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Abstract. We have generated transgenic mice express- 

ing the proto-oncogene c-fos from an H-2K b class I 

MHC promoter as a tool to identify and isolate cell 

populations which are sensitive to altered levels of Fos 

protein. All homozygous H2-c-fosLTR mice develop 
osteosarcomas with a short latency period. This 

phenotype is specific for c-fos as transgenic mice ex- 

pressing the fos- and jun-related genes, fosB and 
c-jun, from the same regulatory elements do not de- 

velop any pathology despite high expression in bone 

tissues. The c-fos transgene is not expressed during 

embryogenesis but is expressed after birth in bone tis- 

sues before the onset of tumor formation, specifically 

in putative preosteoblasts, bone-forming osteoblasts, 
osteocytes, as well as in osteoblastic cells present 
within the tumors. 

Primary and clonal cell lines established from 

c-fos-induced tumors expressed high levels of exog- 

enous c-fos as well as the bone cell marker genes, 

type I collagen, alkaline phosphatase, and osteopon- 
tin/2ar. In contrast, osteocalcin/BGP expression was 

either low or absent. All cell lines were tumorigenic 

in vivo, some of which gave rise to osteosarcomas, ex- 

pressing exogenous c-fos mRNA, and Fos protein in 

osteoblastic cells. Detailed analysis of one osteogenic 

cell line, P1, and several Pl-derived clonal cell lines 
indicated that bone-forming osteoblastic cells were 

transformed by Fos. The regulation of osteocal- 

cin/BGP and alkaline phosphatase gene expression by 
1,25-dihydroxyvitamin D3 was abrogated in Pl-derived 

clonal cells, whereas glucocorticoid responsiveness 

was unaltered. These results suggest that high levels of 
Fos perturb the normal growth control of osteoblastic 

cells and exert specific effects on the expression of the 

osteoblast phenotype. 

T rtE proto-oncogene c-fos is the cellular homologue of 
the v-fos oncogene which was first detected as the 
transforming gene of the FBJ- and FBR-murine sar- 

comas viruses (MSVs) 1 (Finkel et al., 1966, 1975). As a 
member of the AP-1 transcription factor complex the Fos on- 
coprotein has been implicated as a key molecule in cell 
proliferation and signal transduction as well as in regulating 
gene transcription (for review see Curran 1988; Bravo, 
1990; Angel and Karin, 1991). Transcriptional regulation by 
Fos andfos-related genes (fosB, fra-1, andfra-2) involves for- 
marion of heterodimeric complexes with members of thejun 
family of proto-oncogenes (c-jun, junB, junD) and subse- 
quent binding to AP-1 consensus sequences in the regulatory 
regions of target genes (Lee et al., 1987; Chiu et al., 1988; 
Sassone-Corsi et al., 1988; Kouzarides and Ziff, 1989; Ran- 
sone and Verma, 1990; Angel and Karin, 1991). 

1. Abbreviations used in this paper: ALP, alkaline phosphatase; Dex, dexa- 
methasone; ES, embryonic stem; GRE, glucocorticoid response element; 
MSV, murine sarcoma virus; OC, osteocalcin/BGP; 1,25-(OH)2D3, 1,25- 
dihydroxy-vitamin D3; Op, osteopontin/2ar; VDRE, vitamin D3 respon- 
sive element. 

The regulation of c-fos expression is quite complex as 
many factors have been shown to cause both transient activa- 
tion and repression of c-fos transcription (Treisman, 1985; 
Shaw et al., 1989; LucibeUo et al., 1989; see also Ovitt and 
Riither, 1990 for review). Despite this apparent complexity, 
stable expression of endogenous c-fos has been documented 
in vivo in different mouse tissues. For example, expression 
in the adult animal has been observed in haematopoietic 
cells, germ cells, in the central nervous system, and in bone 
(MOiler et al., 1984; Morgan et al., 1987; Pelto-Huikko et 
al., 1991; Smeyne et al., 1992; Cohen et al., 1993). During 
embryogenesis c-fos is expressed during mid to late gesta- 
tion, specifically in the central nervous system and in the 
growth regions of fetal bones, cartilage, and developing teeth 
(Dony and Gruss, 1987; De Togni et al., 1988; Sandberg et 
al., 1988; Caubet and Bernaudin, 1988; Caubet et al., 
1989). The association between fos expression and bone- 
forming cells is of specific interest as evidenced by the obser- 
vations that c-fos is expressed at high levels in murine (Sch6n 
et al., 1986) and human osteosarcomas (Wu et al., 1990). 
Moreover, bone formation in in vitro organ culture systems 
and during fracture healing is preceded by c-fos expression 
(Closs et al., 1990; Birek et al., 1991; Ohta et al., 1991). 
In addition, v-fos induces chondro-osseous neoplasms in 
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neonatal mice (Ward and Young, 1976) and transforms os- 
teogenic cells in tissues undergoing osteogenesis in vitro 
(Schinidt et al., 1986). Although these data suggest that Fos 
protein may have a specific function in osteogenic cells, its 
specific role in normal bone formation and its causal role in 
bone neoplasia cannot be established by these studies. 

Despite the numerous studies investigating the regulation 
of bone cell function, the molecular basis of osteoblast com- 

mitment and differentiation, and the factors which regulate 
osteoblast gene expression are not fully understood. The use 
of primary, transformed, and immortalized osteoblastic cell 

populations has indicated that the regulation of the osteoblast 
phenotype by systemic hormones and local factors is very 
complex (Rodan and Rodan, 1984; Nijweide et al., 1986; 

Heath et al., 1989; Guenther et al., 1989; Kellermann et al., 
1990; Heersche and Aubin, 1990; Aubin et al., 1992). Os- 
teoblasts comprise a heterogeneous group of cells and defini- 
tive markers for different stages of osteoblast differentiation 
are not yet known. Nevertheless, cells in the osteoblastic lin- 
eage express at high levels a number of structural genes, for 

example, type I collagen, alkaline phosphatase, osteopon- 
tin/2ar, bone sialoprotein, osteocalcin/BGP, and osteonec- 
tin/SPARC, some of which have been proposed recently to 
be expressed sequentially during osteoblast differentiation in 
vitro (Aronow et al., 1990; Turksen and Aubin, 1991; Aubin 
et al., 1992). How these genes are regulated at the molecular 

level is not entirely clear, although the AP-1 transcription 
factor complex has received much attention in this regard. 
The AP-1 complex is considered to be a general transcription 
factor, but it may have a specific role in bone cell differentia- 
tion and osteoblastic gene expression as evidenced by the ob- 
servations that the expression of some genes which are ex- 

pressed by osteoblastic cells appear to be regulated by AP-1 
in vitro (Kerr et al., 1988; Schtnthal et al., 1988; Schfile et 
al., 1990; Lian et al., 1991). Thus, the identification of such 
regulatory factors is important not only for investigating 
normal bone development but also for understanding the cel- 
lular and molecular mechanisms underlying the perturbation 

of cell growth and differentiation in metabolic bone disease 
and in bone neoplasia. 

Attempts to define the biological role of c-fos have in- 
volved both in vitro and in vivo approaches. Gene transfer 

studies in vitro have indicated that c-fos may play a role in 
cell differentiation, although its effects may vary in different 

cell types (Miiller and Wagner, 1984; Riither et al., 1985; 
Mitchell et al., 1986; Distel et al., 1987; Rahm et al., 1989; 
Lassar et al., 1989; Field et al., 1992). With respect to in 
vivo studies, we have previously used "gain-of-function" and 

"loss-of-function" approaches to address the biological func- 
tion of c-fos (for review see Wagner and Keller, 1992; 
Grigoriadis et ai., 1993). Transgenic mice over-expressing 
c-fos under the control of the human metallothionine pro- 
moter (MT-c-fosLTR mice) develop specific lesions in the 
long bones as early as 2-3 wk after birth (Riither et al., 
1987), and a low frequency of the mice (,,o15%) developed 
osteosarcomas after a 9-10-mo latency period (Rfither et al., 
1989). By comparison with the transgenic mice, MT-c- 

fosLTR chimeric mice generated using embryonic stem (ES) 
cells selected for high exogenous c-fos expression develop 
chondrosarcomas, which are caused by a specific effect of 
Fos on chondrogenic cells (Wang et al., 1991, 1993). Finally, 
we and others have recently reported that mice lacking func- 

tional Fos protein develop osteopetrosis (Wang et al., 1992; 
Johnson et al., 1992), demonstrating unequivocally that Fos 
is a critical molecule for the normal development and/or 
differentiation of skeletal tissues. Taken together, these data 

suggest that bone and cartilage tissues are sensitive to altered 
levels of Fos protein. 

In contrast to c-fos chimeric mice in which chondrogenic 
cells are specifically transformed (Wang et al., 1991), there 
is no direct evidence from the MT-c-fosLTR transgenic mice 
indicating which specific cell types are affected. A prelimi- 

nary characterization of primary cell populations from MT- 

c-fosLTR-induced tumors suggested that osteoblastic cells 
may indeed be affected (Goralczyk et al., 1990). To better 
define the causal role of c-fos in osteosarcoma formation and 
to identify the affected cell populations, we aimed to estab- 
lish a c-fos transgenic family in which osteosarcoma forma- 

tion was more prevalent. To this end, we have generated 
transgenic mice with the c-fos gene fused to the H-2K b class 

I MHC promoter which should lead to a broader expression 
pattern and higher expression levels in transgenic mice 
(Morello et al., 1986). To assess the specificity of c-fos in 
comparison with other AP-1 proteins we also generated 

transgenic mice expressing fosB and c-jun in several tissues 
including bone, where these genes are normally not ex- 
pressed (Wilkinson et al., 1989; Redemann-Fibi et al., 
1991). In this report we characterize in detail one c-fos trans- 
genic family which develops osteosarcomas with 100% 
penetrance. This phenotype is specific for the Fos oncopro- 

tein and a developmental analysis of transgene expression 
and characterization of primary and clonal cell populations 
has demonstrated that osteoblastic cells are principal targets 
for c-fos-induced oncogenesis. 

Materials and Methods 

Construction of DNA Vectors and Generation of 
Transgenic Mice 

The DNA vector used in this study (H2-c-fosLTR) contains the murine 
genomic c-fos gene fused to the MHC class I H2-K b promoter (H2; Mor- 
eUo et al., 1986). In addition, the 3~unstransiated region including the poly- 
adenylation site of c-los was replaced with the intact 3' LTR of the FBJ- 
MSV. This vector (p128/1) was constructed from the MT-c-fosLTR vector 
(15/6/21) described previously (Riither et al., 1985). Briefly, the 3' SalI- 
EcoRI fragment of p76/21 containing the 3' LTR of the FBJ-MSV virus was 
exchanged with the 3' SalI-EcoRI fragment of c-fos in the H2-c-fos vector 
described earlier (Rfither ct al., 1988). The FBJ-derived fragment also con- 
tains the coding region for the viral envelope protein pl5E (Van Beveren 
et al., 1983). For microinjection, a 7-kb HindIII fragment was isolated with- 
out any vector sequences and microinjected into fertilized mouse eggs 
(C57BL/6 × CBA x Him OF1) as described by Hogan et al. (1986). 

The H2-c-junLTR DNA vector was constructed via blunt-end ligation by 
replacing the SalI fragment of p128/1 containing c-los with a 1.7 kb EcoR1- 
PstI fragment containing the murine c-jun gene (NheI-PstI fragment). A 6.1- 
kb Hindl]I fragment without vector sequences was microinjected into fertil- 
ized MF-1 oocytes. For construction of the H2-fosBLTR vector (constructed 
by M. Schuermann and R. Miiller, IMT, Marburg, Germany), a 1.6-kb SalI 
fragment containing the murine fosB cDNA replaced the SalI fragment of 
p126/3 (H2-c-fos; see Riither et al., 1988) containing c-los. A 1.5-kb SalIo 
EcoRI fragment from p76/21 containing the 3' FRI-LTR was then cloned 
into the SalI-EcoRI site of p126/3 to yield H2-fosBLTR. A 6.5-kb Bgll frag- 
ment without vector sequences was microinjected into fertilized (Him OFI 
x ICR) oocytes. 

Histological Analysis 

Transgenic mice were killed by cervical dislocation and tissues were fixed 

The JournR[ of Cell Biology, Volume 122, 1993 686 



immediately in 3.7% paraformaldehyde in PBS at room temperature for 
16-24 h. Mineralized tissues were demineralized in 0.5 M EDTA, pH 7.6, 
for 2-4 d at 4°C. After fixation and demineralization, tissues were de- 
hydrated through RNase-free graded alcohols and toluene and infiRrated 
with paraffin (l-listowax; Reichert-Jung, Vienna) at 58°C overnight under 
vacuum. Sections (4-6 pan) were cut, attached to 3-aminopropyltriethoxy- 
silane-treated slides (TESPA; Sigma Immunochemicals, St. Louis, MO) 
and stained by Haematoxylin and Eosin (H+E; Sigma Immunochemicals). 
Radiographs were taken on anesthetized mice. 

In Situ Hybridization and 
Immunohistochemical Analyses 

Preparation of tissue sections were performed as described above. The 
probe used for RNA in situ hybridization experiments, designated pB15 
(Fig. 1), is a 480-bp PCR fragment derived from the FBJ-MSV portion of 
p76/21 using the following PCR primers: primer 1, 5' AAGACGAGC- 
CAAATATAAAAAG 3'; primer 2, 3' C C A ~ C T A T T A G G A G A A C  5'. 
This fragment, was subcloned into a pBhiescript KS vector (Stratagene, La 
Jolla, CA) and sense and antisense cRNA probes were generated by in vitro 
transcription in the presence of [35S]-labeled rUTP. The radiolabeled tran- 
scripts were degraded by controlled hydrolysis in 100 mM bicarbonate 
buffer (pH 9.4, 65°C, 1 h) to 50-100 bp. In situ hybridizations were per- 
formed as described by Aguzzi et al. (1990). 

FOr immunohistochemical staining for FOs protein we used a polyclonal 
rabbit antiserum specific for c-Fos protein (a gift from Dr. M. Nicidin, IMP, 
Vienna). An ultrasensitive Avidin-Biotinylated Enzyme Complex (ABC) 
staining kit (Pierce Chemical Co., Rockford, IL) was used on paraffin sec- 
tions according to the details specified by the supplier. Positive staining was 
visualized by incubation with DAB. Control sections were performed using 
PBS instead of FOs antibody. 

Northern Blot Analyses 

Northern analyses were performed on poly(A) + RNA isolated from both 
cell and tissue samples. RNA isolation from cells was performed as de- 

scribed previously (Wang et al., 1991) using ,x,5 x l07 cells, harvested at 
confluence and stored at -80°C until further analysis. RNA isolation from 
tissues was performed using a modification of the methods of Chomczynski 
and Sacchi (1987) and electrophoresis was performed according to the 
formaldehyde/agarose method described by Maniatis et aL (1982). The fol- 
lowing probes were used: for c-fos expression we used either a fragment 
from v-los/Fox (Van Beveren et al., 1983) or a 8-kb HindIH fragment from 
p76/21 (MT-c-fosLTR). Both probes recognize FOx, an abundant class of 
RNA present in mouse tissue at loci not related to c-fos. Probes for c-jun 
(5600bp fragment; Ryseek et al., 1988),junB 0.8-kb fragment), junD (1.0o 
kb fragment), and fra-1 (1.4-kb fragment) were a gift from Dr. R. Bravo 
(Bristol-Myers Squibb, Princeton, NJ). Other probes used were: fosB (1.6- 
kb fragment; Dr. R. M~ller, IMT, Marburg, FRG), cd(I) collagen (1.5-kb 
fragment; Dr. K. Kratochwll, University of Salzburg, Auslria), alkaline 
pbosphatase (2-kb fragment; Dr. J. Schmidt, GSE Munich, FRG), os- 
teopontin/2ar (1-kb fragment; Dr. B. Hogan, Vanderbilt University, Nash- 
ville, TN), osteocalcin/BGP (4500bp fragment) and BMP-2 (2500bp frag- 
ment; Dr. J. Wozney, Genetics Institute, Boston, MA), and glyceraldehyde 
3-phosphate dehydrogenase (GAPDH, 1.00kb fragment). For specific hy- 
bridization to the c-jun transgene (see Fig. 2 C), we used pB15 as a probe 
(see above and Fig. 1). All probes were labeled with 32p-labeled dCTP 
using an oligolabeling kit (Pharmacia Fine Chemicals, Piscataway, NJ) to 
a final specific activity of 4 × l0 s cpm/~tg DNA. 

Cell Culture, Cloning, and Tumorigenicity Assay 

For the isolation of cell lines fromfos transgenic mice, tumors from different 
locations were dissected aseptically, cleaned of adherent connective tissue 
and washed with PBS containing antibiotics. Tissues were minced with scis- 
sors and tissue fragments were either explanted into 35-ram culture dishes, 
or digested three times (each 20 rain) with 0.1% hyahironidase/0.2% col- 
lagenase (Sigma Immunochemicals). After each digest, the cells were cen- 
trifuged and resuspended in standard culture medium. All isolated cells 
were cultured in DME containing 10% FCS and antibiotics at 37°C in a 
humidified atmosphere of 5 % CO2 in air, propagated to high cell numbers 
and frozen at -80°C. Cells were subcultured routinely at confluence by a 
1:5 split ratio using 0.05% trypsin-EDTA in modified Puck's saline A 
(GIBCO-BRL, Gaithersburg, MD). Tumor-derived cell lines were desig- 
nated R3, C1, C2, C3, P1, K6, K7, Kll, and K14, isolated from tumors 
originating from the ribs (R), calvaria (C), pelvis (P), and long bones (K), 

respectively. One cell line derived from newborn calvaria (NC) of trans- 
genie mice was isolated. The clonal rat osteosarcoma cell line (ROS 17/2.8) 
which expresses osteoblastic characteristics was obtained from Dr. G. A. 
Rodan (Merck, Sharpe and Dohme, West Point, PA; see also Rodan and 
Rodan, 1984) and cultured as described above. FOr clonal analysis, single- 
cell suspensions of P1 cells were plated at limiting dilutions of 0.5 and 1.0 
cell/6 nun microtitre well. Colonies arising from single cells were identified 
after several days. 16 clones were isolated (PI.1 to PI.16) and expanded for 
further study. 

For analysis of tumorigenicity, primary cell lines and clones were in- 
jected subcutaneously ('~1 × 106 cells in 50 #1 PBS) into the dorsal 
regions of 4- to 6-wk-old nude mice. Upon macroscopic identification of 
the tumors, animals were killed, and the tumors were dissected and ana- 
lyzed histologically as described above. 

Treatment with Steroid Hormones 

For gene regulation studies by steroid hormones, we treated t>1.9 and PI.15 
clonal cells with either 1,25-dihydroxyvitamin D3 (1,25-[OH]2D3; a gift 
from Dr. U. Fischer, Hoffmann-La Roche, Basel), or dexamethasone (Dex; 
Sigma Imrnunochemicals). Stock concentrations of each hormone were pre- 
pared in absolute ethanol and stored at -20°C. Cells were plated in stan- 
dard media, then incubated with either 10 -7 M 1,25-(OH)2D3, 10 -7 M 
dexamethasone or 0.1% ethanol vehicle for 72 h in media containing 1% 
FCS. Cells were then harvested and poly(A) + RNA was isolated as de- 
scribed above. 

Results  

Bone Tumors Develop with 100% Efficiency in 
H2-c-fosLTR Transgenic Mice 

The c-fos construct used to generate transgenic mice (H2-c- 
fosLTR) contains the murine genomic c-fos gene fused to the 
murine H-2K b class I MHC promoter (H2) (Fig. I). In ad- 
dition, the 3' mRNA destabilizing sequences and polyaden- 
ylation (polyA) site of c-fos have been replaced with a 3' LTR 
from the FBJ-MSV to ensure stability of the c-fos mRNA 
(Riither et al., 1985). Using this vector, two exogenous c-fos 
transcripts are predicted: a 3.0-kb transcript terminating at 
the polyA site present in the FBJ-LTR and a shorter 2.0-kb 
transcript which terminates at a cryptic polyA site present in 
the FBJ-derived sequence. For the generation of transgenic 
mice, the purified H2-c-fosLTR fragment without vector se- 
quences was microinjected into fertilized eggs. A total of 
four independent founder animals were obtained and all de- 
veloped noticeable swellings in the long bones, pelvis, and 
along the vertebral column at 2-3 mo of age (see also Riither 

i~ FBJ-MSV 

H B S H B 

L...~ H.2K b ~ I L c . f o $  ~ p 1 5 E  ] ] 

RNA (3.0 kb) 

RNA (2.0 kb) 

Figure 1. The DNA construct (H2-c-fosLTR) used for generation 

of c-fos transgenic mice. The murine genomic c-fos gene is fused 

to the MHC class I I-I2-K b promoter. The sequence 3' to the SalI 

site is derived from the FBJ-MSV and contains the 3' FBJ long ter- 

minal repeat (3' LTR) as a polyadenylation signal as well as the cod- 

ing sequence from the retroviral envelope protein pl5E. Two c-los 
mRNA transcripts are synthesized as indicated. The solid bar 

represents the transgene-specific probe (pB15) used for in situ hy- 

bridization experiments as described in the Materials and Methods. 
H, HindIH; B, BamHI; S, SalI. 
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Figure 2. Northern blot analy- 
sis of c-fos, fosB, and c-jun 
transgene expression in differ- 
ent tissues of transgenic mice. 
(,4) e-los expression in tissues 
of a 7-too-old male homozy- 
gous H2-c-fosLTR transgenic 
mouse. The filter was hybrid- 
ized with a c-fos probe which 
detects both exogenous (3.0 
and 2.0 kb) and endogenous 
(2.2 kb) c-fos transcripts. A 
clear signal for exogenous 
c-fos is also detected in brain 
and salivary gland tissues 

upon longer exposure. (B) fosB expression in tissues of two 2-mo-old male beterozygous H2-fosB LTR transgenic mice. The filter was 
hybridized with afosB probe and shows the exogenousfosB transcript (2.6 kb). (C) c-jun expression in tissues ofa 3-mo-old male heterozy- 
gous H2-e-junLTR transgenic mouse. The filter was hybridized with a probe which detects only the exogenous c-jun transcript (3.2 kb; 
see Materials and Methods). The endogenous Fox gene (0.6 kb) was used as a control (Co) for RNA loading in (A) (see Van Beveren et 
al., 1983) while GAPDH (1.4 kb) was used for B and C RNA was isolated and filters were probed as described in the Materials and Methods. 
5 ~tg of poly(A) + RNA were loaded per lane. Tissues analyzed were: S, spleen; L, liver; T, thymus; H, heart; Lu, lungs; G, gonads; 1, 
intestine; K, kidneys; M, muscle; B, brain; SG, salivary gland; LB, long bone; C, caivaria containing tumor; Tu, tumor only (osteosarcoma). 

et al . ,  1989). We were not able to obtain offspring from three 

of  the founder animals and breeding was difficult probably 

due to the size and severity of  the lesions. However, one 

founder animal transmitted the transgene to its offspring and 

a family was established (designated No. 131) which was 

bred to homozygosity. Al l  mice developed skeletal tumors: 

whereas mice heterozygous for the transgene developed pal- 

pable tumors after '~6 mo of  age, homozygous offspring de- 

veloped palpable tumors earlier, between 10 and 12 wk of  

age suggesting that the levels of  c-los expression can affect 

the onset of  tumor formation. Examination of  the mice at au- 

topsy confirmed that only the bones were affected as no mac- 

roscopic abnormalit ies were observed in any other tissues. 

Al l  subsequent studies were performed on homozygous 

mice. 

To investigate the relationship between tumor formation 

and exogenous c-los expression we performed Northern blot 

analysis on tumor tissues as well as on unaffected tissues of  

adult transgenlc mice. Exogenous c-los was expressed at 

highest levels in the tumor tissues, however, expression was 

not confined to the tumors, as the transgene was also ex- 

pressed at high levels in heart, lung, brain, and salivary 

gland (Fig. 2 A). Unaffected bones, thymus and skeletal 

muscle also expressed the transgene (data not shown). All  

mice analyzed showed a similar expression pattern and have 

maintained this pattern in subsequent generations for over 

3 1/2 y (i.e., over 10 generations) (data not shown). 

H 2 - f o s B L T R  and  H 2 - c - j u n L T R  Transgenic  M i c e  

E x h i b i t  N o  B o n e  Pathology  

Independent transgenic mouse strains harboring fosB  and 

c-jun transgenes in the context of  the identical regulatory ele- 

ments were established to assess the oncogene specificity of  

bone tumor formation. In H2-fosBLTR transgenlc mice, ex- 

ogenous fosB  mRNA (and FosB protein; data not shown) 

was expressed in several tissues, for example, in spleen, 

liver, thymus, intestine, and in bone (Fig. 2 B).  These mice 

have been bred to homozygosity and no abnormalit ies have 

been observed in mice older  than 1.5 y of  age, even though 

the identical DNA construct can transform fibroblasts in 

vitro. Similarly in H2-c-junLTR transgenic mice the c-jun 

Table I. Expression o f  Different AP-1 Gene Constructs in Transgenic Mice 

Bone 

Construct No.* S L T H Lu G I K M B SG LB C Tumor 

H2-c-fosLTR 1' - - + + + + + + - - - 4- + - + + + + + + + + 

H2-c-fosLTR 2§ + ± + + + + + - ND + + + + + + + + + + ND + + + 
H2-fosB LTR 5 + + + + + + + + - - ND + + + ND ND - - + + + + 0 
H2-c-junLTR 2 + + + + + + + + + + + + + + + + + + + + + + + + 0 

A summary of eetopic AP-1 gene expression in different tissues of transgenic mice overexpressing c-los, fosB, and c-jun. In all DNA constructs, the transgene 
was fused to the murine MHC class I H-2K b promoter (H2), and contained the 3' LTR from the FRI-MSV as a polyadenylation signal (see Materials and Methods). 
Shown are the relative abundancies of exogenous ¢-fos RNA in adult mouse tissues: S, spleen; L, liver; T, thymus; H, heart; Lg, lungs; G, gonads; 1, intestine; 
K, kidneys; M, skeletal muscle; B, brain; SG, salivary gland; LB, long bone; C, catlvaria; Tumor, osteosarcoma; ND, not determined; 4-, signal detected after 
>3-d exposure. 
* Number of independent mouse lines (i.e. different integration sites). Data shown for each construct represent a summary of expression from all mouse lines, 
with the exception of H2-e-junLTR which shows data from one family. 
* Data represent the expression of exogenous e-los RNA in tissues from transgenic family No. 131 described in this study. 
§ Data represent the expression of exogenous c-los RNA in tissues from two founder animals which developed osteosarcomas but could not be bred (see also Rfither 
and Wagner, 1989). 
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Figure 3. Radiographic anal- 
ysis showing the develop- 
ment of osteosarcomas in H2- 
cfosLTR transgenic mice. 
X-rays of a single male ho- 
mozygous mouse taken at 2, 
4, 9, and 14 wk of age illus- 
trate that the bone lesions are 
detectable at the radiographic 
level as early as 4 wk of age 
(arrows) and develop into 
large calcified tumors. 

transgene was expressed in almost all tissues including bone 
(Fig. 2 C), and no pathology has been observed to date in 
heterozygotes over 1.5 y of age. We are currently establish- 
ing a line of homozygous H2-c-junLTR mice. Table I sum- 
marizes the expression patterns of c-fos, fosB, and c-jun trans- 
genes in several transgenic lines. These results suggest that 
Fos is the important component of the AP-1 transcription fac- 
tor complex which specifically alters the phenotype of bone 
cells. 

Osteosarcoma Development in H2-c-fosLTR Mice 

Since all homozygous H2-c-fosLTR mice developed bone 
tumors, we next investigated the time course of tumor devel- 
opment in these mice. Developmental X-ray analysis demon- 
strated that radio-dense lesions could easily be detected as 
early as 4 wk of age, typically starting in the long bones in 
the regions of the proximal tibiae or fibulae. These lesions 
grew rapidly in size and developed by ~,14 wk into large 
calcified tumors present in virtually all bones of the body, 
including the long bones, vertebrae, pelvis, ribs, and cal- 
varia (Fig. 3). 

Histological analysis before overt tumor formation re- 
vealed the presence of small nodules of bone which were 
situated extracortically in the metaphyseal and diaphyseal 
regions of the long bones (Fig. 4 A). These lesions contained 
high osteoblastic activity as evidenced by the presence of cu- 
boidal osteoblastic cells lining these areas of new bone (Fig. 
4 B). In older mice, examination of individual tumors from 
different animals revealed histopathological features typical 
of chondroblastic osteosarcoma: all tumors were highly miner- 
alized, containing large areas of bone lined by numerous cu- 
boidal osteoblastic cells (Fig. 4, C and D) which expressed 
high levels of alkaline phosphatase activity as judged 
histochemicaily (data not shown). These areas of bone for- 
marion frequently contained numerous chondrocytes (Fig. 4 
D). Tumors also developed in the calvaria but only in a 
specific location, namely, bilaterally at the parieto-occipital 
sutures, and also contained abundant neoplastic bone and 
some cartilage (Fig. 4, E and F). Interestingly, cartilage- 
containing tissues (e.g., articular joint surfaces, epiphyseal 

growth plates) did not appear to be affected (data not shown). 
All transgenic tumors were vascularized, highly malignant, 
and invasive as evidenced by the high numbers of mitotic 
figures and by the presence of ectopic bone formation in the 
bone marrow spaces and in the surrounding tissues. 

To investigate the timing of expression of exogenous c-fox 
and its correlation with the onset of osteosarcoma formation, 
we analyzed by Northern blots the expression of the trans- 
gene during embryonic and postnatal development of homo- 
zygous mice. The c-fox transgene is not expressed during 
embryonic development although endogenous c-fox is ex- 
pressed in the embryo between d 12.5 and 14.5 of gestation 
(Fig. 5). Newborn mice also do not express the transgene, 
but exhibit a dramatic burst of endogenous c-fox expression, 
consistent with previous observations (Kasik et al., 1987). 
Moreover, stable endogenous c-fox expression was observed 
after birth, in lung, intestine, and in bone tissues. The c-fos 
transgene is expressed specifically after birth in a tissue- 
specific manner. For example, expression in the lungs is de- 
tectable 5 d after birth, while expression in the heart is 
detectable at 2 wk of age. With respect to bone tissue, exoge- 
nous c-fos expression occurs between 2 and 3 wk of age in 
calvaria, long bones, and spine (Fig. 5). Thus, these results 
clearly indicate that expression of the transgene in the af- 
fected bone tissues occurs post-natally, and most impor- 
tantly, occurs before the initial appearance of the bone le- 
sions (at 4 wk, Fig. 3). 

Expression of  c-fos in Osteoblastic Cells 

Since bone tissues expressed both endogenous and exoge- 
nous c-fos mRNAs, it was of interest to identify the specific 
cell types within bone which expressed c-fos. To this end we 
analyzed c-fos expression in developing bones and in os- 
teosarcomas using in sire techniques. Immunocytochemical 
analysis for Fos protein in the limbs of 5-d-old transgenic 
mice indicated that Fos is expressed in osteoblasts lining the 
bone surfaces, as well as in articular and growth plate chon- 
drocytes (Fig. 6, A and B). Since the transgene is not ex- 
pressed at this young age, the observed staining pattern 
represents expression of the endogenous gene. With respect 
to exogenous c-fos expression, RNA in situ hybridization 

Grigoriadis et al. Bone Cell Transformation in c-los Transgenic Mice 689 



The Journal of Cell Biology, Volume 122, 1993 690 



Figure 5. Tune course of c-fos expression 
during development of a homozygous H2- 
cfosLTR transgenic mice. Endogenous 
c-fos mRNA (endo) is expressed between 
embryonic days (E) 12.5 and 14.5, 
whereas the exogenous c-fos transcripts 
(exo) are expressed after birth in a tissue- 
specific pattern. While expression in lung 
and heart tissues occurs shortly after 
birth, the onset of expression in bone tis- 
sue (calvaria, long bones, spine) occurs 
between 2-3 wk of age. P1, 1-d-old mice 
torso; PS, 5-d-old mice; Lu, lungs; I, in- 
testine; H, heart; C, calvaria; Lb, long 
bones; Sp, spine; 2w and 3w, 2 and 3-wk- 
old mice, respectively. MBL 1-1.2, control 

embryonic stem (ES) cells expressing endogenous and exogenous c-fos transcripts. Exogenous c-fos expression in 3w spine is clearly evident 
upon longer exposure. The endogenous Fox gene serves as a control for RNA loading. The data represent 3-6 ~g of poly(A) + RNA 
loaded per lane, isolated as described in the Materials and Methods. The high molecular weight bands present in some lanes represent 
the unspliced c-fos transcripts (see also Van Beveren et al., 1983). Transcript sizes are indicated in kilobases. 

analysis using a riboprobe specific for the transgene demon- 
strated that c-fos is expressed in bone cells before overt tu- 
mor formation. Specifically, a strong hybridization signal 
was observed in osteoblastic cells lining both the long bones 
and trabeculae, as well as in some periosteal cells containing 
putative preosteoblasts, and in osteocytes embedded within 
the bone matrix (Fig. 6, C-F). Interestingly, no exogenous 
c-fos expression was detected either in articular chondro- 
cytes on joint surfaces (Fig. 6 E) or in proliferative and 
hypertrophic chondrocytes of the epiphyseal growth plates 
(data not shown). Within the tumors, exogenous c-fos ex- 
pression was detected in osteoblast-like cells lining the neo- 

plastic bone surfaces (Fig. 6 G), and immunocytochemical 
analysis confirmed the presence and nuclear localization of 
Fos protein (Fig. 6 H).  Although the antibody we used de- 
tects both endogenous and exogenous Fos proteins, the fact 
that the tumors expressed little or no endogenous c-fos RNA 
suggests that the signal detected by immunohistochemistry 
is due to the introduced gene. Occasionally, some chondro- 
cytes within the tumors also expressed the transgene (data 
not shown). Finally, many fibroblastic cells also expressed 
high levels of exogenous c-fos; whether these cells represent 
bona fide fibroblasts, or are perhaps, early osteoprogenitors 
is not known at this time. Nevertheless, the in situ data sug- 
gest that the transgene is expressed predominantly in cells 
of the osteoblastic lineage. 

Gene Expression in Primary Osteosarcomas 

To characterize the c-fos-induced tumors at the molecular 
level we analyzed the expression of genes which are mem- 

hers of the AP-1 transcription factor complex as well as 
osteoblast-associated marker genes. The results of Northern 
blot analyses of four primary osteosarcomas are summarized 
in Table II. All tumors expressed high levels of exogenous 
c-fos and no endogenous c-fos. Thefos-related genefra-1 was 
also expressed at high levels, whilefosB expression was not 
detectable, supporting further the conclusions from fosB 
transgenic mice that this oncogene may not affect bone cell 
activity. The proto-oncogene c-jun was only moderately ex- 
pressed in the tumors while the otherjun-related genes, junB 
and junD were expressed ubiquitously in all tumors and at 
relatively higher levels. With respect to the expression of os- 
teoblastic markers, alkaline phosphatase (ALP), osteopon- 
tin/2ar (OP), and osteocalcin/BGP (OC) mRNAs were high 
in all tumors whereas type I collagen expression was slightly 
lower (Table 11). In addition, expression of bone morpho- 
genetic protein-2 (BMP-2) was either very low or absent in 
all tumors. Finally, some tumors also expressed very low lev- 
els of cartilage-specific type II collagen mRNA (data not 
shown), probably due to a variation in the amount of chon- 
drocytes present within the tumors. Thus, most of the genes 
tested were expressed, however, since all the tumors were 
heterogeneous, the information gained from gene expression 
in primary osteosarcomas is limiting with respect to the 
specific cell types which are responsible for the expression 
of these markers. 

Isolation and Characterization o f  Osteoblastic 
Cell Lines 

To characterize further the cell types which are affected by 

Figure 4. Histological analysis of an early bone lesion and of the osteosarcomas which develop in H2-c-fosLTR transgenic mice. (.4) Low 
magnification of a pre-neoplastic lesion (arrowheads) present on the surface of the cortical bone (cb) of the distal tibia of a 6-week old 
homozygous mouse. (B) High magnification of the area marked in A showing that this early lesion consists of new bone (b) formed by 
increased osteoblastic activity (oh). (C and D) Low and high magnifications of a typical Chondroblastic osteosarcoma isolated from the 
pelvis of a 7-me-old transgenic mouse. Tumors contain abundant bone (b) lined by cuboidal osteoblastic cells (ob) as well as cartilage 
(c). (E and F) Low and high magnifications of a calvarial tumor isolated from a 8-me-old transgenic mouse containing neoplastic bone 
(b) and cartilage (c). The arrows in (E) delineate the normal thickness of the calvaria. All sections are 4-6 t~m paraffin sections, processed 
and stained with H + E as described in the Materials and Methods. cb, cortical bone; b, bone; bm, bone marrow; oh, osteoblastic cells; 
c, chondrocytes. Bars, 25 um. 
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Table II. Expression of  AP- l -  and Osteoblast-associated Genes in Primary Osteosarcomas 
Isolated from c-los Tranagenic Mice 

AP-1 Genes Osteoblastic Genes 

c-los 
Type I 

Tumor Exo Endo fosB fra- 1 c-jun junB janD coil ALP OP OC BMP-2 

1 + + + +  - - + +  + + + +  + + +  + + + +  + + +  + + + +  ± 

2 + + + + +  - - + + +  + +  + + +  + + +  ÷ + + +  + +  + + + +  - 

3 + + + +  - - + + + +  + + + + +  + + +  + + + + +  + + +  + + +  - 

4 + +  - - + +  + + + +  + + +  + + + + +  + + +  + + + +  - 

Four primary osteosarcomas isolated from different H2-c-fosLTR transgenic mice were analyzed for expression of AP-1- and osteoblast-associated marker genes. 
Data represent the relative abundancies of gene expression as estimated by Northern blot analysis. All blots were hybridized with specific probes against: c-fos 
(Exo, exogenous; Endo, endogenous), fosB, fra-1, c-jun, junB, junD, type I collagen (type I coil), alkaline pbosphatase (ALP), osteopontin/2ar (OP), osteocatl- 
cin/BOP (OC) and bone raorphogenetic protein-2 (BMP-2). ±, hybridization signal detected after >3-d exposure. Tumors Nos. 2 and 3 also expressed cartilage- 
specific type H collagen at very low levels (see text for details). 

the Fos oncoprotein, and to study the possible molecular al- 
terations which may have occurred in these cells, we isolated 
cell populations from the c-fos-induced tumors. Nine in- 
dividual primary cell populations were isolated from tumors 
arising from different origins (i.e., from ribs, pelvis, cal- 
varia, long bones). The tumor-derived cell lines, designated 
R3, C1, C2, C3, P1, K6, K7, Kll,  and K14, were character- 
ized with respect to morphology, doubling time, osteoblastic 
gene expression, differentiation capacity and tumorigenicity. 
All tumor-derived cell lines could be easily established as 
continuously growing cell lines, with doubling times ranging 
from 18-24 h (data not shown). All cells had a typical trans- 
formed fibroblastic morphology comprising small, spin- 
die-shaped cells (e.g., P1 cells, Fig. 7 A). One newborn 
calvaria-derived cell line was also isolated which had a 
morphology typical of normal fibroblasts with a doubling 
time of ~ 30 h (data not shown). 

With respect to gene expression, the nine tumor-derived 
cell lines analyzed expressed high levels of exogenous c-fos 
and of these, 5 (C1, C3, K7, K14, and at lower levels PI) also 
expressed the endogenous c-fos gene (Table HI). As expected 
based on the time course of exogenous c-fos expression (Fig. 
5), newborn calvaria cells did not express the transgene but 

did express endogenous c-fos. All cell lines expressed type 
I collagen, OP, and ALP mRNAs at varying levels and there 
did not appear to be any correlation between expression of 
c-fos and these osteoblastic genes (Table III). In contrast, OC 

expression was either absent or present at very low amounts 
(e.g., P1 cells) in all cell lines. 

To assess the bone forming capacity of the isolated cell 
lines in vitro, we cultured each population in media con- 
taining ascorbic acid, ~-glycerophosphate, and the gluco- 
corticoid analogue dexamethasone as previously described 
(Bellows et al., 1986, 1987). None of the cell lines could 
differentiate in vitro as judged by the formation of bone nod- 
ules, although P1 cells were able to secrete an extracellular 
matrix which could mineralize under these conditions (data 
not shown). Since all cells exhibited a transformed morphol- 
ogy, we next investigated their tumorigenic and differentia- 
tion potential in vivo by injecting each cell line into nude 
mice. All tumor-derived cell populations were tumorigenic 
with a latency period of 2-5 wk (Table HI). Interestingly, P1- 
and K14-induced tumors induced tumors with the pheno- 
typic characteristics of osteosarcoma and chondroblastic os- 
teosarcoma, respectively, while others were diagnosed as 
anaplastic sarcomas, some containing areas of osteoid depo- 
sition and occasional chondrocyte foci (e.g., C3-, K6-, and 
Kll-induced tumors). A representative example of a P1- 
induced osteosarcoma is shown in Fig. 7 C RNA in situ hy- 
bridization for exogenous c-fos and immunocytochemistry 
for Fos protein clearly indicated that the osteogenic cells 
within these populations express the transgene (Fig. 7, D and 
E) although a high proportion of fibroblastic stromal cells 
in the tumors also expressed the transgene. Finally, newborn 

Figure 6. In situ hybridization and immtmocytochemistry of unatfected bone and of osteosarcomas which develop in H2-c-fosLTR transgenic 
mice. (A and B) Immunocytochemistry for Fos protein in 5-d-old mice showing expression of endogenous Fos protein in osteoblasts (oh) 
and osteocytes (oc) (A) and in articular chondrocytes (c) present on joint surfaces (B). (C-G) In situ hybridization analysis of c-los expres- 
sion in osteosarcomas and in bone tissues before tumor formation. (C) Dark field micrograph of the diaphysis of a 7-mo-old homozygous 
mouse femur showing intense staining in periosteal and endosteal osteoblasts (oh) lining the cortical bone (cb), as well as in putative 
preosteoblasts (pob). (D) Bright field micrograph showing high c-fos expression in osteoblasts (ob) and osteocytes (oc) present in the tibia 
of a 6-wk-old homozygous mouse. (E) Dark field micrograph showing that c-fos is also expressed in osteoblasts (oh) present in the vertebral 
body of a 7-mo-old mouse, but not in the articular chondrocytes (c) of the vertebral joint. (F) Bright field micrograph of a vertebral body 
in the same mouse as in (E) confirming the expression of c-fos in osteoblastic cells (oh) lining the bone (b). (G) Dark field micrograph 
of an osteosarcoma surrounding the spine of an 8-too-old mouse showing transgene expression in osteoblasts (oh) and osteocytes (oc). 
(H) Immunocytochemistry showing exogenous Fos protein in the osteoblasts (oh) and osteocytes (oc) of an 8-mo-old calvarial osteosar- 
coma. The probe used for in situ hybridization experiments is an antisense riboprobe specific for exogenous c-fos transcripts (see Materials 
and Methods). Control sense hybridizations revealed no specific signal (data not shown). All sections are 4-6 #m paraffin sections and 
were processed as described in the Materials and Methods. b, bone; pob, preosteoblasts; ob, osteoblasts; oc, osteocytes; cb, cortical bone; 
bin, bone marrow; m, muscle. Bars, 25 #m. 
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Table III. Gene Expression and Tumorigenicity of Primary Cell Lines Established from c-fos-Induced Osteosarcomas 
and Non-Affected Tissues 

c-los 
Type I Latency 

Cell line Exo Endo coil ALP OP OC Tumor phenotype period (d) 

R3 + + + + - + + + + + + - Anaplastic sarcoma 21 
C1 + + + + +  + +  + + +  + + +  + - ND 
C2 + + + + + - + + + + + + + + - Anaplastic sarcoma 21 
C3 + + + + + + + + + + + + + + - Anaplastic sarcoma + osteoid 21 
P1 + + + + + + + + + + + + + Osteosarcoma 15 
K6 + + + + - + + + + + + + + - Anaplastic sarcoma + osteoid 21 
K7 + + + + + + + + + + + + + + - Anaplastic sarcoma 21 
K l l  + + + + +  - + + + + +  + + - Anaplastic sarcoma + osteoid* 35 
K14 + + + + + + + + - Chondroblasfic osteosarcoma 35 
NC - + + + + + + + + + + + - None 

Summary of c-fos and osteoblastic gene expression and tumorigenicity of primary cell lines established from c-fos-induced osteosarcomas and from non-affected 
tissues. Data represent the relative abundancies of gene expression as estimated by Northern blot analysis. All blots were hybridized with specific probes against: 
c-fos (Exo, exogenous; Endo, endogenous), type I collagen (Type I coil), alkaline phosphatase (ALP), osteopontin/2ar (OP) and osteocalcin/BGP (OC). ND, not 
determined; +, hybridization signal detected after >3-d exposure. Tumorigenicity studies were performed in nude mice and the tumors were diagnosed after histo- 
logical processing and staining with H+E as described in the Methods. 
* Small foci containing chondrocytes observed occasionally. 

calvaria cells which did not express exogenous c-fos and 
which did not have a transformed morphology failed to in- 

duce tumors in nude mice. Thus, these results suggest that 

different osteoblastic cell populations can be isolated which 

are transformed by Fos and which exhibit differences in gone 

expression and differentiation capacity. Table III  summarizes 

the gene expression and tumorigenic potential of the isolated 

cell  lines. 

Characterization of  Clonal Bone-forming Cell Lines 

The demonstrat ion that the mixed cell  populations expressed 

osteoblastic genes and moreover that some had bone-form- 

ing potential prompted us to characterize further the specific 

cell  types which are responsible for c-fos-induced osteosar- 

coma formation. To this end, we cloned osteogenic P1 cells 

and analyzed the propert ies of  individual clones. 16 clones 

were isolated by limiting dilution (PI.1 to 1'1.16) of  which six 

were chosen for further study. Al l  clones generally exhibited 

a transformed morphology similar to the parental  P1 cells, 

that is, spindle shaped and fibroblasfic (e.g.,  PL15 cells, Fig. 

7 B) ,  and had a population doubling time of  ,,o 20 h (data not 

shown). Northern blot analysis indicated that all clones ex- 

pressed osteoblastic marker  genes: expression of  ALP  and 

OP was highly variable whereas type I collagen expression 

was more ubiquitous (Fig. 8 A). OC expression was low or  

absent,  although clones PI.15 and Pl.16 contained higher OC 

raRNA levels than the parental  P1 ceils. With respect tofos- 
andjun-related gene expression, all clones expressed exoge- 

nous c-fos and some also expressed high levels of  the endoge- 

nous c-fos gene (Fig. 8 B) .  The clones also expressed f raA 

and c-jun mRNAs at high levels, and junB at lower levels. 

All  the clonal cell lines tested were tumorigenic in nude mice 

with latency periods varying between 15 and 21 d (data not 

shown). Of  greater significance was the observation that a 

high proport ion of  them were osteogenic, that is, exhibited 

bone-forming capacity. Histological  analysis revealed that 

the tumors induced by PL4, P1.7, Pl.15, and Pl.16 cell lines 

were clearly osteosarcomas as judged by the presence of  

mineral ized bone (e.g., Fig. 7 F ) .  Similarly to the parental  

Pl cells, RNA in situ hybridization indicated that exogenous 

c-fos was expressed specifically in the osteoblasts and osteo- 

cytes within the bone as well as in many fibroblastic cells 

present within the tumors (data not shown). Interestingly, 

tumors induced by 11.4 cells also contained some very small 

focal areas containing chondrocytes suggesting that this 

clonal cell population also contained bipotential progenitor 

cells for both bone and cartilage cell lineages. 

Steroid Hormone Regulation of  Osteoblast 
Gene Expression 

Since steroid hormones can affect the expression of  the os- 

teoblast phenotype and regulate the expression of  bone- 

associated genes we decided to investigate whether the high 

levels of  c-fos in the clonal tumor-derived cell  lines interfere 

with the regulation of osteoblast-specific gene expression by 

vitamin D3 and glucocort icoid hormones. Treatment of  

control ROS 17/2.8 osteoblastic cells with 1,25-dihydroxy- 

l~gure 7. Morphology, in situ hybridization and immunocytochemistry analyses of tumor-derived cell lines and cell-induced oste~sarcomas. 
(A and B) Phase-contrast micrographs showing a fibroblastic and spindle-shaped cell morphology of the osteosarcoma-defived cell line 
PI (A) and one of its clonal derivatives, Pl.15 (B). (C) A typical osteosarcoma induced by P1 cells showing abundant bone formation 
(b) with numerous osteoblasts (oh) and osteocytes (oc). In situ hybridization analysis of exogenous c-los mRNA (D) and immunocytochem- 
istry for Fos protein (E) demonstrate high transgene expression in osteoblastic cells (ob) and in osteocytes (oc) of a Pl-induced tumor. 
(F) A representative osteosarcoma induced by the clonal cell line P1.7, showing similar characteristics to the parental Pl-induced tumor 
in (C). Sections in (C-F) are 4-6 ~m paraffin sections and were processed as described in the Materials and Methods. ob, osteoblasts; 

oc, osteocytes; b, bone. Bars: (A and B) 120/zm; (C-F) 25/zm. 
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Figure 8. Gene expression in primary and clonal cell lines estab- 
lished from c-fos transgenic osteosarcomas. Parental P1 cells and 
6 Pl-derived clonal cell lines (P1.4, P1.7, P1.9, Pl.13, Pl.15, and 
Pl.16) were analyzed by Northern blots for expression of (A) os- 
teoblastic genes and (B)fos- and jun-related genes. RNA was iso- 
lated as described in the Materials and Methods. 5/zg of poly(A) + 
RNA were loaded per lane and the blot was hybridized with the fol- 
lowing probes as described in the Materials and Methods: and alka- 
line phosphatase (ALP), osteocalcin/BGP (OC), osteopontin/2ar 
(OP), type I collagen, v-los (for exogenous [exo] and endogenous 
[endo] c-fos), fra-1, c-jun, and junB. The same filter was used for 
each probe following complete stripping. Transcript sizes for each 
gene are indicated in kilobases. The endogenous Fox gene serves 
as a control for RNA loading. 

vitamin D3 (1,25-(OH)2D3), the most active metabolite of 
vitamin D3 (for review see Minghetti and Norman, 1988), 

caused an increase in OC, ALP, and OP mRNAs typical of  

osteoblastic cells (for review see Rodan and Redan, 1984; 

Yoon et al., 1987). In contrast, 1,25-(OH)2D3 had no effect 

on either OC or ALP expression in the c-fos-transformed 
P1.9 and Pl.15 clonal cells. It should be noted that basal ALP 

expression in P1.9 cells varied between different experiments 

(see also Fig. 8 A). The reasons for this are not entirely clear, 

but may relate to the different culture conditions (e.g., serum 

concentration) used in each experiment which could affect 

basal and hormone-stimulated ALP expression (e.g., see 

Figure 9. Steroid hormone regulation of gene expression in clonal 
cell lines derived from c-fos transgenic osteosarcomas. PI.9 and 
Pl.15 clonal cell lines, as well as clonal rat osteosarcoma cells 
which exhibit an osteoblastie phenotype (Ros 17/2.8) were analyzed 
by Northern blots for expression of (A) osteoblastic genes and (B) 
fos- andjun-related genes. Cells were cultured under standard con- 
ditions, and then treated with 10 -7 M 1,25-dihydroxyvitarnin D3 
(D3), 10 -7 M dexamethasone (Dex) or with 0.1% ethanol vehicle 
(Co) for 72 h in media containing 1% FCS. RNA was isolated as 
described in the Materials and Methods and hybridized with the 
following probes: alkaline phosphatase (ALP), osteoealcin/BGP 
(OC), osteopontin/2ar (OP), type I collagen, c-los (exo, exoge- 
nous; endo, endogenous), fra-1, and c-jun. 5/zg of poly(A) + RNA 
were loaded per lane. The same filter was used for each probe fol- 
lowing complete stripping. Transcript sizes for each gene are indi- 
cated in kilobases. GAPDH hybridization serves as a control for 
RNA loading. 

Majeska and Rodan, 1982). 1,25-(OH)2D3-induced OP ex- 

pression in all cell lines tested whereas type I collagen ex- 

pression was not affected (Fig. 9 A). Responsiveness to the 

potent glucocorticoid analogue, dexamethasone (Dex) was 

not altered in P1.9 and Pl.15 cells when compared to ROS 

17/2.8 osteoblastic cells: Dex stimulated ALP expression 

and reduced OP mRNA in both clones and caused a slight 

reduction in OC mRNA in Pl.15 cells. In contrast, type I col- 

lagen expression was not affected. With respect to fos- and 
jun-related genes, expression of  exogenous c-fos was in- 

hibited by Dex in Pl.15 cells, and interestingly, this was par- 

alleled by decreases infra-1 and c-jun expression (Fig. 9 B). 

In ROS 17/2.8 cells, Dex also inhibitedfra-1 expression, but 

stimulated c-jun expression. 1,25-(OH)2D3 treatment did 

not affect c-fos, f raq ,  or c-jun expression in any cell line 

tested. Thus, the differential regulation of  osteoblastic genes 
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andfos- andjun-related genes by 1,25-(OH)2D3 and Dex sug- 
gests that specific molecular interactions may be taking place 
in different osteoblastic cells overexpressing c-fos. 

Discussion 

c-fos, But Not fosB or c-jun, Causes Osteosarcomas 
in Transgenic Mice 

In this study we describe a family of H2-c-fosLTR transgenic 
mice which is susceptible to osteosarcoma development with 
100 % efficiency. Expression of the introduced c-fos gene was 
high in bone-forming osteoblastic cells and in the tumors. 
The pathology observed was specific for Fos, since trans- 
genie mice expressing the other AP-1 genes fosB and c-jun 
in several tissues including bone are phenotypically normal, 
implying that altered levels of FosB and c-Jun oncoproteins 
do not affect bone development. Although we cannot com- 
pletely rule out the possible influence of strain differences on 
tumor development, for example, as has been shown for 
v-fos-induced osteosarcoma formation (Kelloff et al., 1969), 
these results further strengthen the notion that c-fos is the im- 
portant component of the AP-1 transcription factor complex 
which appears to be causal for the development of osteosar- 
comas in transgenic mice. 

Tissue Specificity and Temporal Expression of c-fos 

Ectopic c-fos expression was observed in H2-c-fosLTR 
transgenic mice in the tumors and bone tissues, as well as 
in other tissues which do not exhibit any pathology (e.g., 
heart, lung, brain). The expression levels are higher than 
those documented in MT-c-fosLTR transgenic mice (Riither 
et al., 1987), which could be attributed, at least in part, to 
the change in promoter elements. Although endogenous 
MHC class I genes are usually transcribed as early as day 
10 of embryonic development (Ozato et al., 1985), expres- 
sion of exogenous c-fos in H2-c-fosLTR mice was not ob- 
served during embryogenesis. The reasons for this are not 
entirely clear, but may relate to the site of transgene integra- 
tion. All homozygous mice carrying an H2-c-fosLTR con- 
struct developed osteosarcomas with a short latency period 
and transgene expression occurred before any phenotypic 
changes were observed. Since the 3' FBJ-LTR ensures high 
exogenous c-fos expression in bone tissues (see also Riither 
et al., 1988; Wang et al., 1991), these data strongly suggest 
that c-fos is a causative factor in the genesis of osteosarcoma. 

Osteoblastic Cells Are Transformed by Ectopic 
c-fos Expression 

Several lines of evidence suggest that cells of the osteoblast 
lineage are affected by exogenous Fos. First, all bone tissues 
were affected regardless of embryonic origin, that is, no se- 
lectivity was observed between bones formed via endochon- 
dral ossification (e.g., long bones, vertebrae) versus those 
formed via intramembranous ossification (e.g., calvaria). 
Second, high levels of exogenous c-fos were present in the 
osteosarcomas, specifically in the osteoblasts and osteo- 
cytes. Third, hyperproliferative regions arising apparently 
from periosteal cells were observed during the early stages 
of tumor formation which contained active osteoblasts and 

new bone. Although it is possible that these early lesions may 
represent induced reactive bone formation, the fact that high 
transgene expression was demonstrated in periosteal and os- 
teoblastic cells suggests that these lesions are pre-neoplastic 
and that the transformation of these cells by c-fos was, at least 
in part, responsible for tumor formation. Finally, the isola- 
tion of clonal osteosarcoma-derived cell lines has demon- 
strated the cellular specificity and transforming capacity of 
Fos. All tumor-derived cell lines expressed high levels of the 
transgene and were transformed as evidenced by their ability 
to form tumors when injected in vivo. Not only was each cell 
line tumorigenic, but some also retained the ability to form 
bone. This is best represented by the osteogenic P1 and 
H-derived clonal cell lines in which bone-forming osteo- 
blasts, osteocytes, and putative osteoprogenitor cells present 
in the cell-induced tumors expressed the transgene at high 
levels. 

In addition to the ability of some of these cell lines to form 
bone in vivo, the expression of a number of genes which are 
associated with the osteoblast phenotype further suggest that 
they are of osteoblastic origin. All cell lines expressed type 
I collagen, ALP and OP mRNAs, however, there was no ap- 
parent correlation between expression of these marker genes 
and the levels of exogenous c-fos. In contrast, the expression 
of OC was dramatically reduced or absent in all cell lines 
analyzed, despite expression in the primary tumors. This is 
interesting in view of recent observations in vitro that high 
AP-1 activity is associated with inhibition of OC transcrip- 
tion (Schille et al., 1990; Owen et al., 1990), and is consis- 
tent with the observations in primary cell lines established 
from MT-c-fosLTR transgenic osteosarcomas (Goralczyk et 
al., 1990; see also discussion below). 

That c-fos has transformed osteoblastic cells with bone- 
forming capacity is consistent with previous results indicat- 
ing that high levels of exogenous Fos can transform different 
cells of mesencbymal origin, including fibroblasts (Miller et 
al., 1984), myogenic cells (Lassar et al., 1989), and chon- 
drogenic cells (Wang et al., 1991, 1993). Whether earlier un- 
committed cells are also affected in c-fos transgenic mice is 
not clear, but may be possible based on the observations that 
the clonal cell line P1.4 induced tumors containing both bone 
and, at a low frequency, cartilage, suggesting that it contains 
bipotential progenitor cells for both osteogenic and chondro- 
genie lineages. In addition, the observation that calvarial 
tumors arise only at parieto-occipital sutures where cartilage 
is present during development, suggests that cells with both 
chondrogenic and osteogenic capacities may have been af- 
fected by Fos. Interestingly, similar bipotential progenitor 
cell populations may also be affected in c-fos chimeric mice 
(Wang et al., 1991, 1993). 

Cellular Specificity of c-fos-induced Transformation 

The notion that osteogenic cells are transformed in c-fos trans- 
genie mice is of importance in view of our previous observa- 
tions that c-fos chimeric mice develop chondrosarcomas due 
to specific transformation of chondrogenic cells (Wang et al., 
1991). These differences may be explained, at least in part, 
by the timing of exogenous c-fos expression whereby the 
postnatal onset of transgene expression in H2-c-fosLTR 
transgenic mice might preclude an effect on earlier progeni- 
tor cells present during embryogenesis. An alternative expla- 
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nation for the cellular specificity of Fos may relate to the 
presence of tissue-specific or cooperating factors which 
are necessary for cellular transformation and initiation of 
multi-step tumorigenesis (Hanahan, 1988; Adams and Cory, 
1991). Indeed, the presence of histologically normal areas 
of bone expressing the transgene together with the observed 
time lag before tumor formation suggests that cooperating 
genetic events are occurring subsequent to c-fos expression. 
Since Fos transformation and regulation of target gene ex- 
pression is dependent upon dimerization with specific jun- 
related genes (Schuermann et ai., 1989), it is tempting to 
speculate that the levels of specific jun family members in 
osteogenic and chondrogenic cells may affect the target cell 
specificity of c-fos. In support of this notion are the observa- 
tions that levels ofc-jun in tissues, tumors, and cell lines iso- 
lated from H2-c-fosLTR transgenic mice are not strictly cor- 
related with the levels of exogenous c-fos, which is in 
contrast to the good correlation observed between the ex- 
pression of these two genes in c-fos chimeric mice (Wang et 
al., 1991). This is also supported by other observations that 
c-jun is expressed during mouse development in chondro- 
blastic, but apparently not in osteoblastic cells (Wilkinson et 
al., 1989). Thus, c-jun does not seem to be a limiting factor 
in transgenic mice. With respect to thefos-related genes, the 
correlation between exogenous c-fos andfraq expression in 
osteogenic cells implies that this gene may be a cooperating 
factor in the cascade of events initiated by high Fos levels. 
In this regard, the recent evidence thatfra-1 is a possiblefos- 
regulated gene (Braselmann et ai., 1992) may have physio- 
logical relevance. Thus, the possibility arises that different 
Fos-Jun complexes, and specific modifications of these com- 
plexes, for example by phosphorylation (Ofir et ai., 1990; 
Pulverer et al., 1991), may have differential activities in os- 
teoblastic and chondroblastic cell populations (see also 
Baichwal et al., 1991). 

The cellular specificity of Fos action may certainly involve 
other factors which are implicated in tumorigenesis, such as 
the tumor suppressor gene p53 (for review see Levine et al., 
1991; Weinberg, 1991). The association between osteogene- 
sis and p53 function is supported by molecular analyses of 
p53 gene rearrangements in osteosarcomas (Masuda et al., 
1987; Nigro et al., 1989; Strauss et al., 1992), as well as in 
mice overexpressing mutant alleles of p53 or completely 
lacking functional p53 protein, both of which are susceptible 
to different neoplasias including osteosarcomas (Lavigueur 
et al., 1989; Donehower et al., 1992). Thus, it is possible 
that potential interactions between Fos-Jun complexes and 
p53 in tumors and cells isolated from c-fos transgenic mice 
may affect the cellular specificity of Fos action. 

A Functional Role for c-fos in the Expression of the 
Osteoblast Phenotype? 

There are numerous studies correlating c-fos expression and 
osteoblast activity (Sch6n et al., 1986; Schmidt et al., 1986; 
Wu et al., 1990; Closs et al., 1990; Birek et al., 1991; Ohta 
et al., 1991). However, Fos activity is clearly not obligatory 
for osteoblast differentiation and bone formation since os- 
teoblastic cells present in mice lacking functional Fos pro- 
tein can, to some degree, undergo osteogenesis (Wang et al., 
1992; Johnson et al., 1992). Since it is well established that 
steroid hormones can regulate the expression of osteoblastic 
genes, and that steroid hormone-receptor complexes can func- 

tionally interact with AP-1 complexes in vitro, we decided 
to investigate whether the role of c-fos in the clonal tu- 
mor-derived cell lines extended beyond its ability to cause 
transformation and induce tumorigenesis. The stimulation of 
OC and ALP gene expression by 1,25-(OH)2D3 has been 
shown to be a useful indicator of the osteoblastic phenotype 
in different model systems (for review see Rodan and Rodan, 
1984). In this regard, the most striking observation was that 
1,25-(OH)2D3-stimulated OC and ALP expression was ap- 
parently blocked in the Pl-derived osteogenic cell clones. 
These observations are important in view of the recent 
reports demonstrating overlapping AP-1 consensus sequences 
and putative vitamin Da responsive elements (VDRE) in 
the promoter regions of these genes (Schiile et al., 1990; 
Owen et al., 1990). Moreover, occupancy of the AP-1 sites 
blocks 1,25-(OH)2D3-receptor-VDRE interactions and sub- 
sequent gene transcription, a phenomenon termed "pheno- 
type suppression" (Owen et al., 1990; Lian et al., 1991). The 
data presented here represent the first in vivo evidence of a 
functional interaction between Fos-Jun complexes and ste- 
roid hormone response elements in bone cells. It is tempting 
to speculate that the transformation of osteogenic cells (as 
represented by Pl-derived clonal cells) by high Fos levels has 
prevented further differentiation as judged by the lack of 
1,25-(OH)2D3 responsiveness. This block in differentiation, 
together with the uncontrolled growth due to cellular trans- 
formation may explain the induction of osteogenic tumors in 
c-fos transgenic mice. Interestingly, while the responsive- 
ness of P1.9 and Pl.15 ceils to 1,25-(OH)2D3 was affected 
by high Fos levels, Dex responsiveness was not altered. Al- 
though interactions between glucocorticoid response ele- 
ments (GRE) and AP-1 sites have been demonstrated in vitro 
(for review see Diamond et al., 1990), functional interac- 
tions have not been observed in the specific regulation of 
ALP and OC transcription. In fact, glucocorticoid inhibition 
of OC gene transcription is apparently due to interactions 
between the GRE and the TATA box of the OC promoter, that 
is, separate from the VDRE/AP-1 site (Morrison et al., 
1989; Strtmstedt et al., 1991). 

The apparent block in 1,25-(OH)2D3 effects was not due 
to impaired function of 1,25-(OH)2D3 or its receptor as 
demonstrated by the fact that 1,25-(OH)2D3 induced OP 
expression in all clones, another feature characteristic of os- 
teoblastic cell populations (Yoon et al., 1987; Noda et al., 
1990). Interestingly, the murine OP promoter also contains 
an AP-1 site but it does not overlap with the putative VDRE, 
suggesting that there may not be a direct interaction between 
these two elements in regulating OP gene transcription (Noda 
et al., 1990; Craig and Denhardt, 1991). The inhibition of 
OP expression by Dex in both clones supports previous ob- 
servations in transformed osteoblastic cells (Yoon et al., 
1987) and further suggests a role for glucocorticoid hor- 
mones in the regulation of bone cell activity. Finally, the 
regulation of OP gene expression by both 1,25-(OH)2D3 and 
Dex implies in addition that OP expression in these cells may 
be biologically relevant to the osteoblast phenotype rather 
than being a consequence of cellular transformation (Craig 
et al., 1989; Senger et al., 1989). With respect to the regula- 
tion of fos- and jun-related genes, Dex treatment revealed 
some interesting patterns of expression. The decrease in ex- 
ogenous c-fos expression in osteogenic Pl.15 cells but not in 
non-osteogenic P1.9 cells was paralleled by a decrease in 
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both fra-1 and c-jun expression. Although the biological 
significance of this result is not entirely clear, the results sug- 

gest a role for AP-1 transcription factor interactions in os- 
teoblastie cells. Alternatively, we cannot rule out the possi- 
bility that the changes in immediate early gene expression 
are related to the possible effects of steroid hormones on cell 
proliferation. 

Analysis of the clonal cell lines has suggested that while 
some phenotypic markers of osteoblastic cells are altered 
uniformly in c-los-transformed cell lines, others are vari- 
able. The altered responsiveness to 1,25-(OH)2D3 strongly 
support the possibility that the differences in osteoblastic 
gene expression in these clones are related to the levels of 
AP-1 binding activity. In this regard, it will be interesting to 
determine whether the phenotypic heterogeneity in 1,25- 

(OH)2D3 responsiveness in different osteosarcoma cell lines 
(Spiess et al., 1986; Foumier and Price, 1991; see also 
Heersche and Aubin, 1990 for review) is related to levels of 
endogenous AP-1 activity. Indeed, we have also isolated c-fos- 
transformed clonal cells which express osteoblastic marker 
genes but are non-osteogenic, suggesting that different stages 
of osteoblast differentiation may be affected differently by 
high levels of Fos. 

We have demonstrated that specific transformation of os- 
teogenic cells is responsible for c-fos-induced tumorigenesis 
in transgenic mice. Together with the osteopetrosis which 
develops in mice lacking functional Fos protein (Wang et al., 

1992; Johnson et al., 1992), these data point to a biologi- 
cally important role for Fos in the regulation of bone devel- 
opment and bone-specific gene products. 
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