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Osteoclasts have traditionally been associated exclusively with catabolic functions that are a prerequisite for

bone resorption. However, emerging data suggest that osteoclasts also carry out functions that are important

for optimal bone formation and bone quality. Moreover, recent findings indicate that osteoclasts have different

subtypes depending on their location, genotype, and possibly in response to drug intervention.

The aim of the current review is to describe the subtypes of osteoclasts in four different settings: 1) physiological,

in relation to turnover of different bone types; 2) pathological, as exemplified by monogenomic disorders;

3) pathological, as identified by different disorders; and 4) in drug-induced situations.

The profiles of these subtypes strongly suggest that these osteoclasts belong to a heterogeneous cell population,

namely, a diverse macrophage-associated cell type with bone catabolic and anabolic functions that are depen-

dent on both local and systemic parameters. Further insight into these osteoclast subtypes may be important

for understanding cell–cell communication in the bone microenvironment, treatment effects, and ultimately

bone quality. (Endocrine Reviews 32: 31–63, 2011)
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I. Introduction

Osteoclasts are multinucleated bone-resorbing cells

that are unique in their ability to degrade mineral-

ized matrices, such as bone and calcified cartilage (1). Os-

teoclasts have for a long time been considered bone-

resorbing “machines,” yet some years ago it was

demonstrated that not all osteoclasts are the same and that

careful elucidation of the osteoclast subtype may prove
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beneficial (1–4). As illustrated in Table 1, under normal

circumstances, osteoclasts are influenced by a complex

combination of systemic hormones and local mediators

present in the different bones. Under pathological condi-

tions, such as cessation of estrogen production or inflam-

matory conditions, additional cytokines are present. Even

the bone type and age may influence the phenotype of the

osteoclast (2, 5–7). Finally and importantly, different

classes of drugs used for treatment of osteoporosis and

other diseases also influence the osteoclasts significantly.

The aim of this review is to provide a thorough descrip-

tion of the complex nature of osteoclasts under healthy

and diseased states and to describe their modulation by

drugs that have been approved for use or are under de-

velopment. The paper will also emphasize the role of os-

teoclasts in initiating bone formation, a recently discov-

ered activity of these cells that has gained much attention

(3, 8–13).

II. Bone Remodeling

Bone remodeling is required for optimal control of cal-

ciumhomeostasis and strengthof thebonesand is essential

for the continued maintenance of a healthy skeleton (14).

Bone remodeling is performed by three cell types: 1) the

osteoclasts, which are the sole cells in the body possessing

the ability to degrade both the inorganic calcium matrix

and the organic collagen matrix; 2) the osteoblasts, which

are the bone-forming cells; and 3) the osteocytes, which

appear to regulate the activity of both osteoclasts and os-

teoblasts (14, 15). In healthy adults, under normal cir-

cumstances, bone resorption is always followed by an

equal degree of bone formation, a tightly balanced process

referred to as coupling (9, 16). The modulation of activ-

ities of the cells involved in the remodeling cycle was re-

cently described in detail (15).

Coupling was initially discovered in the 1960s when

Frost and co-workers (17, 18) demonstrated that osteo-

blasts filled the resorption pits created by osteoclasts in

more than 97% of the cases (17–21). Since then, coupling

has been understood as a coordinated and balanced in-

duction of osteoblastic bone formation in response to

prior bone resorption (19). Uncoupling occurs when the

balance between resorption and formation is disrupted,

which often leads to pathological situations such as os-

teoporosis or osteopetrosis (3, 9, 14, 22, 23). However,

uncoupling also occurs under physiological conditions,

i.e., during skeletal growth in children, where bone for-

mation exceeds bone resorption (10).

Hypogonadal osteoporosis is usually caused by a de-

crease or loss of sex steroid production, which results in

accelerated osteoclastogenesis and bone resorption (24)

that cannot be completely countered by an increase in

bone formation. This results in low bone mass, in deteri-

oration of the microarchitecture of the skeleton, and often

in fractures (25). Osteoporotic fractures are associated

with increased morbidity and mortality and give rise to a

significant public health problem (24).

Osteopetrosis, on the other hand, is a rare, inherited

disease in various species including man, which was orig-

inally identified by Albers-Schönberg in 1904 (26). In the

majority of cases, it is caused by defective resorption by the

osteoclasts, resulting in high bone mass with poor bone

quality and increased fracture frequency due to defective

bone remodeling (1, 26, 27). However, recent studies also

characterized patients with osteopetrosis due to dys-

functional osteoclastogenesis either directly affecting

the osteoclast precursors or indirectly through the os-

teoblasts, and thus the phenotype was caused by the

absence of osteoclasts, rather than inactivity of these

cells (28 –31). Interestingly, the studies of osteopetrotic

patients have indicated that the presence of osteoclasts,

but not their activity, is essential for bone formation,

indicating that some aspects of the coupling principle

should be revised (1, 3).

Because hypogonadal osteoporosis is associated with

increased numbers and activity of osteoclasts (16), most

treatments developed so far, such as bisphosphonates and

hormone replacement therapy (HRT)/selective estrogen

receptor modulators (SERMs), have focused on eliminat-

ing or reducing the number of osteoclasts and thereby

reducing bone resorption (32). These treatments are as-

sociated with secondary decreases in bone formation due

to the coupled nature of the bone remodeling process,

which naturally limits their efficacy (3, 24). However, as

seen in the osteopetrotic syndromes, there are indications

that bone resorption and bone formation can be dissoci-

ated, and from recent studies it appears that the osteoclast

itself, whether it is a physiological, pathological, or drug-

induced subtype, is highly important for a secondary effect

on bone formation (1, 3).

In this review, we describe differences in osteoclast

activity and subtypes in relation to physiology, patho-

physiology, and medication, with special attention to

coupling in the bone remodeling process. Ultimately,

this review highlights potential directions for new treat-

ment modalities.

III. The Classical Osteoclast

Osteoclastogenesis is a complex process requiring both the

correct extracellular stimuli and the correct cellular mol-

ecules to interact without impediment (22, 33). Osteoclasts

arise from hematopoietic stem cells that, in the presence of

32 Henriksen et al. Osteoclast Subtypes Endocrine Reviews, February 2011, 32(1):31–63
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TABLE 1. A simplified summary of osteoclast phenotypes as a function of physiology, pathology, and drugs, also
indicating areas of osteoclast biology that are not well-understood

Osteoclast no.

Bone resorption

Resorptive process
Bone formation

Acid Cat K MMP

Classical osteoclast Normal Normal ��� ��� �/� Balanced

Physiology

Targeted Recruitment to specific

areas increased

Increased �� ? ? Balanced

Stochastic Not clear Not clear � ? ? Not clear

Night Normal Increased �� �� �/� Minor up-regulation

Day Normal Decreased � ? ? Minor down-regulation

Chondroclast Normal Normal � � �� Balanced

Endochondral Normal Normal � � � Balanced

Intramembraneous Normal Normal � � � Not balanced, opposite

side of bone than

resorption

Trabecular Normal Normal �� �� � Balanced

Cortical Normal Normal �� �� � Balanced

Pathology

Osteoporosis Increased Increased � � �� � Increased, but less than

resorption

Age Increased Increased �� �� ? Decreased

OC-rich OP Greatly increased Decreased � � � Increased according to

increased OC

number

OC-poor OP No osteoclasts Decreased � � � Decreased?

Pycnodysostosis Unchanged/increased

osteoclast size

Decreased � � ��� Not clear

Paget’s Greatly increased at

local sites

Increased at local sites �� � ��� Increased locally, but

does not

compensate

resorption

RA Greatly increased at

local sites

Not known � � ��� Not known

Lytic metastases Greatly increased at

local sites

Increased at local sites � � ��� Increased locally, but

does not

compensate

resorption

Drug-induced

BPs Reduced Decreased � � ? Decreased secondary

to resorption

HRT/SERMs Reduced Decreased � � ? Decreased secondary

to resorption

Calcitonin Unchanged Decreased � � ? Not changed or minor

decrease

PTH Increased/unchanged Decreased �� �� ? Increased, but only

temporarily

Strontium ranelate Unchanged Decreased? � � ? Increased

GCs Unchanged/increased Unchanged/increased � � ? Decreased strongly

Denosumab Greatly reduced Decreased � � � Decreased secondary

to resorption

Cat K inhibitors Unchanged Decreased � � ��� Decreased secondary

to resorption

GLP-2 Unchanged Decreased � � ? Not changed, but long

term effects are not

known

Acidification inhibitors Increased Decreased � � � Increased, but so far

only in animal

models

The table shows the subtype of osteoclasts, the number of osteoclasts, the effect on bone resorption, which part of the resorption machinery that is active/affected,

and the effect on bone formation. OC, Osteoclast; OP, osteopetrosis; Cat K, cathepsin K; BPs, bisphosphonates; GCs, glucocorticoids; MMP, matrix metalloproteinase;

RA, rheumatoid arthritis; PTH, parathyroid hormone; HRT, hormone replacement therapy; SERMs, selective estrogen receptor modulators; GLP-2, glucagon-like peptide 2.
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receptor activator of nuclear factor �B (RANK) ligand

(RANKL) and macrophage-colony stimulating factor, un-

dergo differentiation and fusion resulting in large multinu-

cleated cells characterized by expression of a series of oste-

oclast markers, such as tartrate-resistant acid phosphatase

(TRACP), matrix metalloproteinase (MMP)-9, cathepsin K,

carbonic anhydrase II (CAII), the a3 subunit of the vacuolar

[H�]-ATPase, chloride channel 7 (ClC-7), osteopetrosis-as-

sociated transmembrane protein 1, and the calcitonin recep-

tor (34–41). Osteoclastogenesis and the molecules involved

in this process are summarized in Fig. 1, but are not

discussed in any further detail because several excellent

reviews have been published recently on this topic (1,

22, 33, 42).

Polarization and formation of the sealing zone, which

is a specialized ring structure containing a high number of

�-actin filaments, are the next steps in the life span of an

osteoclast (43, 44). These processes require the �v�3 in-

tegrin and the intracellular signal transducers c-src, Syk,

and proline-rich tyrosine kinase 2, as well as the microph-

thalmia transcription factor (33, 45, 46), which appears to

be an important regulator of osteoclastic gene transcrip-

tion (47–49).

The final step of osteoclastogenesis is the activation of

resorption, a process that is characterized by the forma-

tion of a ruffled border that is an intensely convoluted

membrane present inside the sealing zone (43, 44). The

formation of the ruffled border is not well-characterized;

however, the signaling molecule Rab7 is required (50).

Bone resorption takes place at the ruffled border local-

ized at the apical side of the osteoclasts, and it can be

divided into two processes, namely acid secretion and pro-

teolysis, although these processes likely occur at the same

time (44, 51).

Bone resorption is initiated by active secretion of pro-

tons through a vacuolar type ATPase (V-ATPase) and pas-

sive transport of chloride through a chloride channel (52,

53). The secretion of hydrochloric acid leads to dissolution

of the inorganic matrix of the bones (54). The osteoclastic

V-ATPase is functionally specific and contains the a3 sub-

unit, and accordingly, loss of a3 leads to osteopetrosis (37,

55–57). Inbothmiceandman, the chloride channelClC-7,

has been shown to mediate chloride transport, thereby

ensuring the electrochemical balance required for intense

acidification (Fig. 2) (8, 39, 58). Recent data showed that

ClC-7 functions as a proton-chloride antiporter (59, 60).

To generate the necessary levels of H� and Cl�, the

enzyme CAII catalyzes conversion of CO2 and H2O into

H2CO3, which ionizes into H� and HCO3
� (35), thereby

providing the protons for the V-ATPase (27). Meanwhile,

basolateral exchange of HCO3
� ions for Cl� by anion ex-

changer 2 (61–63) provides Cl� ions required for the in-

tense acidification occurring in the resorption lacuna.

Interestingly, long bones differ from flat bones with

respect to the molecular nature of the acidification ma-

chinery (62).

Proteolysis of the type I collagen matrix in bones is

mainly mediated by the cysteine proteinase, cathepsin K.

This enzyme is active at low pH in the resorption lacuna

(Fig. 2) (64–68). The neutral MMPs also appear to play a

minor role during organic matrix degradation; however,

the exact role of MMPs is still being investigated (69) and

is highly dependent on the bone type (38, 70, 71). The

resorbed material is removed from the resorption pit by

FIG. 1. Schematic illustration of the molecules involved in osteoclastogenesis and function. (See Refs. 1, 33, and 42). NF�B, nuclear factor � B;

TRAF6, TNF receptor-associated factor 6; nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1; PYK2, Proline-rich Tyrosine

Kinase 2; MitF, microphthalmia-associated transcription factor; ClC-7; Chloride Channel 7; PLEKHM1, pleckstrin homology domain containing,

family M (with RUN domain) member 1; osteopetrosis associated transmembrane protein 1; CA2, carbonic anhydrase II; AE2, anion exchanger 2.

34 Henriksen et al. Osteoclast Subtypes Endocrine Reviews, February 2011, 32(1):31–63
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uptake and transcytosis through the osteoclast (72, 73).

After completing resorption, osteoclasts either undergo

apoptosis or perform a further round of resorption (44)

(Table 1).

In summary, the osteoclasts are highly specialized for

both dissolution of the inorganic matrix and degradation

of the organic matrix of the bones. These highly polarized

cells are characterized by a unique set of membrane-bound

molecules that ensure an efficient resorption of bone and

other mineralized tissues. This complex machinery may be

affected by a range of important parameters in physiology

and pathology, and importantly in drug-induced situa-

tions that are important to identify and advance osteoclast

research and biology.

IV. Osteoclast Subtypes in
Physiological Situations

Osteoclast activities are essential for development, as well

as remodeling of bone in response to aging and stress (6,

14, 15). Under normal physiological circumstances, the

osteoclasts can be categorized into subgroups depending

on the matrix on which they are positioned, the time of

day, and the type of remodeling in which they participate.

These different groups of osteoclasts have provided key

information on skeletal maintenance.

A. Endochondral vs. intramembranous bone osteoclasts

Anatomically, two types of bones are present in the

body, the long bones (e.g., the femur and tibia) and the

FIG. 2. Top, Schematic illustration of the differences between acid secretion and proteolysis during osteoclastic bone resorption, illustrating that

the collagen matrix is removed by proteolysis after acidification. Bottom, Mutations/knockout in genes/proteins involved in bone resorption,

phenotypes, and effect on osteoclasts. Ae2, Anion exchanger 2; a3 V-ATPase, a3 subunit of the osteoclast-specific V-ATPase. ClC-7, chloride

channel 7; OSTM1, osteopetrosis associated transmembrane protein 1; CA2, carbonic anhydrase 2; MMP-9, matrix metalloproteinase 9.

Endocrine Reviews, February 2011, 32(1):31–63 edrv.endojournals.org 35
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flat bones (e.g., the calvarium), with the main difference

between these two types of bone being their develop-

ment (74). Studies also indicate that osteoclasts on these

two types of bones are functionally different with re-

spect to both acid secretion and proteases involved in

degradation (2).

Evidence that differences between resorption of flat and

long bone exist was presented in 1999 (4). However, in-

dications that even the acidification process is different

have been published only recently (62). Data from mice

deficient in the bicarbonate-anion exchanger Ae2 (Slc4a2)

have shown that it is essential for bone resorption in long

bones (61, 63), whereas it is not involved in bone resorp-

tion in calvariae (62), showing that distinct acid transport

mechanisms are present in different subsets of osteoclasts.

With respect to acid secretion into the resorption lacunae,

it is presently not known whether any differences exist,

although the absence of calvarial thickening in patients

with defective ClC-7 strongly suggests that ClC-7 is not

involved in resorption of the flat bones (75).

Extensive research into the proteolytic processes in-

volved in resorption of flat and long bones clearly dem-

onstrates that the proteolytic processes involved in deg-

radation of these two types of bone matrix are distinct (4,

71). Osteoclasts in flat bones preferentially appear to en-

gage in MMP-mediated bone resorption, although cathep-

sin L seems to be involved, too. Osteoclasts in long bones

primarily depend on cysteine proteinases, in particular ca-

thepsin K (4, 71). TRACP also appears to be involved in

bone resorption, and more so in calvarial bone (76–78).

When osteoclasts generated from human peripheral blood

are seeded on cortical bone, they primarily depend on ca-

thepsin K, whereas when cathepsin K activity is blocked,

there is some compensatory bone resorption mediated by

MMPs (69). How these osteoclasts behave on bone sub-

strates other than cortical bone is presently not known

(Table 1).

Data suggesting that the bone matrix could play a role

in the control of osteoclastic activities were presented in a

study showing compositional differences between long

bone and flat bone matrices, including differences in the

presence of putative cysteine proteinase inhibitors (79).

The functional significance of these data still remains to be

fully elucidated, although they clearly illustrate the im-

portance of understanding how a given context affects the

osteoclasts.

B. Chondroclasts

It has long been discussed whether chondroclasts are a

“real” cell type or whether they simply are osteoclasts that

reside on cartilage instead of bone (77, 80–82). Chon-

droclasts are mainly important in endochondral bone de-

velopment, and in addition there is some evidence that

chondroclasts may also play a role in both rheumatoid

arthritis (RA) and osteoarthritis (83–85). The term chon-

droclast derives from the localization of these cells on cal-

cified cartilage as seen in the expanding growth plates

during endochondral ossification (80, 86). For their for-

mation, these cells are dependent on the presence of

macrophage-colony stimulating factor and RANKL, as

are bone-resorbing osteoclasts (87–90).

Most of the evidence for the functionality of chondro-

clasts is derived from studies of the longitudinal growth of

long bones, i.e., metatarsals and tibias isolated from

mouse embryos (38, 80, 91–93). First, bone/cartilage re-

sorption in thesemodels is still dependentonacid secretion

as evidenced by mice with mutations in the acid secretion

process, i.e., ClC-7-deficient and a3 V-ATPase-deficient

mice, as well as mice unable to form sealing zones, i.e.,

c-src-deficient mice, in which the massive bones mainly

consist of calcified cartilage due to the defective resorption

process (56, 94, 95). Similar findings have been noted in

the corresponding human disease(s) (27, 96, 97). Interest-

ingly, the ruffled border is less prominent in the chondro-

clasts than osteoclasts, potentially suggesting that lower

levels of acid secretion are required for dissolution of this

matrix (98, 99). The main difference between chondro-

clasts and osteoclasts is in the profiles of enzymes neces-

sary for tissue degradation. Resorption by chondroclasts

does not appear to depend as much on cathepsin K as does

resorption by osteoclasts. Cathepsin K-deficient mice

show no evidence of calcified cartilage in the marrow cav-

ity of long bones, indicating that the removal of calcified

cartilage during endochondral ossification occurs, al-

though there are indications that the process is delayed

(65, 100). Of importance is the observation of a massive

compensation by MMPs in the absence of cathepsin K,

which obscures the interpretation of data from cathepsin

K-deficient systems (69, 70, 101–103). Finally, one study

has indicated that TRACP is activated and secreted at the

ruffled border in cathepsin K-deficient osteoclasts, and

only in cells that play a role in the removal of calcified

cartilage (104) (Table 1).

Although chondroclasts are involved in the degrada-

tion of a different matrix than osteoclasts, an interesting

observation is that bone formation is tightly coupled to

resorption of the mineralized matrix, as has clearly been

demonstrated in studies of endochondral ossification (86).

It is more likely that bone formation is coupled to chon-

droclast numbers because release of molecules from deg-

radation of cartilage, which in composition is far from

bone, would be expected to be different from molecules

released during bone resorption; however, this has never

been studied in detail.

36 Henriksen et al. Osteoclast Subtypes Endocrine Reviews, February 2011, 32(1):31–63
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C. Osteoclasts involved in targeted and

stochastic remodeling

Two different modes of remodeling have been pro-

posed: targeted and stochastic. Targeted bone remodeling

takes place at specific sites, whereas stochastic remodeling

occurs more randomly (19, 105, 106). The first type is

primarily performed to replace microdamaged bone and

thus to maintain the load-bearing capacity of the skeleton.

The second type of remodeling appears random with re-

spect to localization, although it may be involved in main-

taining integrity of the bones, independent of damage.

This process is hormonally regulated (105, 107).

The balance between these two modes of bone remod-

eling has not been fully elucidated yet, but studies in dogs

indicate that approximately 30% of all remodeling is tar-

geted and the remaining 70% is stochastic (105). With

respect to the osteoclasts mediating these two types of

remodeling, most studies have focused on how targeted

remodeling is controlled.

It appears that the bone matrix contains signals regu-

lating the activity of the osteoclasts (108). A recent study

demonstrated that aged bones were more readily resorbed

than young bones, thus supporting the hypothesis that the

bone matrix composition influences remodeling rates (7).

Furthermore, areas of microdamage, which are character-

ized by high numbers of apoptotic osteocytes, are prefer-

entially and rapidly degraded by osteoclasts. This further

supports the possibility that changes in the bone matrix

and the balance between live and dead osteocytes deter-

mine which areas will be remodeled (108). Finally, a recent

study demonstrated that targeted ablation of osteocytes

led to a dramatic increase in osteoclast activity (109) (Ta-

ble 1). These data indicate that death of osteocytes is a key

point in induction of osteoclast activity (Fig. 3).

Taken together with the finding that bones of different

age lead to different levels of osteoclastogenesis (7), it ap-

pears that osteoclast functionality is at least partially con-

trolled by osteocyte-derived molecules, which are seques-

tered in the bone matrix.

Stochastic remodeling, while occurring at random sites,

is centrally regulated by hormones such as PTH, vitamin

D3, and potentially calcitonin, and its main role is the

regulation of calcium homeostasis (110–112). It has even

beenquestioned towhat extent thisprocessdependson the

presence of osteoclasts because patients with nonfunc-

tional osteoclasts have normal calcium homeostasis (110–

112). Yet, when they are calcium-deprived, osteopetrotic

patients fail to correct their calcium levels, indicating that

osteoclasts, which are either absent or nonfunctional in

FIG. 3. Schematic illustration of stochastic vs. targeted remodeling. The figure illustrates the local nature of targeted remodeling, which is

activated at specific sites after the formation of microcracks and leads to removal of the microcrack and restoration of the damaged bone.

Stochastic remodeling, on the other hand, is of a systemic nature and is activated by low calcium levels in the circulation leading to PTH release.

Other hormones, such as vitamin D3 (VitD3), and potentially calcitonin also play roles in stochastic remodeling. It appears that there are two levels

of calcium homeostasis—one mediated by osteocytes independent of osteoclasts, and one including the osteoclasts—although the balance

between these two ways of releasing calcium still remains to be fully understood.
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these patients, do play a role in calcium homeostasis, and

thus stochastic remodeling (Fig. 3) (113).

In summary, targeted remodeling is beginning to be

understood in detail, and it is a tightly regulated and cou-

pled process involving osteocytes, osteoclasts, and cells of

the osteoblast lineage. On the other hand, stochastic re-

modeling and the role it plays in calcium homeostasis are

still not very well understood, although there are indica-

tions that there is a level of regulation by the activity of

osteoclasts.

D. Trabecular and cortical osteoclasts

Bone remodeling does not occur with the same fre-

quency in cortical and trabecular bone. Every year, 25%

of the trabecular bone matrix, but only 4% of the cortical

matrix, is remodeled (114). Interestingly, most in vitro

osteoclast experiments are based on cortical bone (or den-

tine) substrates, which are either slowly remodeled or not

remodeled at all (7, 102, 114–116). Studies have shown

that bones endogenously contain signals regulating osteo-

clastogenesis and resorption and that these signals appear

to be related to the age of the bone (7, 117) (Table 1). Thus,

an interesting question is whether osteoclasts themselves

are indeed different when derived from different matrices

or whether the difference is matrix related. Furthermore,

systemic regulation is likely to be involved in controlling

which bones are resorbed to some extent.

These data also correlate with evidence indicating that

remodeling of different bone compartments can be either

primarily targeted, such as in the cortex, or primarily sto-

chastic, as seen in some parts of trabecular bone (106). A

further understanding of this could provide directions for

the development of novel drugs producing optimal benefit

at the sites where it is most needed, i.e., leading to a better

fracture reduction than that presently obtained.

E. Diurnal variation in osteoclasts or osteoclast activity?

Bone resorption markers measured in serum may be

interpreted as indicating the net result of all osteoclast sub-

types and activity levels at one particular time. A wide range

of factors, known and unknown, may influence the inter-

pretation (15). Diurnal variation is a well-established and

important parameter of bone turnover. Postprandially, bone

resorption decreases by approximately 50% compared with

that of fasting individuals, but during the night, bone resorp-

tion increases to an equally large degree (118–120). Several

investigations have demonstrated that the circadian varia-

tion in bone resorption is induced in part by food intake

(121–123),which,at leastpartially, involves thepeptidehor-

mone glucagon-like peptide (GLP) 2 (124). Interestingly, the

osteoclast number does not appear to depend on the time of

day, further emphasizing differences between osteoclast

number and activity (32) (Table 1). An interesting aspect of

this is that targeting nocturnal resorptive activity appears to

lead to inhibition of bone resorption, whereas not attenuat-

ing bone formation (125–127), thereby highlighting an in-

teresting prospect of reducing bone resorption in a specific,

nocturnal manner.

In summary, studies of osteoclasts under different phys-

iological conditions, such as those listed above, have high-

lighted the heterogeneity of these cells. Furthermore, these

studies highlighted the importance of the balance between

bone resorption and bone formation, a tightly regulated

phenomenon that rarely is disturbed under physiological

conditions. Finally, how the heterogeneity of the oste-

oclasts affects bone formation is presently not well under-

stood, but a further understanding of this process could

help optimal treatment of diseases involving alterations in

bone remodeling.

V. Osteoclast Subtypes in
Pathological Situations

Changes in osteoclast activity and number have been de-

tected in several diseases, ranging from illnesses involv-

ing excessive bone resorption, such as osteoporosis and

Paget’s disease; to those involving secondary activation of

osteoclasts, such as osteolytic metastases and RA; to dis-

eases involving defective osteoclast differentiation and/or

function, such as osteopetrosis. These different types of

diseases have shed important light on osteoclastic function

with respect to obtaining the right type of treatment. They

have also shed light on a very central aspect in bone biol-

ogy, the coupling principle. The coupling principle de-

scribes the phenomenon that bone formation follows bone

resorption, which leads to a complete restoration of the

bone removed during bone resorption (17).

A. Osteoporotic osteoclasts

1. Changes in osteoclastogenic potential in osteoporosis

An important aspect of osteoporosis is whether the

number of osteoclast precursors in the circulation in-

creases, and, if so, whether the osteoclastogenic potential

of these cells is increased. Eghbali-Fatourechi et al. (128)

showed that the overall number of cells expressing

RANKL is increased in postmenopausal women com-

pared with premenopausal or estrogen-treated women,

clearly indicating that the bone marrow microenviron-

ment, including stromal, T, and B cells, changes in a proos-

teoclastic direction when estrogen is reduced. These data

were supported by a recent study from the same authors

showing that bone marrow cells isolated from estrogen-

treated or control postmenopausal women displayed

38 Henriksen et al. Osteoclast Subtypes Endocrine Reviews, February 2011, 32(1):31–63
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reduced osteoclastogenic potential (129) (Table 1). Es-

trogen was shown to have a dual mode of action—the

first leading to overall lower RANKL expression by

bone marrow cells, and the second reducing the oste-

oclastogenic response to RANKL (130). Interestingly,

aging of mice was also shown to increase the osteoclas-

togenic potential of bone marrow cells, both by up-

regulation of RANKL production and by increasing

precursor sensitivity to RANKL (131).

In vitro studies of the changes in cellular activity of

osteoclasts from osteoporosis patients are limited, but

these have indicated both an accelerated osteoclastogen-

esis and resorption (132, 133). Furthermore, a key cell in

the up-regulation of osteoclastogenesis appears to be the

T cell, which responds to lowered estrogen levels by in-

creasing RANKL production (134).

The main issue with all the studies of osteoporotic os-

teoclasts and their precursors is the use of mixed cell pop-

ulations, which clouds the interpretation of the results,

and therefore these aspects of osteoclastic function still

require further investigation. Furthermore, with the recent

publication of the possibility of assessing the “anabolic

potential” of osteoclasts (11, 13), it would be of interest to

investigate the anabolic capacity of osteoporotic oste-

oclasts and thus shed light on the imbalance between bone

resorption and bone formation in osteoporosis.

2. A direct role for sex steroids on osteoclasts

The role of estrogen on cells belonging to the osteoclas-

tic lineage has been studied extensively, with several find-

ings indicating that estrogen suppressesosteoclastogenesis

but not the resorptive activity of mature osteoclasts (135–

137). Androgens, such as dihydrotestosterone, exhibit

similar effects to estrogen on osteoclasts in vitro, although

this has not been studied in great detail (138). Finally, a

recent study using mice deficient for the estrogen receptor

(ER)-�, specifically in mature osteoclasts, showed bone

loss in female, but not male, mice (139). This demon-

strated that estrogen likely plays a direct role in bone re-

sorption by even mature osteoclasts (139). Although the

authors used the cathepsin K promoter to ensure specific

knock-down of the ER-� in osteoclasts, cathepsin K is also

expressed in preosteoclasts, albeit to a lower extent (139).

More studies are needed to investigate the role of ER-� in

mature osteoclasts specifically. Interestingly, osteoclasts

in different bone sites preferentially express different ERs,

with cortical osteoclasts mainly expressing ER-� and

trabecular osteoclasts mainly expressing ER-� (140),

whereas from a functional point of view ER-� appears to

be more relevant for trabecular, not cortical, bone (141).

Furthermore, the expression pattern also differs between

mature and differentiating osteoclasts; ER-� is mainly ex-

pressed in immature cells, and ER-� is present at all stages

of osteoclastogenesis (137). Again, there appear to be dif-

ferent osteoclastic subtypes, which also appear to be rel-

evant in the context of bone loss rates in different bone

compartments during osteoporosis (114). As indicated

above, an important point is the difference between gen-

ders (139). In mice, the gender-based difference between

cortical apposition and endocortical resorption that be-

comes more apparent with increasing age might be ex-

plained by differences in ER expression (142). With re-

spect to changes in the osteoclasts after menopause, a

couple of studies have clearly demonstrated that bone re-

sorption, as well as bone formation, increases in women

after menopause (143–145), and these changes become

more explicit in high- and low-turnover patients (145).

Although bone formation increases as a function of the

increased resorption, it does not match bone resorption,

thereby illustrating the importance of understanding the

interplay between osteoclasts and osteoblasts in detail.

B. Changes in osteoclast activities with increasing bone

matrix age

Numerous studies have investigated the control of os-

teoclast activity as a function of changes in biochemical

properties of the bone matrix. Aging leads to accumula-

tion of different biochemical modifications of the bone

matrix, such as advanced glycation end-products (AGEs),

homocysteine, increased calcium concentration, as well as

some modifications of the collagen matrix (146).

Recent studies have indicated that these modifications

of the bone matrix itself actually modulate the activity of

the osteoclasts to a certain extent (7, 117). Homocysteine,

which accumulates in bone and in circulation with age,

was shown to activate osteoclastogenesis and bone resorp-

tion (147) (Table 1). AGEs are modifications of proteins

that accumulate in various tissues with age, and they have

been implicated in the pathology of osteoporosis (146,

148). Some evidence indicating a direct regulation of os-

teoclast activity by AGEs has been published, but these

studies are contradictory. One study shows activation of

resorption by AGE-modified proteins (149), whereas the

other study shows the opposite (117); however, quite dif-

ferent techniques were used.

Interestingly, AGEs are accumulated in diabetes, and

they have been speculated to be involved in the increased

fracture rates observed in patients with this disease (150,

151). Another intriguing finding is the induction of

apoptosis in osteoblasts by AGEs (152), which potentially

could play a role in the imbalance between osteoclast and

osteoblast function during osteoporosis and aging. These

findings are all preliminary in nature, and they await con-

firmation from independent research groups. However,

once again they illustrate the heterogeneity of osteoclasts,
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in this case as a function of matrix age, and the importance

of understanding this phenomenon.

C. Osteoclast-rich osteopetrosis

The most frequently occurring forms of osteopetrosis

are those caused by mutations in either the a3 subunit of

the V-ATPase, ClC-7, or osteopetrosis-associated trans-

membrane protein 1. Osteoclasts from patients with mu-

tations in these genes or proteins and from knockout mice

have been studied quite extensively (8, 39, 56, 58, 95,

153–156).

Microscopic analyses of cells from patients with defec-

tive acid secretion by osteoclasts indicated defective ruf-

fled border formation, but also accumulation of material

in vesicles, indicating hampered transcytosis (157). Apart

from confirming the defective acid secretion and thereby

bone resorption, when either ClC-7 or the a3 subunit is

mutated (8, 39, 56, 58, 95, 153, 154), these studies also

shed light on important aspects of bone remodeling.

In vitro studies indicate that osteoclasts with impaired

acid secretion have higher survival rates than cells with

normal secretion, due to the reduced release of proapop-

totic signals during resorption (159). This observation

correlates well with the high numbers of osteoclasts ob-

served in vivo in this group of patients, as well as with

findings in mice with attenuated acidification of the re-

sorption lacunae (95, 97) (Table 1). Furthermore, signif-

icantly increased resorbed areas are seen during impaired

acid secretion, but the resorption pits are shallow, indi-

cating a disturbed activity of the osteoclasts (97). More

importantly, these studies highlighted that bone forma-

tion in these patients is ongoing—a process that appears to

be correlated to the increased number of osteoclasts rather

than bone resorption (96, 154, 160, 161). These findings

contrast with the classical perception that bone formation

always follows bone resorption in a tightly coordinated

manner and illustrate the importance of the actual pres-

ence of osteoclasts to maintain bone formation.

D. Osteoclast-poor osteopetrosis

Several murine forms of osteoclast-poor osteopetrosis

have been described in the literature (1, 42). In general,

whereas the mutations express a pronounced osteope-

trotic phenotype and few or no osteoclasts are present, the

phenotypes are less severe than the phenotypes of the dif-

ferent osteoclast-rich osteopetrotic mutations (1). These

data strongly suggest that the osteoclasts are indeed in-

volved in the production of anabolic signals for bone for-

mation (3, 15).

Studies of mice deficient in c-src and c-fos, a key mol-

ecule involved in ruffled border formation and a key signal

transducer for osteoclastogenesis, clearly demonstrated

that osteopetrosis was due to nonfunctional osteoclasts or

the absence of osteoclasts, respectively (162, 163). Inter-

estingly, these two groups of mice have opposing pheno-

types with respect to bone formation. The osteoclast-rich

c-src knockouts have increased bone formation (164), and

the osteoclast-poor c-fos knockouts have decreased bone

formation (165). The anabolic effects of PTH are present

in the c-src�/� mice but are blunted in the c-fos�/� mice

(166), indicating that osteoclasts are central for bone for-

mation (Table 1).

Two recent studies identified mutations in the genes for

RANK and RANKL as the causes of osteopetrosis in a

novel group of patients (28, 29). No indications of osteo-

clasts were found in these patients (28, 29), which is con-

sistent with previous observations in mice deficient in both

RANKL and RANK (87, 90). Patients with mutations in

either RANKL or RANK have a pronounced osteopetrotic

phenotype and classical histological hallmarks of osteo-

petrosis including unresorbed primary spongiosa. How-

ever, although limited data have been published, the os-

teopetrotic phenotype appears to be less severe than the

one observed in the osteoclast-rich forms (1). Thus, muta-

tionswithintheRANK/RANKL/osteoprotegerin (OPG)sys-

tem can lead to osteoclast-poor osteopetrosis with low bone

formation in mice and men.

Interestingly, alterations in osteoblast function, such as

changes in the production of RANKL and OPG, may have

the same effect. Stabilizing osteoblastic �-catenin in trans-

genic mice, thus mimicking constitutive activation of the

canonical Wnt signaling pathway, was followed by an

up-regulation of OPG in relation to RANKL (31, 167). As

expected, the mice developed osteoclast-poor osteopetro-

sis with failure of tooth eruption, a classical phenomenon

in murine osteopetrosis. Mutations within LRP5 related

to the Wnt signaling pathway have underscored the fun-

damental importance of this pathway for regulation of

bone mass. The osteoporosis pseudoglioma syndrome was

found to be caused by loss of function mutations in the

gene for LRP5 (168). In contrast, mutations affecting the

first propeller of the coreceptor, presumed to be followed

by chronic activation of the Wnt pathway, were found in

various forms of monogenic human osteosclerotic pheno-

types (169). Among these, autosomal dominant osteope-

trosis type 1 has been well characterized clinically, bio-

chemically, histomorphometrically, and biomechanically

(75). Autosomal dominant osteopetrosis type 1 is an os-

teoclast-poor osteopetrotic phenotype with increased bio-

mechanical competence and no low-energy fractures.

Osteoclast profiles are markedly decreased (97), bone

formation seems to be normal, and OPG levels in the cir-

culation increased (170). However, when investigating os-
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teoclasts ex vivo from these patients, they express normal

bone resorptive capacity (30).

In summary, osteoclast-poor osteopetrosis can arise in

murine mutations/transgenics or humans when the OPG/

RANKL/RANK system is affected directly or indirectly.

These findings underscore this cytokine system as a key

regulator of osteoclastogenesis. Moreover, the pheno-

types seem to be less affected than the osteoclast-rich

forms, the reason for which is so far unresolved, although

there are indications that reductions in bone formation are

involved (1, 28, 29).

E. Pycnodysostotic osteoclasts

An interesting subtype of osteoclasts with defective

bone resorption is observed in patients with pycnodysos-

tosis. Pycnodysostosis is caused by loss of function or loss

of expression mutations in the cysteine proteinase cathep-

sin K, which in humans causes dwarfism and poor bone

quality due to defective remodeling of the bones (36, 171–

173). Few studies examining the phenotype of pycnodys-

ostotic osteoclasts have been published. Microscopic anal-

yses of the osteoclasts have shown significantly increased

amounts of demineralized collagen matrix in the resorp-

tion pit, but also inside the osteoclasts, indicating dis-

turbed resorption and trafficking of resorbed components

(174, 175). A study of biochemical markers of bone turn-

over showed that C-terminal crosslinked telopeptide of

type I collagen (CTX-I) release was reduced, whereas pro-

duction of the MMP-generated type I collagen fragment

carboxyterminal telopeptide of type I collagen (ICTP) was

increased (67) (Table 1). Several studies of cathepsin K-

deficient mice have been published, and whereas they con-

firm that cathepsin K is essential for degradation of the

organic matrix in bone (65, 66, 176), there are also several

differences between the human and mouse phenotypes

(103). Furthermore, in cathepsin K-deficient mice, bone

formation parameters are highly increased (100). These

findings have not been replicated in pycnodysostosis pa-

tients in whom the bone matrix is disordered (177), and a

clinical case study indicated that anabolic response to PTH

was absent (174). Two recently published clinical studies

have shown that whereas bone resorption markers are

strongly reduced, bone formation is also suppressed in

women treated with the cathepsin K inhibitor odanacatib

(178). In a monkey study monitoring bone formation by

histomorphometry reductions in bone formation, rates

were shown in the trabecular bone compartment, whereas

bone formation was increased in the cortical compartment

(179–181).

In conclusion, cathepsin K mediates cleavage of type I

collagen in the resorption lacunae, but its secondary ef-

fects on bone formation are bone type-dependent and still

need to be investigated further.

F. Other diseases characterized by increased

osteoclast activity

Apart from hypogonadal osteoporosis, several diseases

are characterized by accelerated osteoclastogenesis and

function. Although the etiology of these diseases is differ-

ent, there are interesting overlaps and discrepancies that

provide highly useful information about osteoclastic func-

tion and secondary effects on bone formation under dif-

ferent circumstances (182).

1. Pagetic osteoclasts

Paget’s disease is a late-onset disease that is quite com-

mon in the elderly Caucasian population, where it affects

approximately 3% of individuals (182). The disease is

characterized by focal increases in osteoclast numbers,

nuclearity, and size, which leads to localized bone destruc-

tion, although surrounding osteoblasts also are activated

(183) (Table 1). The identified causes of the disease in-

clude mutations in four different genes, TNFRSF11A,

TNFRSF11B, VCP, and SQSTM1 (182, 184–186). These

genes encode RANK, OPG, p97, and p62, all of which are

involved in the regulation of osteoclastogenesis. The mu-

tations all result in different subtypes of Paget’s (182,

184–186). These mutations render the osteoclast precur-

sors more sensitive to RANKL stimulation, resulting in a

higher number of osteoclasts, and potentially also explain-

ing the presence of giant osteoclasts (185, 187, 188). In-

terestingly, a recent study in mice indicated that the most

common mutation in p62 does not make the osteoclasts

Pagetic alone, although it sensitizes them to other yet-to-

be-described causes of Paget’s (189, 190).

In Paget’s patients, biochemical markers of both bone

resorption and bone formation are increased, showing an

overall increase in bone turnover at the affected sites.

However, bone resorption clearly exceeds bone formation

(182). Whether the osteoclasts in Paget’s behave differ-

ently from those in healthy individuals during bone re-

sorption is presently unknown. In particular, it is not

known whether osteoclasts in Paget’s require acidification

to resorb bone, or whether cathepsin K is the main pro-

tease, although answers to these questions might be of

value in the development of new therapies for Paget’s.

Furthermore, an explanation for the localized nature of

Pagetic lesions has still not been found. Even under the

extreme circumstances seen in Pagetic lesions, bone for-

mation is coupled to osteoclastic parameters, although

whether this is due to increased osteoclast numbers or

activities is not known. Moreover, in this case a treatment

type eliminating the activity of both types of cells is most

likely to be preferred because the increase in bone forma-

tion occurring is part of the pathology, and likely will

provide no benefit for the bones if maintained. Thus,

bisphosphonate, which strongly attenuated overall bone
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turnover, appears to be highly relevant in the context of

Paget’s disease (191).

2. Osteolytic osteoclasts

Several forms of cancer can metastasize to bone and

form osteolytic metastases (192–196). Once the cancer

has reached the bone, tumor and bone interact in a vicious

cycle in which tumor-secreted factors, such as PTHrP,

stimulate bone cells, which in turn release growth factors

and cytokines that promote further tumor cell growth

(192, 197). The activation of osteoclastogenesis induced

by tumor cells has been shown to involve a switch in the

RANKL/OPG ratio favoring osteoclastogenesis and acti-

vation, leading to release of the tumorigenic factor TGF-�,

and thereby inducing the vicious cycle (198). As a function

of the increased numbers of osteoclasts and accelerated

bone resorption, a marked up-regulation of osteoblast ac-

tivities is also observed (199, 200).

The activity of osteoclasts in metastases has been mon-

itored closely using biochemical markers of bone turnover

(199, 200), and these studies have indicated that bone

resorption by tumor-induced osteoclasts to some extent

depends on MMP activity, rather than cathepsin K, be-

cause the type I collagen fragment ICTP is released in high

amounts (199, 201) (Table 1). Animal models of breast

cancer bone metastases are to some extent sensitive to

inhibitors of both cathepsin K and MMPs (101, 202–204);

however, clinical data for MMP inhibitors have been dis-

appointing (205, 206). An interesting question is whether

these agents, to be effective, have to inhibit MMPs before the

tumors actually metastasize. For cathepsin K inhibitors, the

data indicate a beneficial effect on the release of the bone

resorption marker N-terminal crosslinked peptide of type

I collagen, and an increase in ICTP levels (204). However,

further information is needed to draw reliable conclusions

on the usefulness of cathepsin K inhibitors for metastatic

bone disease.

In contrast, treatments ablating both osteoclasts and

the increased osteoblast activity, such as denosumab and

bisphosphonates, reduce the destructive capacity of the

metastasis and, importantly, the afflicted pain. How-

ever, they do not appear to affect the cancer cells (192,

207–210), although there are some indications that the

bisphosphonates affect the life span of the cancer cells

as well as reducing osteolysis (211).

In summary, from a treatment point of view, there are

several similarities between Paget’s and osteolytic metas-

tases. The optimal approach appears to involve a strategy

of reducing overall bone turnover toward the normal

range, such as with the use of denosumab or bisphospho-

nates An intriguing possibility would be to target only the

areas undergoing destruction, but whether this is feasible

is presently not known.

3. Arthritic osteoclasts

Later stages of RA are characterized by massive bone

destruction caused by osteoclasts (212, 213). However,

there are several indications that these osteoclasts are not

classical bone-resorbing osteoclasts but include cells that

degrade calcified cartilage (83, 214) (Table 1). Several

studies have indicated that TNF-� at least partially drives

osteoclastogenesis in RA (215), as exemplified by mice

overexpressing human TNF-� with massive joint destruc-

tion including bone erosion (216). Furthermore, TNF-�-

neutralizing antibodies, such as infliximab, or soluble

TNF-� receptor antagonists, such as etanercept, provide

amelioration of RA in humans (217, 218). Apart from

TNF-�, RANKL is, not surprisingly, a crucial factor in

osteoclastogenesis during RA (87), and mice deficient in

RANKL are protected against bone, but not cartilage, ero-

sion (219). Treatment with OPG of mice with collagen-

induced arthritis also leads to amelioration of bone de-

struction, while having a markedly lower effect on

cartilage degradation (220). In addition, a study in which

TNF-� overexpressing mice were crossed with mice defi-

cient in c-fos (i.e., deficient inosteoclasts), showednobone

destruction but clear evidence of cartilage destruction

(221). Furthermore, human clinical trials using deno-

sumab have demonstrated that the RANKL/RANK axis is

a key player in RA and that inhibition of RANKL signaling

may provide a useful treatment option (222). Finally,

more recent evidence has indicated that IL-1� and IL-1�

both play a partial role in bone resorption and cartilage

degradation (223). Anakinra, which is a soluble IL-1

receptor antagonist, is also used for treatment of RA,

although it appears to be less effective than the TNF-�

inhibitors (217). In addition, tocilizumab (anti-inter-

leukin-6 receptor inhibitor) has shown promise in pre-

venting RA progression through an effect including a

reduction in osteoclast numbers (158, 324).

Because osteoclasts play a significant role in RA,

bisphosphonates appear to be an attractive treatment op-

tion. Early evidence has indicated that zolendronate may

be useful (224), although this has not been fully estab-

lished yet (225). Furthermore, interpretation of the effects

of bisphosphonates in RA is often clouded by glucocorti-

coid treatment of the same patients because glucocorti-

coids are associated with rapid systemic bone loss,

independent of RA (226, 227). However, in both collagen-

induced arthritis in rats and in the TNF-� transgenic

mouse model, zolendronate was effective in reducing both

bone and cartilage destruction (228, 229).

The bone resorption process in RA is still not com-

pletely understood despite several studies into the molec-

ular mechanisms. The role of cathepsin K has been exten-

sively studied, and the data are somewhat conflicting
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(230–232). Overexpression of cathepsin K has been

shown to accelerate joint destruction in mice (231), and

overexpression of cathepsin K has been observed in hu-

mans with RA (233, 234). However, studies in the TNF-�

overexpression model crossed with cathepsin K-deficient

mice showed that cathepsin K plays only a marginal role

in bone resorption in RA (232), a finding supported by a

case study showing severe arthritis in a pycnodysostotic

patient (235), although there are still controversies with

respect to the role of cathepsin K in RA (236).

Other cathepsins have not been explored in detail, and

their expression patterns do not indicate a particular effect

on osteoclast function in RA (237).

Under some circumstances, MMPs also play a role in

bone resorption (2, 81). Studies showing that the MMP-

derived collagen type I fragment, ICTP, is increased in RA

could indicate that osteoclasts used MMPs to digest ma-

trix under these circumstances (238, 239). Infliximab

treatment has been shown to reduce ICTP levels, as well as

osteoclast numbers (240), further indicating that oste-

oclasts utilize MMP-mediated bone degradation in RA.

However, a direct link between the production of ICTP

and osteoclasts has not been demonstrated yet.

Whether acid secretion by osteoclasts is needed for

bone destruction in RA is also not clear. Because bone

destruction is likely to occur as a result of MMP activity,

the need for acidification may be reduced when compared

with “classical” bone resorption (69), although this is still

not fully understood. Another possibility is that MMP-

mediated collagen type I degradation is mediated by an-

other cell type, although this still remains to be clarified.

A case study of arthritis in a case of autosomal dominant

osteopetrosis type II (241) showed a lack of bone degra-

dation, whereas cartilage degradation was abundant,

thereby mimicking the situation seen in osteoclast-defi-

cient systems (221) and indicating that bone resorption in

RA depends fully on acid secretion.

In summary, development of severe RA involves oste-

oclasts, and a reduction of bone resorption by these cells

is desired. This may be obtained through inhibition of

inflammation and thereby bone and cartilage destruction,

as seen with anti-TNF-� therapy. Alternatively, therapies

such as denosumab that target the osteoclasts directly may

also be useful, although these fail to eliminate inflamma-

tion and only partially prevent cartilage degradation

(220). The optimal therapy could be a combination of

antiinflammatory and antiosteoclastic measures, al-

though this is presently not known.

In summary, studies of osteoclasts under pathological

circumstances have highlighted some important phenom-

ena. First, osteoclasts themselves, not just their resorptive

activity, mediate bone formation and therefore perform an

important secondary role in bone remodeling, which is of

importance when developing novel treatments for osteo-

porosis (15). Second, excessive and local activation of

osteoclasts occurs in several diseases, and interestingly

the osteoclasts appear to switch subtype with respect to

their resorption machinery. These findings highlight the

importance of characterizing the function of osteoclasts

under pathological circumstances to optimize treatment

strategies.

VI. Drug-Induced Osteoclast Subtypes

A. Existing drugs

Several antiresorptive drugs for the treatment of osteo-

porosis, as well as glucocorticoids and PTH treatment, are

known to alter osteoclasts in various ways. These drugs all

provide critical information on osteoclast function, and

furthermore, they have also played a great role in illus-

trating the interplay between osteoclasts and osteoblasts,

as will be described in the following section.

1. Bisphosphonates

Bisphosphonates have long been associated with induc-

tion of apoptosis in osteoclasts, and the mechanism of

action underlying the apoptotic effect depends on whether

or not the bisphosphonates contain nitrogen (242). Both

classes of bisphosphonates bind to the bone matrix and are

taken up by the osteoclast during bone resorption. The

simple bisphosphonates are metabolized into toxic ATP

analogs, thereby inducing osteoclast apoptosis in vitro

(242). The nitrogen-containing bisphosphonates exert

their function by inhibiting the mevalonate pathway,

which leads to the generation of an ATP analog known to

induce apoptosis in osteoclasts in vitro (242). The antire-

sorptive potency of the nitrogen-containing bisphospho-

nates in vivo is controlled by mineral binding affinity and

by their ability to inhibit the mevalonate pathway (242).

Although in vitro data clearly show that bisphospho-

nates induce apoptosis, analyses of osteoclast numbers in

iliac crest biopsies failed to show a reduction in the number

of osteoclasts when patients were treated with bisphos-

phonates (243–245). On the other hand, bisphosphonates

reduce systemic levels of TRACP 5b and cathepsin K, both

markers of osteoclast number (32, 246–248), potentially

indicating that osteoclasts undergo systemic apoptosis,

which correlates well with the expected effects of bisphos-

phonates (242) (Table 1). Other studies have shown that

when bisphosphonate therapy continues for more than 1

yr, the number of circulating osteoclast precursors is re-

duced, and these reductions are speculated to be related to

reduced serum RANKL levels (249, 250).
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A recent study of biopsies from alendronate-treated pa-

tients showed the presence of giant hypernucleated, de-

tached, and frequentlyapoptoticosteoclasts, and thenum-

ber of these abnormal osteoclasts correlated with the

cumulative dose of bisphosphonate (251). Although in-

teresting, the biological implications of this finding are not

clear yet.

One potential explanation for the discrepancies in scor-

ing osteoclasts in the iliac crest biopsies is the very low

number of osteoclasts observed in general. Recent reports

have also debated the clinical relevance of studying iliac

crest biopsies because they are from non-weight-bearing

bones and these are different from weight-bearing bones

(252–254), and in general more data are needed to draw

a final conclusion on the osteoclastic response to

bisphosphonates.

On the other hand, the effect on reduction of bone re-

sorption measured both by biochemical markers and by

bone histomorphometry (activation frequency) confirms a

potent reduction in bone resorption, and the level of

reduction is often down to the lower range of premeno-

pausal levels, although this depends heavily on the ef-

ficacy of the individual bisphosphonate (242, 243, 245,

255–258).

With respect to secondary effects on bone formation,

measurement of biochemical markers of bone turnover

shows a marked reduction in bone formation markers,

and the effects are maintained throughout the treatment

period, although this again is dependent on the individual

bisphosphonate (242, 243, 245, 255–258). Biopsy studies

have confirmed that bone formation is reduced when com-

pared with placebo, and although the reduction in bone

formation rates is dependent on the individual bisphos-

phonate, the data indicate that bone formation is not com-

pletely suppressed but is reduced to the lower postmeno-

pausal levels (243, 245, 258). The FLEX study (Fracture

Intervention Trial Long-term Extension), although show-

ing continued reductions in vertebral fractures, increase in

bone mineral density (BMD), and reduction of bone turn-

over markers with alendronate, did not show a significant

reduction in bone formation rates when comparing pa-

tients stopping alendronate to patients continuing treat-

ment; however, the numbers of biopsies were low (259).

All in all, there is no doubt about the fracture-prevent-

ing effects of bisphosphonates; however, knowledge of the

effect of bisphosphonates on osteoclasts in vivo is quite

limited. Apoptosis of the osteoclasts most likely explains

the reduction in bone resorption. Furthermore, although

the extent of the secondary reduction in bone formation is

still discussed, it appears to be clinically relevant, and it

most likely is the explanation for the attenuation of the

BMD increase seen after the first year of treatment.

a. Osteonecrosis of the jaw (ONJ) and bisphosphonates.

Bisphosphonate therapy, especially in the case of malig-

nancy-induced bone loss, has been connected to the oc-

currence of ONJ, mainly due to the ability of bisphospho-

nates to strongly suppress bone turnover (260–262).

Although the probability of ONJ is very low for the dosing

regimens used for treatment of osteoporosis, there has still

been a lot of debate about whether ONJ is the result of the

massive suppression of bone turnover in the jaw (262).

Interestingly, alveolar bone of the jaw is very similar to

bone matrix in the long bone, i.e., it contains the classical

cell types as well as the lamellar structure (263). Further-

more, bone remodeling occurs normally in alveolar bone,

although the rate of remodeling has been estimated to be

up to 10-fold higher than the corresponding rate in long

bones (263–266). In ONJ, the number of osteoclasts has

been investigated, and it appears that the osteoclasts are

absent from the lesions (267, 268), although opposing evi-

dence also exists (269) and thus more studies are needed.

It has been speculated that massive suppression of os-

teoclast function, and thus bone turnover, in this high-

turnover compartment is what causes ONJ to occur; how-

ever, there are several other factors involved, such as tooth

extraction or infections, and the overall causality is still

not clear (262). One point of particular interest is

whether this phenomenon is specific for bisphospho-

nates or whether it will happen with other very potent

and long-lived antiresorptives; however, this is pres-

ently not known.

2. Selective estrogen receptor modulators/hormone

replacement therapy

Because cessation of estrogen production is a major

cause of osteoporosis (3, 14) and both estrogen and

SERMs are used for treatment of osteoporosis, several

studies have been conducted to clarify their effect on

osteoclasts.

Estrogen has been shown to exert direct antiosteoclas-

tic effects at several stages of osteoclastic differentiation

and function, namely osteoclastogenesis, resorption, and

apoptosis. Direct inhibition of the formation of multinu-

cleated osteoclasts is thought to be caused by suppression

of RANKL-induced c-Jun and basal c-Jun N-terminal ki-

nase activity in osteoclast precursor cells (135, 136). In

nonpurified osteoclast-precursor systems, estrogen was

found to inhibit osteoclastic differentiation in a human

system (270), possibly via down-regulation of the �v�3

integrin (271). Two studies of estrogen have been con-

ducted using CD14� osteoclast precursors. As mentioned

earlier, one study showed significant inhibition of oste-

oclastogenesis (137), whereas the other showed no direct

effect on osteoclast precursors (272). To date, there is no

explanation for this discrepancy.
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Studies of the effects of SERMs on osteoclasts have

shown that tamoxifen inhibits osteoclastogenesis directly,

whereas raloxifene and ospemifene only inhibited osteo-

clasts through up-regulation of the expression of OPG by

osteoblasts (273). Although early studies showed an effect

of raloxifene on osteoclastogenesis, these were conducted

using mixed cell populations and therefore most likely

reflect the increase in OPG (274).

Mature osteoclasts have also been shown to respond

directly to estrogen (275, 276). These studies showed that

both the activity and the production of the lysosomal en-

zymes are down-regulated by estrogen (277, 278), possi-

bly explaining the reduction in resorption by the down-

regulation of cathepsin K and TRACP (36, 66, 77, 279)

(Table 1).

In summary, in vitro data clearly demonstrate that es-

trogen and SERMs reduce osteoclast numbers via inhibi-

tion of osteoclastogenesis, and potential effects on bone

resorption and apoptosis might add to the in vivo effect.

Although some studies of osteoclasts in patients treated

with either HRT or SERMs have been conducted, the ef-

fects of both estrogen and SERMs on bone remodeling

indices based on histomorphometry are quite modest

(280–284). Overall, these studies show a reduction in ac-

tivation, frequency, and depth of resorption, as well as—

where detectable—a small decrease in osteoclast numbers.

Reduced bone formation rates were also observed, con-

firming the coupled nature of inhibition mediated by es-

trogen and SERMs (280–284). These data are corrobo-

rated by biochemical markers of bone turnover, which

clearly demonstrated a coupled reduction in bone resorp-

tion and bone formation (32, 285–287), and furthermore

explain the plateau effect observed in BMD measurements

after 1 yr (285).

In summary, many of the numerous studies of the in

vitro mode of action of HRT and SERMs show a reduction

in osteoclastogenesis. In alignment, in vivo studies of these

therapies on osteoclasts confirm that osteoclastogenesis is

lower than in the untreated population, and importantly,

these also confirm the secondary decrease in bone

formation.

3. Calcitonin

Calcitonin is a natural peptide hormone produced by

parafollicular cells (C cells) of the thyroid gland. Calcito-

nin possesses potent antiresorptive effects (288), and bind-

ing of calcitonin to the calcitonin receptor on osteoclasts

induces a rapid change in the cytoskeletal structure of the

osteoclasts in vitro, which in turn leads to a reduction in

bone resorption without inducing apoptosis of the cells

(102, 289, 290). Calcitonin in either an injectable or a

nasal form has been approved for treatment of osteopo-

rosis; however, because it only prevents about 35% of

vertebral fractures, most likely due to low exposure, the

clinical usefulness is limited (122). Recent studies have

indicated that a recently developed oral formulation of

salmon calcitonin will lead to improved efficacy because it

has been optimized with respect to pharmacokinetic and

pharmacodynamic properties. This has led to a 10-fold

higher exposure and thereby a greater reduction in bone

resorption parameters. Thus, this agent will most likely

provide improved efficacy in preventing fractures (291),

and although it remains to be proven in long-term clinical

trials, the phase II data are promising (127).

The mode of action of oral calcitonin is a transient

suppression of the nocturnal rise in bone resorption ob-

tained by giving the treatment at the right time of day—in

the evening (292), which results in a reduction in bone

resorption, but no effect or very modest secondary effects

on bone formation (127) (Table 1). These findings are

further supported by other clinical studies showing that

calcitonin may inhibit bone resorption without affecting

bone formation, a finding observed independent of ad-

ministration route (293–296).

There are histological indications that calcitonin atten-

uates ruffled border formation by osteoclasts (296–298),

and this appears to be the mode of action underlying the

antiresorptive effects of calcitonin in vivo, thereby elabo-

rating on the previously described transient reduction in

bone resorption (292).

Studies of mice lacking the calcitonin receptor indicated

that bone formation was increased, and thus that calcito-

nin is a suppressor of bone formation (299, 300). These

studies were conducted mainly in young mice. A recent

study in mice deficient in the calcitonin receptor specifi-

cally in osteoclasts failed to reproduce this finding (301,

302). However, considering the very modest, or nonex-

istent, suppression of bone formation in patients treated

with calcitonin, the mice data appear of low relevance in

the clinical setting (127, 293–296).

Further studies are needed to understand this potential

dissociation of bone resorption and bone formation. It

may be that this dissociation occurs because calcitonin

disappears quickly from the circulation and thus is a com-

pletely reversible treatment (122). An interesting question

is whether calcitonin treatment may result in better bone

quality than potent antiresorptives due to the lack of effect

on bone formation and the lower suppression of bone

resorption, which is expected to lead to a slow, yet pro-

longed increase in BMD (6, 303).

4. Parathyroid hormone

Although PTH does not appear to affect osteoclasts

directly because these cells do not appear to express the

PTH receptor, PTH nonetheless affects osteoclast func-

tion on many different levels (10). In vitro studies of the
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effects of PTH on osteoclasts all show that PTH induces

osteoclastogenesis and that induction of a transient

RANKL expression is essential for this effect (10). How-

ever, PTH has mainly been studied in relation to its pow-

erful anabolic effects on osteoblasts (10). Intermittent dos-

ing of PTH in human subjects results in a marked increase

in bone formation markers, and secondarily in activation

of bone resorption through increased RANKL expression

(9, 304, 305). Bone histomorphometric and biochemical

marker studies confirm the increase in bone turnover

(306–308) (Table 1).

The anabolic mode of action of PTH has been debated

extensively. Studies show that PTH directly activates bone

formation by osteoblasts when given intermittently (309,

310). In mouse models that are either deficient in osteo-

clasts or deficient in bone resorption, data suggest that the

anabolic effect of PTH is dependent on the presence of

mature osteoclasts, but not on their activity (165, 166,

311). Furthermore, initial clinical trials combining alen-

dronate and PTH showed that alendronate blunted the

anabolic effect of PTH (312, 313), and there were indi-

cations that even pretreatment with alendronate led to a

blunting of the PTH response (314). On the other hand,

animal studies indicate that PTH can be combined with a

bisphosphonate (315, 316), but, as noted by Johnston et

al. (315), there are marked differences in the doses of PTH

used in rodents and in humans.

Collectively, PTH exerts marked regulation of bone

turnover (15), including the activation of osteoclasts. The

potential anabolic role of osteoclasts and, especially, how

to achieve the right osteoclast subtype are debated in-

tensely. Future studies will most likely explain this com-

plex interplay between bone cells and thus guide the right

combination of PTH and antiresorptive.

5. Strontium ranelate

Strontium ranelate is approved for treatment of osteo-

porosis, albeit only in Europe, through its ability to reduce

fracture risk inpatients (317–321).Themodeofactionhas

been studied extensively, and yet it is not fully clear exactly

how it works in vivo. Bone biopsies have been investi-

gated, and these indicated small increases in bone forma-

tion and mineralization rates but no changes in bone re-

sorption or osteoclast parameters, thus indicating that

strontium ranelate stimulates novel bone formation (322).

These data were supported by analysis of biochemical

markers of bone turnover demonstrating increased bone

formation (308, 323), while also showing a modest de-

crease in bone resorption markers (323, 325).

In vitro studies support the hypothesis that strontium

ranelate has a dual effect, namely inhibition of bone re-

sorption while stimulating bone formation (326–329).

Furthermore, strontium has also been shown to increase

OPG expression by osteoblasts (330).

In summary, strontium ranelate is a very interesting

molecule with respect to effects on osteoclasts, and several

lines of in vitro evidence indicate that it reduces osteoclast

function (326). However, the relevance of the effect on

osteoclasts is still debated, and thus the overall effects of

this “uncoupling” molecule are still not fully understood.

6. Glucocorticoids

Glucocorticoids are used to overcome inflammatory

conditions, such as inflammatory bowel diseases and RA

(331). Glucocorticoid use is associated with severe bone

loss due to strongly attenuated bone formation (332). This

attenuation of bone formation leads to a rapid accelera-

tion in the number of fractures in glucocorticoid-treated

patients (332), especially in trabecular bone compart-

ments such as vertebrae (333). Glucocorticoid treatment is

the most common cause of secondary osteoporosis (333),

and thus patients on glucocorticoids are often treated with

antiresorptives (334).

In vivo, glucocorticoids inhibit osteoblastogenesis, the

generation of bone-forming osteoblasts, and promote ap-

optosis of osteoblasts and osteocytes, which is consistent

with the well-known inhibition of bone formation (335).

In contrast, the cellular effects of glucocorticoids on

osteoclasts are a subject of controversy. In vivo, the effects

appear to fall into two categories, one being a short-lived

acceleration of osteoclastogenesis and bone resorption,

whereas the other is a reduction in osteoclast numbers,

which is not well-characterized with respect to exposure

time to glucocorticoids (335–340) (Table 1). Interestingly,

a study by Kim et al. (340) showed that the detrimental

effect of glucocorticoids on bone formation was absent

when the glucocorticoid receptor was ablated specifically

in osteoclasts in mice.

In vitro studies of glucocorticoids are often conducted

in the presence of contaminating cells, and because glu-

cocorticoid treatment also promotes RANKL and reduces

OPG expression in osteoblasts, it is unclear exactly to

what extent they influence the osteoclasts (341, 342). Two

recent studies showed that glucocorticoid treatment hy-

peractivated osteoclasts and thus suggests that glucocor-

ticoids indeed have a direct effect on bone resorption (343,

344). Yet some studies show the opposite (340). Overall,

the results appear to be very context-dependent, illus-

trating the complex nature of the biological effects of

glucocorticoids.

Measurements of biochemical markers of bone turn-

over in human subjects on glucocorticoid therapy pro-

vided diverse results, which appeared to be dependent on

the dose of glucocorticoid used (331, 345, 346). However,

biochemical marker data indicate that bone resorption
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increases short term, whereas bone formation is attenu-

ated long term (345) in response to glucocorticoid ther-

apy, which corresponds well to mouse studies (335–339).

The short-term increase in bone resorption and long-term

suppression of bone formation are also observed with his-

tomorphometry in mice (347, 348).

In summary, glucocorticoids exert detrimental effects

on bone, and whereas the effects on osteoclasts are not

completely clear yet, further investigation of the effect on

the coupling between osteoclasts and osteoblasts could

explain the overall beneficial effect of antiresorptives on a

syndrome mediated primarily by suppressed bone forma-

tion (227, 349). These findings further highlight the im-

portance of understanding the interplay between bone

cells to provide the optimal treatment.

B. Future treatments

A series of interesting targets for osteoporosis treat-

ment are currently under investigation. The targets of

these treatments to some extent employ novel modes

of action on osteoclasts. These novel modes of action are

of importance when investigating whether they may have

secondary effects on bone formation, and subsequently on

bone quality.

1. Denosumab

Denosumab is a fully humanized monoclonal antibody

to RANKL; it has gone through a phase III fracture effi-

cacy trial in which it was shown to reduce fracture rates by

68% in vertebrae and 40% in hip (351); and it was re-

cently accepted for treatment of severe osteoporosis in

both the United States and Europe.

In line with in vitro studies of inhibition of RANKL

(210, 352), denosumab prevents osteoclastogenesis,

blocks bone resorption, and increases osteoclast apopto-

sis. It induces a massive reduction of osteoclasts in vivo

and, thereby, almost complete suppression of bone resorp-

tion in both humans and mice (352–354) (Table 1). De-

nosumab treatment also leads to a marked suppression of

bone formation markers in humans (353, 354), as well as

a marked suppression in bone formation rates measured

by histomorphometry in animal models (352, 355). Thus,

denosumab treatment is consistent with the classical per-

ception of coupling.

A key point with respect to denosumab is whether the

suppression is too severe and could lead to detrimental

effects on bone quality long term (6). However, as is the

case with bisphosphonate treatment, this is not clear at

present.

2. Cathepsin K inhibitors

Cathepsin K is a critical protease for degradation of the

type I collagen matrix in the resorption pits during bone

resorption by osteoclasts (36, 65, 66). Studies conducted

in pycnodysostosis patients before the final identification

of cathepsin K showed massive accumulation of nondi-

gested bone collagen fibers in the resorption pit below the

osteoclasts (175). These findings were matched by those

from investigations in cathepsin K-deficient mice (66),

demonstrating a critical role for cathepsin K in degrada-

tion of the organic matrix. Further studies in cathepsin

K-deficient systems have indicated that cells of the osteo-

blast lineage, namely bone-lining cells (68); cells of hema-

topoietic origin (69); and a general up-regulation of the

osteoclastic stimuli, osteoclast numbers, and proteases,

especially RANKL and MMPs (103), are involved in com-

pensating for the lack of cathepsin K. Interestingly, a hall-

mark of the absence of cathepsin K function is the presence

of the MMP-derived collagen fragment ICTP, which is

seen in pycnodysostosis patients, cathepsin K-deficient

mice, and cell cultures (67, 69, 103, 356), strongly indi-

cating a compensation by MMPs in the absence of cathep-

sin K (Table 1).

An interesting study by Fuller et al. (357) showed that

inhibition of cathepsin K in cultured osteoclasts led to

augmented secretion of IGF-I. Furthermore, increased

numbers of osteoclasts, containing granules of matrix pro-

teins, have been observed in monkey studies of cathepsin

K inhibitors (175, 181), thus indicating the potential of

this protease for anabolic stimulation of the osteoblasts.

Cathepsin K-deficient mice have been studied extensively,

and recent experiments indicate that bone formation in

trabecular bone is increased after cathepsin K administra-

tion and thus that bone resorption and bone formation are

not coupled (100, 176). However, clinical studies of ca-

thepsin K inhibitors, such as odanacatib, have shown that

whereas a robust reduction in CTX and N-terminal

crosslinked peptide of type I collagen occurred and no

changes in TRACP 5b were observed, a significant de-

crease in the bone formation marker pro-peptide of col-

lagen type I and nonsignificant reductions in bone forma-

tion rates by histomorphometry were seen (178).

Furthermore, a study of osteoclast morphology as a func-

tion of cathepsin K inhibition in humans indicated in-

creased size of the osteoclasts and the presence of large

TRACP-positive vacuoles, yet no increase in osteoclast

numbers (358). Studies in monkeys clearly demonstrated

that bone formation in the trabecular compartments was

dose-dependent and significantly reduced by cathepsin K

inhibitors, whereas an induction of bone formation was

observed at cortical sites (179, 180). Further studies are

needed to clarify whether the osteoclasts in cathepsin K-

deficient situations indeed signal to the osteoblasts. An

indication came from a pycnodysostosis case study that

showed no bone formation response to PTH (174), and
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thus indicated that secretion of the coupling signals may be

attenuated at least in human systems. A possible expla-

nation for the lack of secondary anabolic effects induced

by inhibition of cathepsin K is the presence of demineral-

ized collagen fibers in the resorption pit, which are re-

moved by bone-lining cells (68). Although it is not well

understood how the presence of fibers and their subse-

quent removal affect osteoblasts, a study indicated that

RGD sequences, which are numerous in collagen, antag-

onize osteoblast function (359).

These findings again illustrate the importance of care-

fully investigating the osteoclast subtype as a function of

cathepsinK inhibition tomoreaccuratelypredictpotential

secondary effects on bone formation.

3. Glucagon-like peptide-2

GLP-2 is a 33-amino acid peptide. GLP-2 is created by

specific posttranslational proteolytic cleavage of proglu-

cagon in a process that also liberates the related GLP-1

(124). GLP-2 is produced by the intestinal endocrine L cell

and by various neurons in the central nervous system

(124). Intestinal GLP-2 is cosecreted along with GLP-1

upon nutrient ingestion.

GLP-2 has in clinical settings been demonstrated to in-

hibit bone resorption (124–126) (Table 1). Reductions in

bone resorption by exogenous GLP-2 require an intact

gastrointestinal tract (125, 361, 362). The decreased meal-

induced inhibition of bone resorption in jejunostomy pa-

tients, who lack a GLP-2 response, supports the view that

GLP-2 plays a role in postprandial reduction in bone re-

sorption (361, 362).

GLP-2 has in addition been suggested to inhibit bone

resorption without affecting bone formation (125), high-

lighting this mode of inhibition of resorption for further

investigation with respect to osteoclast subtypes.

4. Acid secretion inhibitors

Acid secretion by osteoclasts has been an interesting

therapeutic target since the discovery that this process is

controlled by the a3 subunit of the V-ATPase and ClC-7,

both of which are quite specific to osteoclasts (37, 39, 56).

Furthermore, in vitro studies of osteoclasts treated with

inhibitors of these ion transporters have shown that the

osteoclasts are unable to resorb bone and that they there-

fore survive longer (8, 159, 363), thereby mimicking the

elevated numbers of osteoclasts observed in patients with

mutations in the genes for a3 and ClC-7 (37, 97) (Table 1).

In aged ovariectomized rats, early low-potency chloride

channel inhibitors were able to prevent bone resorption by

approximately 50%, as monitored by both BMD and the

biochemical markers of bone resorption CTX-I or deoxy-

pyridinoline, while augmenting the number of osteoclasts

and showing no inhibition of bone formation markers (8,

364). Similar findings were published for an inhibitor of

the V-ATPase (365). In a study of prosthetic implants

coated with bafilomycin, osteoclast numbers were ele-

vated, and indications of increased bone formation were

observed (366). These studies were the first to provide

proof of concept that inhibition of acidification is a really

promising target for osteoporosis treatment. Most inter-

estingly, bone formation levels, as measured by osteocal-

cin and by evaluation of the dynamic histomorphometry

parameters mineral apposition rate and the mineralizing

surface vs. bone surface, were not affected. These data

therefore suggest that inhibition of acidification of the

osteoclastic resorption lacunae results in an uncoupling of

bone formation and bone resorption, thereby possibly im-

proving the potential efficacy of the treatment. This is in

contrast to other antiresorptive treatments where a sec-

ondary decrease in bone formation is observed (3, 367).

These data also indicate that the subtype of osteoclasts

obtained—nonresorbing yet alive—when targeting acid

secretion is active with respect to bone formation, and thus

might possibly be combined with PTH treatment in the

future.

Finally, other compounds that appear to modulate the

activity of osteoclasts are in development for osteoporosis.

These include calcilytics, PTHrP, and sclerostin, but their

effects on osteoclasts, which most likely are indirect, are

not clear yet (368–370), and thus these will not be de-

scribed further.

VII. The Bone Anabolic Effects of
the Osteoclasts

Since the early discovery that osteoclast activities were

involved in regulation of bone formation during targeted

remodeling (17, 18, 371, 372), a series of studies have

investigated the nature of this process.

The early studies focused mainly on the release of mol-

ecules from the bone matrix during bone resorption and

identified molecules such as IGF-I and TGF-� (357, 373,

374). However, with the recent discovery that mature os-

teoclasts, not osteoclast precursors and not necessarily

bone resorption, are needed for stimulation of bone for-

mation (8, 9), a series of studies have investigated this

phenomenon.

Zhao et al. (12) demonstrated that osteoclast-mediated

expression of EphrinB2 and osteoblast-mediated expres-

sion of EphB4 were involved in a bidirectional communi-

cation between these cell types. EphrinB2 on osteoclasts

stimulated bone formation by the osteoblasts via binding

to EphB4, while EphB4 expression on osteoblasts in turn

inhibited osteoclastogenesis via binding to EphrinB2 (12).
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However, ephrin signaling requires close contact between

the osteoclasts and their target cells. This has led to the

speculation that ephrin signaling could be involved in the

interplay between osteoclasts and bone-lining cells, which

are found in close contact and appear to regulate the ac-

tivity of each other (68, 375).

Stimulatory signals from osteoclasts directly to mature

bone-forming osteoblasts are, on the other hand, likely to

be paracrine because these cell types are not found in close

contact (264). Both TGF-� and IGF-I are produced by the

osteoclasts and are known to stimulate bone formation

under various circumstances (376–380). In relation to

these findings, it is interesting that the anabolic effect of

PTH in mice was shown to be mediated through IGF-I

(350), an effect that is absent in the absence of osteoclasts

(166). This confirms that IGF-I is a coupling factor.

A recent study demonstrated the mature human osteo-

clasts, independent of their resorptive activity, secrete fac-

tors that activate nodule formation by the osteoblasts (11).

This study was followed by a study showing that oste-

oclasts produce the anabolic factors bone morphogenetic

protein 6, Wnt10b, and sphingosine-1-phosphate, again

independent of bone resorption (13). Furthermore, inhi-

bition of bone morphogenetic protein 6, Wnt10b, and

sphingosine-1-phosphate led to inhibition of the oste-

oclast-mediated stimulation of bone formation in vitro.

Finally, osteoclasts have also been shown to produce car-

diotrophin-1 (CT-1), which activates bone formation by

osteoblasts, although the role of CT-1 was clearly shown

to be dependent on age because loss of CT-1 in newborn

mice caused osteopenia, whereas in larger mice it caused

mild osteopetrosis due to defective bone resorption (360).

In summary, the presence of mature osteoclasts is as-

sociated with the secretion of stimulation of bone anabolic

signals, and whereas several candidate factors have been

identified, a clear demonstration that removal of one of the

molecules specifically in theosteoclasts in vivo leads to loss

of bone formation is still missing.

VIII. Conclusions and Future Perspectives

Osteoclasts have traditionally been viewed as bone resorp-

tion “machines”; however, studies of osteoclasts have

highlighted that these cells are highly context-specific, and

the context of the individual osteoclasts is important for

the continued regulation of bone remodeling.

As described in detail in this review, the osteoclasts

possess at least two highly important functions: 1) bone

resorption, a process that is highly dependent on a series

of external stimuli, such as matrix type, remodeling status,

hormones involved in calcium homeostasis, genotype, in-

flammation, and importantly also on intervention strate-

gies; and 2) stimulation of bone formation by the osteo-

blasts, a process that as illustrated by studies conducted in

osteopetrotic patients is, to a large extent, independent of

bone resorption. It is presently not completely clear when

the osteoclasts are anabolically active, yet it appears to be

related to the presence of large multinuclear osteoclasts

because bone anabolic responses are seen under these cir-

cumstances (3, 15).

Understanding osteoclast functioning may be useful for

developing drugs that not only inhibit bone resorption but

also enable bone resorption levels that ensure targeted

remodeling and, importantly, support continued anabolic

signaling from osteoclasts to osteoblasts in the bone re-

modeling compartment. This has the triple effect of:

1) maintaining a sufficient resorption level and thereby

avoiding excessive aging of the bones; 2) sustaining a local

stimulation of bone formation at the resorption site only;

and 3) not initiating induction of bone formation in oth-

erwise quiescent sites. Theoretically, this type of inhibition

of bone resorption would allow a continuous, ongoing

increase in BMD, which is in contrast to the effects of the

presently approved antiresorptives where a plateau effect

on BMD is observed within the first 12–18 months. This

means that even with less powerful suppression of bone

resorption, such as that seen with the oral formulation of

salmon calcitonin, the long-term effects would surpass

those of the bisphosphonates.

A deeper understanding of both the differences in the

resorption process depending on circumstances and the

knowledge relating to when the osteoclasts are anaboli-

cally active will aid in the identification of novel treatment

opportunities for bone diseases.

Finally, the use of biochemical markers of bone turn-

over is becoming increasingly relevant for the continued

understanding of osteoclasts. Markers provide systemic

information on the outcome of a given treatment and can

help answer questions such as whether glucocorticoids

exert detrimental effects on bone formation, and whether

antiresorptives antagonize bone formation secondary to

bone resorption because of suppression of osteoclast num-

bers or activity.
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Wiederanders B, Bräuer R 2008 Cathepsin K deficiency
partially inhibits, but does not prevent, bone destruction in
human tumor necrosis factor-transgenic mice. Arthritis
Rheum 58:422–434

233. Hou WS, Li Z, Gordon RE, Chan K, Klein MJ, Levy R,
Keysser M, Keyszer G, Brömme D 2001 Cathepsin K is a
critical protease in synovial fibroblast-mediated collagen
degradation. Am J Pathol 159:2167–2177

234. Yasuda Y, Kaleta J, Brömme D 2005 The role of cathepsins
in osteoporosis and arthritis: rationale for the design of
new therapeutics. Adv Drug Deliv Rev 57:973–993

235. Ainola M, Valleala H, Nykänen P, Risteli J, Hanemaaijer
R, Konttinen YT 2008 Erosive arthritis in a patient with
pycnodysostosis: an experiment of nature. Arthritis
Rheum 58:3394–3401

236. Svelander L, Erlandsson-Harris H, Astner L, Grabowska
U, Klareskog L, Lindstrom E, Hewitt E 2009 Inhibition of
cathepsin K reduces bone erosion, cartilage degradation
and inflammation evoked by collagen-induced arthritis in
mice. Eur J Pharmacol 613:155–162

237. Salminen-Mankonen HJ, Morko J, Vuorio E 2007 Role of
cathepsin K in normal joints and in the development of
arthritis. Curr Drug Targets 8:315–323

238. Hakala M, Risteli J, Aman S, Kautiainen H, Korpela M,
Hannonen P, Leirisalo-Repo M, Laasonen L, Paimela L,
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