right)

π5 372 2 Looking-Back-1 r̄4 π4 gc r4 Looking Back

(after Gaze-Following-1)

π6 512 1 Hand-Motion r̄3 f1 h2 r3 Finding Object by Hand

π7 610 2 Looking-Back-2 r̄4 π1 gc r4 Looking Back

(after Gaze-Following-2)

π8 622 2 Looking-Back-0 r̄4 π2 gc r4 Looking Back

(after Gaze-Following-0)

π9 720 3 Check-Again-1 r̄3 π5 g1 r3 Check Again the Object

at which that the CR was acquired, “Level” indicates the
length of the c-Chain of the acquired CR, “Label” shows the
symbol of the CR which may be used to refer to it by the
subsequent CRs (and also it is used in Figure 4 to indicate
each CR), the column of “rt , st , at , and rt+1” indicate the
experience e on which the CR was created, and finally, the
interpretation of the CR is given based on the behavior of
the robot when it uses the CR in the column of “Interpreted
Function.”

In Figure 4, the graphs of the simple and complex skills are
separated: the top part (Figures 4A–C) for the simple skills and
the bottom part (Figures 4D–F) for the complex ones. Each
column of the figure indicates the result of each subject: from the
left to right for sbj-A, sbj-B, and sbj-C, respectively. In each graph,
the threshold of the contingency acquisition CT is shown with
the horizontal dotted gray line, and the hatched area indicates
the values less than the threshold; while the vertical dashed lines
indicate the time-step that each CR was acquired (the color is the
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FIGURE 4 | Developmental process of the acquisition of social skills by the robot: a comparison among three participants (sbj-A, sbj-B, and sbj-C). For each subject,

the process was shown for simple skills (top three graphs) and complex skills (bottom three graphs). The horizontal axes indicate the time step of the experiment

(ends at 800, which is equal to around 40 min.), while the vertical axes labeled contingency indicate the amount of the calculated contingency using equation (7). Each

sub-figure include the time courses of contingency for some sample set of experience e, which are mentioned with a name such as Gaze-Following or Looking-Back

in the legend of the figures. Ct indicated the threshold for the contingency of e to be acquired as a skill. The vertical dotted lines indicate the timing of the acquisition of

a e as a skill, where its color represents which experience is acquired. Note that 2 lines (red and blue) in (E) and 3 lines (blue, green, and red) in (F) are overlapped, but

represent contingency for different experiences. (A) Simple skills for sbj-A. (B) Simple skills for sbj-B. (C) Simple skills for sbj-C. (D) Complex skills for sbj-A.

(E) Complex skills for sbj-B. (F) Complex skills for sbj-C.

same as that of the corresponding CR indicated in the legend
of the graphs). Note that the order of the CRs at the legend
of the graphs are the same as the order in which they were
acquired. Also, the colors of the lines for Gaze-Following and
Looking-Back are set based on their corresponding directions:
red, blue, and green for the left, right, and the middle of the table,
respectively.

According to the first row of Table 2, in the case of the sbj-
A, where the robot was using the previous method, the robot
acquired its first CR π1 at t = 101, which for the inputs (r̄3, f2),
outputs the action g2 to observe r3. In other words, this CR
indicates that when the robot recognizes that the human subject
is looking at the middle of the table (f2), if the robot shifts its
gaze to the same position, i.e., the middle of the table (g2), then

the robot can find the object (transition of r̄3 to r3). Using this
CR, the robot can produce the gaze following behavior (to the
middle of the table). It is noted by the symbol Gaze-Following-
2 (where the number indicates the position of the table) and
the time course of the calculated contingency of the experience
related to Gaze-Following-2, i.e., eGF2 = (f2, g2, r̄3, r3), is shown
in Figure 4A with the green line. From the beginning of the
interaction, the contingency of Gaze-Following-2 goes higher
than the threshold CT (the vertical dashed line), and after a while
[namely, after experiencing the eGF2 more than θ (=5) times],
it is acquired as the first CR of the robot. The vertical green
dashed line around t = 100 in Figure 4A shows the timing of the
acquisition of this CR, which corresponds to the value of “Step" in
π1, Table 2. As shown in the figure, the value of the contingency
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of Gaze-Following-2 was 0.98 at the acquisition time, while it
decreases to 0.25 at the end of the experiment.

Following the time courses of the other contingencies in
Figure 4A we can see that the robot acquired gaze-following
skill to the right and left side of the table at t = 340 and
t = 370, respectively (blue and red lines, corresponding with
π2 and π3 of Table 2, respectively). After the acquisition of the
skills, the robot starts to use them as described in section 3.3.2.3.
At t = 519, the robot found a contingent relationship between
using Gaze-Following-2 and being praised by the human, and
acquired new CR with a level of 2 (the green line in Figure 4D

and π4 in Table 2). This CR tells the robot that after using the
gaze following to the middle of the table (st = π1), if it shifts
gaze to the human (at = gc), then the robot would be praised by
the human (transition of rt = r̄4 to rt+1 = r4). In this paper,
we refer to this behavior as looking back behavior (Looking-
Back). Acquisition of the Looking-Back-2 would be due to the
specific praising behavior of the human during the experiment
(see section 4.1). This CR shows that the robot develops the
acquired skills (such asGaze-Following-2) tomore complex ones
(such as Looking-Back-2), which enables the robot to have longer
interaction sequence with the human subject.

However, in the case of the sbj-A, the implemented
method was the previous method. As described in section 3.2,
the previous method has no mechanism to prevent the
underestimation of contingencies after the acquisition of the
CRs. Therefore, in Figures 4A,D, the contingency of the acquired
CRs decreased after the acquisition of each CRs. As result, the
contingency of the Gaze-Following-2 and Gaze-Following-0

(green and red lines) become less than the omission threshold
CO (=0.6), i.e., 0.1 lower than the threshold CT in the graphs,
and the Action Selector would stop using them. Additionally, a
smaller value of the contingencies reduces the value of Z, which
leads the Action Selector to use the CRs with less probability (see
Equation 21). Therefore, in the previous method, although the
robot could acquire simple and complex skills, it may not be able
to use them properly.

Table 3, Figures 4B,E show the result of the experiment of sbj-
B, in which the proposed method was implemented on the robot.
Compared with the case of the sbj-A (which the previous method
was implemented), the contingency of the Gaze-Followings do
not decrease to less than (or close to) the omission threshold
and, as a result, the robot could acquire more complex skills
(two Looking-Backs and one Looking-Profile). Considering the
probable irregular behavior of the human against the robot
or the noise of the environment in the real-world interaction,
preventing the underestimation of the contingencies seems to
be very important, as shown in this example. Note that if the
subjects had praised the robot when the robot found the object
by using the Gaze-Following skill with high probability, the
value of the contingency of Looking-Back is theoretically 4
with respect to Equation (7); assuming that the numerator of
Equations (5) and (6) are approximately 1 due to the accurate
praising behavior of the caregiver, while the denominator of
Equation (5) is 0.25 because if the robot chooses the gaze
action gc from the four possible ones g1,g2,g3, and gc it would
be praised, and the denominator of Equation (6) is at most

0.25 because it is equal to the probability that the robot had
found the object before the robot takes the action gc. During the
experiment, although both the sbj-A and sbj-B seemed to praised
the robot with same manner, the contingency of the Looking-

Back-2 (green line in Figure 4D) for the sbj-A became 0.76 at
the end of the experiment, while in the case of the sbj-B, it
became 3.99 for both Looking-Back-0 and Looking-Back-1 (red
and blue lines in Figure 4E), which is very close to the value of
the theoretical calculation. Note that the overlap of the Looking-
Backs is due to the small number of the experiences related to the
Looking-Backs, which makes the transition probabilities of their
contingency evaluation very close to each other.

Following the time courses of Figure 4E, finally a new
complex skill Looking-Profile-0 is acquired. This CR (see π6 of
Table 3) causes the robot to look at the human (gc) after following
its gaze (π3) to find human’s face in profile (transition of r̄2 to r2).
This skill was specific to the sbj-B; it seems that he tended to show
his face in profile to the robot when the robot succeeded to find
the object by using the Gaze-Following skills, probably because
he was concentrating to push the correct button of the keyboard
to praise the robot while the keyboard was on the right side of
the table in the case of the sbj-B. The acquisition of this kind of
subject-specific skills shows that the proposedmechanism has the
potential of evaluating various kind of human behaviors based on
the different interaction manner of the subjects.

Figures 4C,F show the result of another subject, i.e., sbj-C,
which the robot was implemented with the proposed method.
The result shows more complex and interesting process of the
contingency evaluation, acquisition, and omission by the robot.
The details of the acquired skills are listed in Table 4. After
acquiring the gaze-following skill to the middle and the left side
of the table (Gaze-Following-2 andGaze-Following-0, the green
and red lines in Figure 4C), the robot acquired a skill named
Frontal-Face (the black line), which makes the robot to look at
the human (gc) to find his/her frontal face (r1), when no object
was detected (oφ) at t = 134 (see π3 inTable 4). However, finding
the frontal face of the human is due to the single effect of the
action gc, but not the joint effect of the state oφ and action gc
(see section 2.2 for the details of the single and joint effects).
Therefore, as shown in the figure, the contingency of the Frontal-
Face was reduced to less than the omission threshold and as
a result, the Frontal-Face would not be selected by the Action
Selector anymore. The acquisition and omission of this CR shows
an example of how the proposed mechanism may acquire a non-
contingent skill, use it, update the consequent of the usage of the
skill, and finally recognize it as a non-contingent one and stop
using it.

After the Frontal-Face, the robot acquired Gaze-Following-

1, developed it to Looking-Back-1, and acquired another non-
contingent skill named Hand-Motion, which indicates that the
robot can find the object by hand gesture h2. Since there seemed
to be no relation between finding the object and the hand gestures
of the robot, therefore the contingency of the Hand-Motion was
reduced to less than the omission threshold after a while. Then,
the robot acquired Looking-Back-2 and Looking-Back-0, and
finally acquired another complex skill with the level of 3, named
“Check Again”: Check-Again-1. This CR informs the robot after
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using Looking-Back-1 (π5), if it looks at the right side of the table
(g1), it can find the object again (r3). In other words, when the
robot detects that the human is looking at the right side of the
table, it follows the gaze of the human and looks at the right side
using Gaze-Following-1 to find the object (π4 in Table 4), then
looks back at the human using Looking-Back-1 to be praised
(π5 in the table), and then, looks at the right side again using
Check-Again-1 to see the object, again (π9 in the table).

To summarize this section, we compared a result of one of
the best cases of the previous method (sbj-A) with two cases
from our proposed method: the case of sbj-B, in which the robot
had a moderate performance and the case of sbj-C, in which
the robot had a higher performance. In the cases of sbj-B and
sbj-C, the robot was able to prevent the underestimation of the
contingencies which occurred after the acquisition of the CRs in
the previous method. This underestimation can be seen in the
case of sbj-A. As a result, the robot could acquire more complex
skills in these cases. This was due to the contribution of the XEP
algorithm. Moreover, the averages of the time steps spent for the
acquisition of simple and complex skills were smaller in these
cases. This was due to the contribution of the OsL algorithm.
The faster skill acquisition also resulted in the acquisition of
more complex skills, concerning the limitation of the time in the
real-world experiment.

4.4. Quantitative Analysis of Performance
In this section, the effect of the proposed algorithms on the
performance of the system was explored. As the measure of the
performance analysis, (1) the coverage of Gaze-Following, (2)
the coverage of Looking-Back, (3) the time required to learn
Gaze-Following, (4) the time required to learn Looking-Back, (5)
the number of the acquired non-contingent skills, and (6) the
number of the expected transition, was elected and the mean of
each performance measure was compared among the experiment
conditions. For each performance measure, a 2 × 2 ANOVA
was conducted with two between subject factors OsL (0 or 1)
and XEP (0 or 1), where 1 indicates that the algorithm was
adopted and 0 indicates it was not. Also, a post-hoc power analysis
was conducted to determine the observed power (1 − β) of the
test, computed using α = 0.05. In the following three sections,
the definition of each performance measure, the result of the
statistical tests, and the discussion about the result was proposed,
respectively.

4.4.1. Performance Measure
For (1) the coverage of Gaze-Following and (2) the coverage
of Looking-Back, the coverage of the acquired Gaze-Following
and Looking-Back were calculated in terms of percentage,
respectively, where 100% means that the robot learned the skill
related to all positions: left, right, and middle of the table. With
respect to the instructions of the experiment, the subjects would
try to draw the attention of the robot to the object; therefore,
the contingency of the Gaze-Following is expected to exist in
the interaction, and had to be learned by the robot. Moreover,
praising process of the caregiver would lead to the existence
of the contingency of Looking-Back in the interaction and had
to be learned by the robot, as well. Therefore, the coverage of

Gaze-Following and Looking-Back seems be fair and adequate
for comparing the learning performance of the systems; for the
simple and the complex skills, respectively.

For (3) the time required to learn Gaze-Following and (4)
the time required to learn Looking-Back, the average time steps
required for learning Gaze-Following and Looking-Back for all
three positions, i.e., left, right, and middle of the table; was
considered, respectively. If a skill was not acquired, the value was
set to 800, i.e., the total time of the experiment. These measures
show the learning speed of the system, specifically the learning of
the simple and complex skills, respectively.

On the other hand, the OsL uses weighted learning, which
may increase the acquisition of the non-contingent skills; and
the XEP may compensate it by increasing the accuracy of the
contingency evaluation. For that, (5) the number of the acquired
non-contingent skills, was considered to be compared among the
conditions. These skills were defined as the ones apart fromGaze-
Following, Looking-Back, Looking-Profile, and Check-Again.
This measure is expected to reflect the non-efficiency of the
learning mechanism of the robot.

Finally, the predictability of the learned skills was compared
to evaluate the usability of the acquired skills of the robot. It
was denoted as (6) the number of the expected transition; and
calculated by the average number of the successful expected
transitions of the environment conducted by utilizing the learned
behaviors. For instance, if the Gaze-Following was used and as
a result the robot could find the object, it was counted as a
successful expected transition.

4.4.2. Result of Comparison and Test
The result of the performance comparison and ANOVA was
summarized in Figure 5. In each graph of the figure, the average,
and the standard deviation of the data gathered from the subject
experiment was plotted. Additionally, the effect of each algorithm
on the performance measure was denoted with the asterisk on
the top left side of each figure, indicating the obtained p-value
for the main effect of each algorithm by ANOVA2. The result
of the mentioned two-way ANOVA for each of the performance
measure is as follows.

For the coverage of Gaze-Following (Figure 5A), the ANOVA
revealed a main effect of OsL, F(1, 44) = 8.57, p = 0.005, η2p =

0.163, with 1 − β = 0.846, indicating that with using the OsL
algorithm the coverage of Gaze-Following was higher (M =

92.1%, SD = 9.6) than the case that the OsL was not used
(M = 74.8%, SD = 35.8). The significance was not confirmed
neither for the main effect of XEP F(1, 44) = 1.24, p = 0.27, nor
for the interaction between the OsL and XEP, F(1, 44) = 0.14,
p = 0.71. Note that according to Figure 5A, the coverage of
Gaze-Following was 69% (SD = 33) using the previous method,
which increased to 81% (SD = 39) by applying the XEP, 94%
(SD = 13) with the OsL, and 100% (SD = 0) using both of
them as in the proposed method. The result of ANOVA for the
coverage of Looking-Back (Figure 5B) showed a main effect of
OsL, F(1, 44) = 25.4, p < 0.001, η2p = 0.366, with 1 − β =

2The p-values are denoted by ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, and ns, not

significant, in the figures of this paper.
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FIGURE 5 | Performance comparison of the four systems: (A) the number of learned skills labeled Gaze-Following, (B) the number of learned skills labeled

Looking-Back (looking back), (C) spent time steps to acquire Gaze-Following, (D) spent time steps to acquire Looking-Back, (E) the number of the skills which is

suppose to be not contingent but acquired, and (F) the number of transitions where the robot succeeded in observing a result as expected by using the acquired

skills. At the top left side of each graph, significant levels of main effects in two-way ANOVA with OsL (Ostensive-cue sensitive Learning) and XEP (Exclusice Evaluation

of Policy) as between-subject factors are mentioned. The p-values are denoted by ***p < 0.001, **p < 0.01, *p < 0.05, and ns, not significant. Note that any

interactions were not confirmed with the ANOVA.
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0.999, indicating that the mean coverage of Looking-Back was
greater when the OsL algorithm was adopted (M = 59.3%,
SD = 27.8) than the cases that the OsL was not used (M = 22.1%,
SD = 33.4). Also, the main effect of XEP yielded an F ratio of
F(1, 44) = 21.7, p < 0.001, η2p = 0.333, where 1 − β = 0.998,
indicating that the mean coverage of Looking-Back was higher
by using the XEP algorithm (M = 58.0%, SD = 35.8) than the
cases that the XEP was not adopted(M = 23.4%, SD = 26.6).
These main effects were not qualified by an interaction between
OsL and XEP, F(1, 44) = 0.29, p = 0.59. Note that as mentioned
in Figure 5B, the low performance of the previous method was
improved from 3% (SD = 10) to 75% (SD = 25) by using the
proposed method.

For the time required to learn Gaze-Following (Figure 5C),
the main effect of OsL was confirmed with the ANOVA, F(1, 44) =
25.9, p < 0.001, η2p = 0.370, with 1 − β = 0.999, indicating that
the mean time required for the acquisition of Gaze-Following
was faster when the OsL algorithm was adopted (M = 282,
SD = 113) compared to the cases that the OsL was not used
(M = 518, SD = 200). However, the significance was shown
neither for the main effect of XEP, F(1, 44) = 2.45, p = 0.125, nor
for the interaction between the OsL and XEP, F(1, 44) = 0.371,
p = 0.55. Note that as mentioned in Figure 5C, the time required
to learnGaze-Following became less than the half in the proposed
method compared with the previous method, i.e., decreased from
568 steps (SD = 183) to 260 steps (SD = 120).

In the case of the time required to learn Looking-Back
(Figure 5D), the result of ANOVA revealed a main effect of OsL,
F(1, 44) = 8.72, p = 0.005, η2p = 0.165, with 1 − β = 0.854,
indicating that the mean time for the learning of the Looking-
Back was faster by using OsL (M = 684, SD = 89) than not
using the OsL (M = 748, SD = 85). Also, the main effect of
XEP yielded an F ratio of F(1, 44) = 17.6, p < 0.001, η2p = 0.286,
where 1 − β = 0.989, suggesting that the mean time required
to learn Looking-Back was faster when the XEP algorithm was
adopted (M = 670, SD = 100) compered with the cases which
the XEP was not used (M = 760, SD = 54). The significance
was not confirmed for the interaction between the OsL and XEP,
F(1, 44) = 0.013, p = 0.91. Note that the average time spent for the
acquisition of the first Gaze-Following and Looking-Back skills
by the robot using the proposed method was 8 min and 25 min
with the standard deviation 5 and 7 min, respectively.

The result of the ANOVA for the number of the acquired non-
contingent skills (Figure 5E) showed neither the main effect of
OsL, F(1, 44) = 0.68, p = 0.41, nor the main effect of XEP,
F(1, 44) = 1.53, p = 0.22, nor the interaction between the OsL and
XEP, F(1, 44) = 1.21, p = 0.28. As mentioned in the figure, when
only the OsL algorithm was utilized, it increased from 2.2 (SD =

2.0) to 3.3 (SD = 2.3), while adopting the XEP decreased it to 1.9
(SD = 2.3) with the proposed method. However, no significant
effects of either of the algorithms were found in the result of the
ANOVA for this measure. Finally, for the number of the expected
transition (Figure 5F), the ANOVA revealed amain effect of OsL,
F(1, 44) = 9.28, p = 0.004, η2p = 0.174 with 1 − β = 0.875,
indicating that the mean number of the expected transition was
grater when the OsL algorithm was adopted (M = 72.8%, SD =

17.6) than the cases that the OsL was not used (M = 53.7%, SD =

26.5). Also the main effect of XEP was supported by the ANOVA,
F(1, 44) = 5.51, p < 0.023, η2p = 0.111, where 1 − β = 0.669,
which suggests that the mean number of the expected transition
was grater by using the XEP (M = 70.6%, SD = 23.7) compared
with the cases that the XEP was not implemented (M = 55.9%,
SD = 22.9). It is not confirmed for the interaction between the
OsL and XEP, F(1, 44) = 0.003, p = 0.96. Note that according
to the figure, the proposed method increased the number of the
expected transition from 47% (SD = 25) to 80% (SD = 15).

4.4.3. Discussion
The OsL algorithm improved the coverage of Gaze-Following
while both of the XEP andOsL algorithms improved the coverage
of Looking-Back. Therefore, the XEP seems to be effective
on learning complex skills, such as Looking-Back, while the
OsL is useful to learn both complex and simple skills, such
as Gaze-Following. The reason for these are considered to
be the increased accuracy of the contingency evaluation (for
XEP), and synchronizing the teaching/learning phases of the
caregiver/robot (for OsL). Thus, adopting both of them will
lead to the highest performance in terms of the coverage of the
skill acquisition. For the Gaze-Following skill, the OsL improved
the time required to learn Gaze-Following. For the Looking-
Back skill, both the XEP and OsL algorithms improved the
time required to learn Looking-Back. The OsL seems to be
effective on the time required to learn Gaze-Following and the
time required to learn Looking-Back due to the synchronization
problem described in section 3.1, while in the case of XEP,
increasing the accuracy of the contingency evaluation, and as
a result, the number of the acquired Looking-Backs seems to
be the reason of the improvement. Thus, adopting both the
algorithms will produce the best performance of the learning
speed for the robot. The OsL uses weighted learning, which may
increase the acquisition of the non-contingent skills, and the XEP
may compensate it by increasing the accuracy of the contingency
evaluation. However, we could not conclude anything because no
significant effects of either of the algorithms and their interaction
were found. Both the XEP and OsL improved the number of the
expected transition. Therefore, using both of the algorithms are
suggested to improve the predictability of the robot’s behavior.

The most significant contribution of the current paper is
building a real humanoid robot that could acquire complex social
skills through sub-hour face-to-face interaction with a human
while the previous work focused on the computer simulation
or needed enormous interaction steps corresponding to several
hours in the real world (Sumioka et al., 2010; Mugan and
Kuipers, 2012; Mahzoon et al., 2016). It is worth noting that
the proposed mechanism still succeeded in reproducing some
infant developmental processes for social behavior resembling
gaze following (Butterworth and Jarrett, 1991) and social
referencing (Tomasello et al., 1995) as reported in the previous
work (Sumioka et al., 2010; Mahzoon et al., 2016), although it is
limited to involving the superficial similarities. Furthermore, it
is also worth noting that the proposed mechanism could adapt
to the behavioral changes in human, that is the emergence of
a rewarding response to the behavioral changes in the robot,
by extending the previously acquired skills. These features
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provide us with a research platform for further investigations
of the flexible or variable developmental mechanism of human-
like social skills in a dynamic and open-ended environment.
However, since the current implementation was still limited to
skills represented by combinations of several action and sensory
variables, how to treat more rich variables formore complex skills
will be the important future work.

4.5. Subjective Evaluation
4.5.1. Questionnaire and Result of Test
To evaluate whether the skill acquisition processes of the robot
utilizing different algorithms make a difference in the subjective
opinion of the participants about the quality of the interaction
as well as the feeling about the intelligence of the robot, we
conducted a subjective evaluation using a questionnaire. It
consisted of seven questions, which were designated with Q1–
Q7. The answers were proposed as five-level Likert scale, where
5 presented strongly agree and 1 presented strongly disagree.
Additionally, to evaluate the transition of the answers over
time, we administered the questionnaire every 200 steps, i.e.,
approximately every 10 min.

Figure 6 shows the average and standard deviation of the
answers (described as score) to each question over time for
each condition of the experiment. The statement used for each
question is brought in the caption of the figure. A mixed-design
three-way MANOVA was conducted with three independent
variables (IVs) and seven dependent variables (DVs), to indicate
the effect of using each algorithm (XEP and OsL) as two between
subjects variables and also the course of time (hereafter denoted
with “Time”) as a within subjects variable on the score of the
questions (score of each questionnaire Q1–Q7) as DVs of the
test. The XEP and OsL indicated whether the corresponding
algorithms were used in the experiment while the Time indicated
the time that the questionnaire was taken and the score was
obtained, which were consisted of four levels, i.e., 10, 20, 30,
and 40 min. Also, a post-hoc power analysis was conducted to
determine the observed power (1−β) of the test, computed using
α = 0.05.

The result of the test suggested a significant multivariate effect
of all three IVs, XEP (Wilk’s 3 = 0.677, F(7,38) = 2.59, p =

0.027, η2p = 0.323, 1 − β = 0.826), OsL (Wilk’s 3 = 0.635,

F(7,38) = 3.12, p = 0.011, η2p = 0.365, 1 − β = 0.899) and

Time (Wilk’s 3 = 0.179, F(21,24) = 5.26, p < 0.001, η2p =

0.821, 1 − β = 1.000) across the DVs. However, no significant
interaction was revealed in the result of the multivariate test.
In the follow-up univariate ANOVAs, while several main effects
were revealed, no interaction between the factors was confirmed.
The result of the test was summarized in Table 5, where only
the revealed significance was mentioned. In this table, for the
within subjects variable Time, except of Q3 and Q5, the result
of Mauchly’s test indicated that the assumption of sphericity had
been violated, therefore the degrees of freedom were corrected
using Greenhouse-Geisser estimates of sphericity. Note that the
univariate ANOVAs were conducted using Bonferroni adjusted
alpha levels of .007 concerning the number of the questions, i.e.,
.05/7. Also, to facilitate the discussion, the result of the univariate

ANOVAs were summarized in the top left side of each graphs
in Figure 6, indicating the p value of the main effect for the
independent variables. As shown in the figure, it was revealed that
the XEP algorithm was effective to increase the score of perceived
intention (Q1), expected reaction (Q2), and human enjoyment
(Q4), while the OsL algorithm was also effective to increase these
scores in addition to the other twos; robot enjoyment (Q3) and
robot’s conformation (Q6). Also, this figure and Table 5 showed
that the variable Time had main effect on all DVs, except of Q7.

To indicate how the scores were changed in the course of
time, the post hoc multiple comparison using Dunnett’s method
was conducted for the variable Time, using Bonferroni adjusted
alpha levels of .007 concerning the number of the questions,
i.e., .05/7. In this comparison, the score at Time=10min was
compared with the others, i.e., Time = 20, 30, and 40min. The
result of the comparison was summarized in Table 6. As shown
in the table, for all of the questions mentioned in the table,
the score was significantly increased from Time = 10 min to
all of the other Times, except for one case, i.e.m, for Time =

20 min in Q5. In other words, it was revealed that compared
to the first subjective evaluation (i.e., at Time = 10 min), the
evaluation of the perceived intention (Q1), expected reaction
(Q2), robot enjoyment (Q3), human enjoyment (Q4), and robot’s
conformation (Q6) were significantly increased after the second
evaluation (i.e., at Time = 20 min), while the evaluation for
robot’s mind (Q5) was significantly increased after the third
evaluation (i.e., at Time= 30 min).

4.5.2. Discussion
The factor of time was effective on the improvement of all
of the question items, except for human conformation (Q7).
The improvement of the scores from 10 to 20 or 30 min
indicated that, in course of time, the robot even with neither
of the proposed algorithms seemed to became looking more
positive in many aspects, understanding human’s intention (Q1),
reacting as human expected (Q2), having its own mind (Q5), and
conforming its behavior to human’s behavior (Q6), and enjoying
interaction (Q3) while human became enjoying interaction (Q4).
This suggests that the basic developmental algorithm of the skill
acquisition worked properly based on the subjective criteria.

The XEP and OsL algorithm were both effective on improving
the score of some questions. Meanwhile, they improved
the learning performance of skills necessary to follow the
human’s instruction, which is Gaze-Following and Looking-
Back. Therefore, the human subjects seemed to feel that the
robot understood his/her intention (Q1) of instruction, reacted
as he/she expected (Q2), and consequently he/she could praise
the robot more often which would make the interaction more
enjoyable for the human (Q4). On the other hand, only the OsL
had the main effect on the scores of robot’s enjoyment (Q3) and
robot conformation (Q6). It is considered to be sub-effects of
the stopping behavior of the robot toward the human adopted in
the OsL, which could represent the robot’s attitude to positively
follow the human’s behavior. However, the results of the ANOVA
for Q5 and Q7 had no significant effect of either of the proposed
algorithms. A post hoc interview revealed that some subjects
found negative meaning in the word “human conformation”
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FIGURE 6 | Mean scores of questionnaire. (A) Q1: The robot understood my intention, (B) Q2: The robot reacted as I expected, (C) Q3: The robot looks like it is

enjoying the interaction, (D) Q4: I enjoyed the interaction, (E) Q5: I felt that the robot had its own mind and behaved based on it, (F) Q6: The robot conformed its

behavior to my behavior, and (G) Q7: I conformed my behavior to robot’s behavior. Each sub-figure includes four comparisons in each time step (t = 10, 20, 30, and

40 min) among four conditions of learning method: previous work, learning only with Ostensive-cue sensitive Learning (only-OsL), learning only with Exclusive

Evaluation of Policies (only-XEP), and learning both with the OsL and XEP (proposed). At the top left side of each graph, significant levels of main effects in the

follow-up univariate ANOVA with Time as within-factor and OsL and XEP as between-subject factors are mentioned. The p-values are denoted by ***p < 0.001/7,

**p < 0.01/7, *p < 0.05/7, and ns, not significant, considering Bonferroni correction concerning the number of the questions, i.e., 7 question items. Note that any

interactions were not confirmed with the ANOVA.
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TABLE 5 | Result of the follow-up univariate ANOVA for the questionnaire.

Item Factor df1 df2 F(df1,df2) p η2p 1 − β

Q1 XEP 1 44 10.7 0.002 0.196 0.949

OsL 1 44 11.5 0.001 0.208 0.963

Time 2.01 88.5 47.8 0.000 0.521 1.000

Q2 XEP 1 44 9.41 0.004 0.176 0.917

OsL 1 44 12.0 0.001 0.215 0.969

Time 2.53 111 38.3 0.000 0.465 1.000

Q3 OsL 1 44 10.0 0.003 0.186 0.934

Time 3 132 24.2 0.000 0.355 1.000

Q4 XEP 1 44 14.6 0.000 0.249 0.989

OsL 1 44 7.96 0.007 0.153 0.862

Time 2.32 102 12.1 0.000 0.215 1.000

Q5 Time 3 132 11.8 0.000 0.211 1.000

Q6 OsL 1 44 15.2 0.000 0.256 0.992

Time 2.04 89.7 26.7 0.000 0.378 1.000

Only the significant factors are mentioned for each question items, considering Bonferroni adjusted alpha levels of .007 (i.e., .05/7) concerning the number of the questions, i.e., 7

questions. The degree of freedom for the factor and the error for the F-test was denoted with df1 and df2, respectively. The result of the F-test [F (df1,df2 )], p-value (p), effect size (η
2
p )

and the power of the test (1− β) were denoted as well.

TABLE 6 | Result of the multiple comparison with Dunnett’s method for the variable Time considering Bonferroni adjusted alpha levels of 0.007 (i.e., 0.05/7) concerning

the number of the questions, i.e., 7 questions.

Item M1 SD1 T2 M2 SD2 p Cohen’s d 1 − β

Q1 2.54 1.17 20 3.31 0.75 0.000 0.787 1.000

30 3.77 0.78 0.000 1.231 1.000

40 4.08 0.90 0.000 1.482 1.000

Q2 2.33 1.08 20 3.10 0.86 0.000 0.792 1.000

30 3.60 0.87 0.000 1.297 1.000

40 3.79 0.80 0.000 1.529 1.000

Q3 2.58 0.92 20 3.04 0.80 0.001 0.532 0.950

30 3.38 0.82 0.000 0.912 1.000

40 3.60 0.87 0.000 1.140 1.000

Q4 3.22 1.19 20 3.81 0.84 0.000 0.566 0.970

30 3.88 0.91 0.000 0.609 0.985

40 4.06 1.00 0.000 0.759 0.999

Q5 2.83 1.02 20 3.19 0.76 0.051 0.389 0.752

30 3.40 0.79 0.001 0.616 0.987

40 3.67 0.95 0.000 0.845 1.000

Q6 2.77 1.17 20 3.31 0.80 0.001 0.540 0.956

30 3.77 0.69 0.000 1.040 1.000

40 3.92 0.85 0.000 1.122 1.000

In the comparison, the Time = 10 was compared with the others. In the columns of the table, the question item (Item), the mean and SD of the scores for the question at Time = 10 (M1

and SD1, respectively), the time that compared with (T2), the mean and SD of the scores for T2 (M2 and SD2, respectively), the p-value of the comparison (p), the effect size (Cohen’s

d) and the power of the test (1− β) were indicated.

(Q7). Also, the meaning of “mind” in Q5 might largely vary
among the subjects. These might mean that they are difficult to
be directly used as subjective measures.

In sum, we compared the result of the subjective evaluation of
the participants in different conditions of the experiment related
to their opinion about the quality of the interaction as well as the
intelligence of the robot. The result showed a significant effect

of the OsL and XEP algorithm on the evaluation. As described
in section 1, when a caregiver recognizes a contingent and
intelligent reply from an infant, he/she usually changes his/her
behavior to teach a new concept to the infant. Assuming that
the increase in the result of the evaluation expressing the higher
level of such recognition, we can conclude that the proposed
algorithms are significantly effective in inducing the caregiver to
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change his/her behavior and teach the infant robot a new concept.
Consequently, the OsL and XEP could successfully contribute to
an increase in an open-ended development of the infant robot.
However, the items of the questionnaire applied in this part
were not completely independent and there were correlation
among some of them. Since a set of questionnaire to evaluate
how the impression of the subjects about the robot was changed
along with its development is not established yet, studying and
inventing a suitable set with a factor analysis for such evaluation
is an important future work of this field.

5. CONCLUSION

In this paper, we proposed two novel algorithms to improve
the performance of the social skill learning of an infant
robot during interaction with a human caregiver: namely
the Ostensive-cue sensitive Learning (OsL) and the Exclusive
Evaluation of Policies (XEP) algorithms. The OsL was inspired
by the natural pedagogy of the human being and proposed
a synchronized weighted learning mechanism based on the
ostensive signals of the caregiver. The XEP algorithm proposed
a way to improve the accuracy of the contingency evaluation
by separating the histogram of the contingencies related to the
acquired policies and atomic variables. The OsL was expected
to increase the learning speed of the robot, while the XEP was
expected to improve the accuracy of the contingency evaluation,
especially those related to the acquired policies (i.e., complex
skills).

The results of our humanoid robot experiment with human
subjects showed that the OsL was effective in increasing the
learning speed of the simple and complex skills, and consequently
increasing the number of learned skills by the robot; while the
XEP increased the accuracy of the contingency evaluation and
was effective in increasing the coverage of complex skills as well
as the time-steps required for the learning. These improvements
resulted in enabling the infant robot and the human subject to
predict each others’ behavior. As a result, statistical analysis of
the experiment showed a significant effect of both algorithms on
increasing the number of the expected transition of the infant
robot, the subjective evaluation of the human participants about
the quality of the interaction and the intelligence of the robot.
Since the level of the recognition of the human caregiver about
the intelligence of the robot has an impact on the teaching

tendency of the caregiver, the increase in the subjective evaluation
can be expressed as a contribution of the proposed algorithms
on increasing the opportunity of the open-ended development of
the infant robot. Finally, the proposed mechanism of this paper
enabled the robot to learn some primitive social skills within a
short time-step of a real-world interaction with a human subject:
simple skills such as the Gaze-Following behavior after 8 min,
and complex skills such as Looking-Back behavior after 25 min.

However, the variables utilized in this work were assumed to
be quantized, and themodality of the sensory and action variables
of the robot were still few. Utilizing dynamic quantization
methods such as that proposed in the previous work (Mugan
and Kuipers, 2012) could be a way to treat continuous
variables. Meanwhile, the way to dynamically adapt the learning
parameters of the system to the developmental change in
quantization level would be an important topic. Research on
this topic will propose an insight about the developmental
models, which may be compared with the model of human
infant. Moreover, adding more modalities to the variables, such
as the voice of the caregiver to the sensory variables, and
speaking/uttering ability to the action variables of the robot
could increase the complexity of the interaction as well as
that of acquired skills by the robot. Nevertheless, treating with
the probable huge varieties of the caregiver’s behavior will be
one of the challenging issues for the implementation of the
developmental robot in such an environment. These problems
are needed to be considered as the main topics of the future work.
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