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Background: Breast cancer with osteoclast-like stromal giant cells (OSGC) is an

exceedingly rare morphological pattern of invasive breast carcinoma. The

tumor immune microenvironment (TIME) of these tumors is populated by

OSGC, which resemble osteoclasts and show a histiocytic-like

immunophenotype. Their role in breast cancer is unknown. The osteoclast

maturation in the bone is regulated by the expression of cytokines that are also

present in the TIME of tumors and in breast cancer tumor-associated

macrophages (TAMs). TAMs-mediated anti-tumor immune pathways are

regulated by miRNAs akin to osteoclast homeostasis. Here, we sought to

characterize the different cellular compartments of breast cancers with

OSGC and investigate the similarities of OSGC with tumor and TIME in

terms of morphology, protein, and miRNA expression, specifically

emphasizing on monocytic signatures.

Methods and Results: Six breast cancers with OSGC were included. Tumor-

infiltrating lymphocytes (TILs) and TAMs were separately quantified. The

different cellular populations (i.e., normal epithelium, cancer cells, and

OSGC) were isolated from tissue sections by laser-assisted microdissection.

After RNA purification, 752 miRNAs were analyzed using a TaqMan Advanced

miRNA Low-Density Array for all samples. Differentially expressedmiRNAs were

identified by computing the fold change (log2Ratio) using the Kolmogorov-

Smirnov test and p values were corrected for multiple comparisons using the

false discovery rate (FDR) approach. As a similarity analysis among samples, we

used the Pearson test. The association between pairs of variables was

investigated using Fisher exact test. Classical and non-classical monocyte

miRNA signatures were finally applied. All OSGC displayed CD68 expression,
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TILs (range, 45–85%) and high TAMs (range, 35–75%). Regarding the global

miRNAs profile, OSGC was more similar to cancer cells than to non-neoplastic

ones. Shared deregulation ofmiR-143-3p, miR-195-5p, miR-181a-5p, andmiR-

181b-5p was observed between OSGC and cancer cells. The monocyte-

associated miR-29a-3p and miR-21-3p were dysregulated in OSGCs

compared with non-neoplastic or breast cancer tissues.

Conclusion: Breast cancers with OSGC have an activated TIME. Shared

epigenetic events occur during the ontogenesis of breast cancer cells and

OSGC but the innumophenotype and miRNA profiles of the different cellular

compartmens suggest that OSGC likely belong to the spectrum of M2 TAMs.

KEYWORDS

breast cancer, osteoclast-like giant cells (OGCs), osteoclast-like stromal giant cells,
tumor microenevironment, tumor immune microenvironment, tumor-infiltrating
lymphocytes (TILs), tumor-associated macrophages (TAMs), miRNA

Introduction

Breast cancer with osteoclast-like stromal giant cells

(OSGC) is a rare tumor showing a variable number of

OSGC at the periphery of the neoplastic nests and/or

within the tubular lumens, in the context of a

hypervascular microenvironment composed of

lymphocytes, histiocytes, and monocytes (Zhou et al.,

2014; Marchiò et al., 2015; Peña-Jaimes et al., 2018; WHO

Classification of Tumours Editorial Board and WHO

Classification of Breast Tumours, 2019). As their name

suggests, OSGC resemble osteoclasts (Ohashi et al., 2018a;

Caetano Oliveira and Schmitt, 2018; Bonsang et al., 2019;

Hoda et al., 2020). They are morphologically characterized

by an abundant intensely-eosinophilic cytoplasm containing

well-developed organelles and numerous oval non-atypical

nuclei with prominent nucleoli (Ellis et al., 2020;

Behzatoglu, 2021). By immunohistochemical analysis,

OSGC show the expression of histiocytic surface markers

(e.g., CD68) and are negative for cytokeratins, S100, actin,

and markers of cell proliferation such as Ki67 (Ohashi et al.,

2018b; Ofri et al., 2020). There is still no sufficient clinical

evidence available on the value of reporting the OSGC

presence and amount in breast neoplasms. For this

reason, breast cancers with OSGC are classified as a

morphological pattern of invasive breast carcinoma of no

special type (NST) and not as a special histological type

(WHO Classification of Tumours Editorial Board and WHO

Classification of Breast Tumours, 2019).

Regarding the nature of OSGC in breast cancer, there is a

general agreement on their histiocytic origin, as proposed for

other tumor types with an OSGC component (Bonsang et al.,

2019; Xu et al., 2019; Liu et al., 2021; Mori et al., 2021). Due to

their multinucleated appearance and global ultrastructure,

some authors have posited that OSGC are generated by a

syncytial fusion of macrophages, similar to what happens to

osteoclasts during osteoclastogenesis (Shishido-Hara et al.,

2010; Liu et al., 2018; Liang et al., 2019; Invernizzi et al., 2020a;

Inoue et al., 2021; Kao et al., 2021; Venetis et al., 2021).

Researchers have been looking for further parallels between

OSGC and osteoclasts, whose formation is regulated by the

expression of cytokines, including tumor necrosis factor-α
(TNFα), interleukin-1α (IL1α), macrophage-colony

stimulating factor (M-CSF), and receptor activator of NF-

κB ligand (RANKL) (Kolb et al., 2019; Invernizzi et al., 2020b;

Liang et al., 2021). These molecules have been documented

both in the tumor immune microenvironment (TIME) of

other neoplasms with an OSGC component (Bennàssar

et al., 2011; Hatano et al., 2014; Fusco et al., 2017a; Liang

et al., 2021) and in breast cancer tumor-associated

macrophages (TAMs) (Lala et al., 2018; Guo et al., 2020).

In breast cancer, the presence of tumor-infiltrating

lymphocytes (TILs) and TAMs within the TIME are related

to the secretion of specific cytokines that are involved in

immunosuppression, angiogenesis, tumor progression, and

metastasis (Mao et al., 2013; Pagni et al., 2019; Horimoto

et al., 2020; Criscitiello et al., 2021; Fusco et al., 2022). It has

become increasingly evident that miRNAs play a crucial role

in regulating TAMs-mediated anti-tumor immune pathways

as well as in osteoclast differentiation, function, and survival

(Inoue et al., 2021; O’Brien et al., 2018; McGuire et al., 2015;

Fumagalli et al., 2017; Weivoda et al., 2021). However, their

role in breast cancer with OSGC is essentially unexplored and

based on a handful of morphology-based case reports

available in the literature.

We hypothesized that OSGC share not only phenotypic but

also molecular features with macrophages/monocytes populating

breast cancer TIME. In this study, we sought to characterize the

different cellular compartments of breast cancers with OSGC and

investigate the similarities of OSGC with tumor and TIME in

terms of morphology, protein, and miRNA expression,

specifically emphasizing on monocytic signatures.
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Materials and methods

Patients and tissue specimens

This study is in line with the local ethical guidelines and was

approved by the Institutional Review Board (IRB) of Fondazione

IRCCS Ca’ Granda - Ospedale Maggiore Policlinico under the

protocol number # 620-2018bis. Only therapy-naïve patients and

their corresponding surgical specimens were included in this

study. Taken together, 6 cases of breast cancers with OSGC were

retrieved from the pathology archives of the aforementioned

Institution. Hematoxylin and eosin-stained serial sections of each

case were centrally reviewed, re-classified, and re-graded by two

pathologists (F.B. and N.F.), according to the latest WHO

recommendations (WHO Classification of Tumours Editorial

Board andWHOClassification of Breast Tumours, 2019) and the

Nottingham histologic grading system (Rakha et al., 2008),

respectively. Pathologic re-staging was performed following

the 8th edition of the American Joint Committee on Cancer

(AJCC) Cancer Staging Manual (Amin et al., 2017).

Immunohistochemical analysis

Representative 4-μm-thick sections of all cases were

subjected to immunohistochemical analysis (IHC) with

antibodies against estrogen receptor (ER), progesterone

receptor (PgR), Ki67, HER2, CD68, Tartrate-resistant acid

phosphatase (TRAP), and receptor activator of nuclear factor

κ B (RANK), as previously described (Fusco et al., 2018; Lopez

et al., 2020). Briefly, the protocol uses the Dako automated

staining platform (Dako Omnis; Dako, Carpinteria, CA,

United States) and anti-human prediluted antibodies. For each

antibody, positive and negative controls were included in each

slide run. ER, PgR, and HER2 status were tested and reported

according to the latest breast biomarker reporting guidelines

published by the College of American Pathologists (CAP)

(Allison et al., 2020; Wei et al., 2021). The proliferation index

was assessed by Ki67 IHC as the global (average) score across the

section. According to the updated recommendations from the

International Ki67 in Breast Cancer Working Group, a cut-off

value of ≥30% was used to define the high proliferation group

(Nielsen et al., 2020). Cut-off point for CD68, TRAP, and RANK

was calculated as the number of immunoreactive cells

(membrane and/or cytoplasm staining of any intensity)

divided into lower and higher groups according to the median

of a larger cohort (Kuroda et al., 2021). Based on this assumption,

a cut-off value of ≥ 26 identified high expressors. The methods

and scoring systems employed are detailed in Table 1.

Tumor-infiltrating lymphocytes and
tumor-associated macrophages
assessment

The presence and relative proportion of stromal TILs were

determined according to the recommendation of the

International TILs Working Group (Dieci et al., 2018). In

TABLE 1 List of antibodies, clones, dilutions, antigen retrieval methods, and scoring systems adopted for immunohistochemical analyses.

Marker Clone Dilution Technology Antigen retrieval Scoring

ER EP1 Ready to use Dako Omnis EnVision FLEX, High
pH, 20′

ASCO/CAP and St Gallen guidelines; positive if ≥ 1% of tumor cell nuclei are
immunoreactive

PgR PgR 636 1:100 Dako Omnis EnVision FLEX, High
pH, 30′

ASCO/CAP and St Gallen guidelines; positive if ≥ 1% of tumor cell nuclei are
immunoreactive

Ki67 MIB1 Ready to use Dako Omnis EnVision FLEX, High
pH, 30′

International Ki67 in Breast CancerWorking Group; high if ≥ 30% of tumor cell nuclei
are immunoreactive

HER2 Polyclonal 1:400 Dako Omnis EnVision FLEX, Low
pH, 30′

ASCO/CAP guidelines; 3 + if complete membrane staining that is intense and >10% of
tumor cells; 2 + if weak to moderate complete membrane staining in >10% of tumor
cells or complete membrane staining that is intense but within ≤10% of tumor cells; 1
+ if incomplete membrane staining that is faint/barely perceptible and within >10% of
tumor cells; 0 if no staining observed or membrane stating that is incomplete and is
faint/barely perceptible and within ≤10% of tumor cells

CD68 PG-M1 1:100 Dako Omnis EnVision FLEX, High
pH, 30′

Positive for any intensity of membrane/cytoplasm staining; high if ≥
26 immunoreactive cells

TRAP sc-59981 1:100 Dako Omnis EnVision FLEX, High
pH, 30′

Positive for any intensity of membrane/cytoplasm staining; high if ≥
26 immunoreactive cells

RANK sc-376875 A:100 Dako Omnis EnVision FLEX, High
pH, 30′

Positive for any intensity of membrane/cytoplasm staining; high if ≥
26 immunoreactive cells

Abbreviation: ER, estrogen receptor alpha; PgR, progesterone receptor; TRAP, tartrate-resistant acid phosphatase; RANK, receptor activator of NFkB.
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particular, TILs within the borders of the tumor areas and/or

nests were defined as stromal TILs, while the lymphocytes in

direct cell-to-cell contact with the tumor cells with no

intervening stroma were defined as intratumoral TILs and

disregarded from the analysis (Sajjadi et al., 2020; Esposito

et al., 2021). The density of stromal TILs was recorded as a

continuous percentage and categorized for analyses as negative if

0%, low in between 1 and 10%, intermediate in between 11 and

50%, and high if > 51% (Fusco et al., 2020a). The evaluation and

quantification of TAMs were carried out semiquantitatively

based on the presence and relative proportion of CD68+

mononuclear cells within the TIME per high power field, as

previously described (Kuroda et al., 2021).

Microdissection and RNA extraction

Representative FFPE tissue blocks of 6 patients were

selected based on the amount of OSGC; 4-μm-thick

sections were then cut and stained with hematoxylin.

Subsequently, the histologically distinct components of

each case and matched normal breast tissues were

separately microdissected using a combination of laser-

capture and manual microdissection, as previously

described (Fusco et al., 2017b). Specifically, a laser-capture

microscope (LMD 6000 System; Leica Biosystems, Wetzlar,

Germany) was used for the isolation and microdissection of

OSGC. Afterward, the neoplastic epithelial component was

isolated from the TIME and manually microdissected using a

sterile needle under a stereomicroscope (Zeiss, TIEsse Lab) to

ensure > 80% of tumor cell content. Finally, matched normal

breast tissue containing non-neoplastic terminal duct-lobular

units were manually microdissected. The OSGC (n = 6), tumor

(n = 6), and normal tissue samples (n = 6) of each case were

collected into separate tubes (n = 18) and subjected to total

RNA purification using the Master Pure RNA purification kit

(Epicenter Biotechnologies, Illumina) as described (Faversani

et al., 2021). Next, the RNA content and quality were

measured using a spectrophotometer (Thermo Scientific

NanoDrop™ 1,000 Spectrophotometer). Samples with poor

quantities of miRNA were re-cut, re-microdissected, and re-

extracted. All preparation and handling procedures were

conducted under RNase-free conditions.

miRNA profiling

100 ng of total RNA per sample was reverse transcribed using

the TaqMan Advanced miRNA cDNA synthesis kit. Then,

miRNA profiles were obtained using the TaqMan™ Advanced

miRNA Human A and B Cards. A total of 752 miRNAs were

assessed (Supplementary Table S1). As a threshold for

expression, we set a Cycle threshold (Ct) less than 35. All

miRNAs with a Ct value > 35 were considered not expressed.

If a miRNA was undetectable (Ct > 35) in the majority plus one

sample of our series, it was excluded from further analysis.

According to this criterion, 130 miRNAs were available for

the study (Supplementary Table S2).

Statistical and bioinformatics analysis

For miRNA analysis, miRNA raw data were normalized

using the most stable miRNAs. As normalizator, miRNAs with

a mean < 32 Ct and standard deviation < 2.5 were selected.

Then, miRNA relative quantities were median-normalized,

log2-transformed, and imported in R environment for

statistical analysis. Corrplot packages was used for

correlation analysis (https://github.com/taiyun/corrplot).

Supervised clustering analysis was performed using the

ComplexHeatmap package available within Bioconductor

(https://bioconductor.org/packages/release/bioc/html/

ComplexHeatmap.html), as previously described (Gu et al.,

2016; Faversani et al., 2021). Differentially expressed miRNAs

according to clinical or outcome variables were identified by

computing the fold change (log2Ratio) between the 2 classes

and applying the Wilcox test. The accuracy of the data was

assessed using p value the false discovery rate (FDR) approach.

The associations between pairs of variables were investigated

using Fisher exact test (MedCalc software). Differences among

samples were analyzed using a non-parametric two-sided

Student’s t-test, or Wilcoxon signed-rank test. Statistical

analyses were performed using GraphPad Prism version

4 for Windows. A p < 0.05 was considered statistically

significant.

Results

Clinicopathological features and tumor
immune microenvironment composition

All patients (n = 6, age range, 35–69; mean ± SD, 56.8 ± 8.8)

were diagnosed with intermediate/high grade, highly

proliferative (Ki67 ≥ 30) breast cancer. Lymphovascular

invasion was observed in 2 (33.3%) cases. All OSGC within

each case displayed high CD68 and TRAP expression, and low/

null RANK positivity (Supplementary Figure S1), supporting

their monocytic origin. In addition to OSGC, in all tumors, both

the presence of stromal TILs (range, 45–85%) and the presence of

high intratumoral and stromal TAMs (range, 35–75%) were

observed. The clinicopathologic characteristics and subtypes of

the patients included in this study are listed in Table 2 and shown

in Figure 1.
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Recurrent miRNA signatures between
OSGC and breast cancer cells

From each of the 6 cases, the neoplastic cells, OSGC, and

breast normal cells containing non-neoplastic terminal duct-

lobular units, were separately microdissected, for a total

number of 18 samples (i.e., 3 samples for each case). Samples

failing to reach the optimal RNA quality were excluded from

subsequent analyses. Altogether, a total of 6 OSGC, 4 normal,

and 4 tumors microdissected samples were analyzed (n = 14).

TABLE 2 Clinicopathological features of breast carcinomas with OSGC.

Case Age Histology ER PgR Ki67 HER2 Grade LVI TILs (%) TAMs (%) T N Stage

OSGC1 69 NST Neg Neg 65 0 3 Yes 85 40 1c 0 IA

OSGC2 58 NST Pos Neg 33 1+ 2 No 40 40 2 0 IIA

OSGC3 65 Metaplastic Neg Neg 70 0 3 No 15 75 1c 0 IA

OSGC4 35 NST Neg Neg 30 1+ 3 Yes 25 60 4b 2a IIIB

OSGC5 53 NST Neg Neg 90 0 3 No 15 55 3 0 IIB

OSGC6 61 NST Neg Neg 60 0 3 No 18 35 3 0 IIB

Abbreviations: ER, estrogen receptor; PgR, progesterone receptor; LVI, lymphovascular invasion; TILs, tumor-infiltrating lymphocytes; TAMs, tumor-associated macrophages; NST, no

special type.

FIGURE 1
Representative micrographs of the six breast cancers with OSGC included in this study. The stroma of all cases was hypervascular/hemorrhagic
and populated by OSGC (arrows) within an activated tumor immune microenvironment characterized by the presence of tumor-infiltrating
lymphocytes (TILs) with a relatively high proportion of tumor-associated macrophages (TAMs). The OSGC were characterized by an abundant
eosinophilic cytoplasm with several non-atypical nuclei with evident nucleoli. At immunohistochemical analysis, both OSGC and TAMs were
CD-68 positive. Original magnification ×100; insets 400x.
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Applying the Pearson similarity analysis, we could document that

the majority (4 out 6; 67%) of OSGC clustered together separately

from cancer samples and non-neoplastic breast epithelium. By

unsupervised separate analysis we asked whether the miRNA

found within OSGC samples are more similar to cancer or to the

non-neoplastic breast miRNAs. Considering all available

miRNAs (n = 130) we found that OSGC had a more similar

miRNA expression pattern to cancer samples, as shown by the

dot color and size (Figure 2A). Next, we searched for miRNAs

that were differentially expressed between cancer and non-

neoplastic breast samples and we found four dysregulated

miRNAs (i.e., miR-181a-5p and miR-181b-5p were

upregulated, while miR-143a-3p and miR-195a-5p were

significantly downregulated in the neoplastic cells compared

to the non-neoplastic ones (L2R>|2|; p = 0.02)) (Figure 2B).

Subsequently by considering these four miRNAs, we tested

whether OSCG is more similar to the cancer cells or normal

breast epithelial cells. According to Pearson analysis, the majority

FIGURE 2
miRNA signatures in the different cellular compartments of breast cancers with OSGC. (A) Unsupervised separate analysis of microdissected
samples of normal breast epithelium, cancer cells, andOSGC, showing that OSGC havemiRNA profiles more similar to cancer samples rather than to
normal cells. (B) Differentially expressed miRNAs between cancer cells and normal epithelial cells in breast cancers with OSGC. (C)OSGC grouping
together with neoplastic cells tissues based onmiR-181a-5p/miR-181b-5p upregulation andmiR-143a-3p/miR-195a-5p downregulation in the
neoplastic cells compared to normal breast epithelium.

FIGURE 3
Monocyte-related miRNAs expressed in OSGCs. (A) Principal component analysis (PCA), unsupervised analysis of classical (CD14++/CD16−)
and non-classical (CD14+/CD16++) monocyte subsets clustering separately from the normal breast epithelium, cancer cells, and OSGC. (B)
Monocyte-specific miRNAs signature applied to breast samples in which OSGC show differential expression of miR-29a-3p and miR-21-3p.
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(4 out of 6; 67%) OSGCs grouped together with neoplastic breast

tissue (Figure 2C). These results suggest that recurrent epigenetic

events may take place in the neoplastic component affecting the

OSGC molecular phenotype within the breast TIME.

Expression of monocyte-related miRNAs
in OSGCs

To test the hypothesis of the monocytic origin of OSGC cells,

we retrieved a publicly available miRNA signature characteristics

of classical (CD14++/CD16−) and non-classical (CD14+/

CD16++) monocyte subsets and we applied those signatures

to our samples (Duroux-Richard et al., 2019). Generally,

monocytes of either subtypes clustered separately from

normal/neoplastic breast samples and OSGCs (Figure 3A).

Then, the previously identified monocytes-specific miRNA

signature composed of 18 miRNAs (Duroux-Richard et al.,

2019) was investigated in our series (Figure 3B). The

monocyte-associated miR-29a-3p and miR-21-3p were

different in OSGCs compared with non-neoplastic or breast

cancer tissues. Specifically, the relative expression of miR-29a-

3p was lower in OSGC than in tumor and normal tissue samples,

while the relative expression for miR-21-3p was lower in OSGC

compared with cancer samples. Nevertheless, the remaining

monocytes-associated miRNAs were not differentially

modulated in breast OSGC cells. Furthermore, the signatures

of monocyte-related miRNAs were completely different between

the two monocytic populations and the OSGC compartment.

Even though OSGC share some phenotypic similarities

(i.e., CD68) with TAMs and monocytes, this cellular

compartment significantly diverges from the latter when the

expression of monocytic miRNA is considered.

Discussion

Here, we analyzed the TIME composition along the

miRNAome of the different cellular elements within breast

cancers with OSGC. Our analyses show that these tumors are

enriched in both TILs and TAMs, indicating an activation of the

anti-tumor immune response. Furthermore, we provide

previously unavailable evidence that OSGC are more similar

to the breast neoplastic cells than to the non-neoplastic epithelial

counterpart in terms of miRNA expression. This observation

suggests that shared epigenetic events might occur between

breast cancer tumorigenesis and OSGC phylogenesis. Finally,

we demonstrated that despite OSGC show some phenotypic

similarities with monocytes such as the expression of

CD68 and TRAP, there is no similarity in terms of monocytic

miRNA expression patterns.

The observation of OSGC within breast cancer TIME is a

rare event with an unclear clinical relevance. To date, only

200 cases have been described in the literature; for this reason,

their biology is substantially undetermined (Zhou et al., 2014).

The World Health Organization (WHO) classifies the

carcinoma with OSGC among rare variants of invasive

breast carcinomas NST (WHO Classification of Tumours

Editorial Board and WHO Classification of Breast

Tumours, 2019). The carcinomatous part of these lesions is

most frequently described as a well-to-moderately

differentiated (Zhou et al., 2014; Ohashi et al., 2018a). In

our study group, however, the majority (n = 5, 83.3%) of cases

were mostly poorly differentiated invasive breast carcinomas

NST, although metaplastic features were seen in one case. Our

observation confirms the great morphological heterogeneity

of these neoplasms, where a wide range of breast cancer special

types [e.g., cribriform, mucinous (micro) papillary, lobular,

and metaplastic] with variable histological grades can be

accompanied by OSGC (Marchiò et al., 2015; Ohashi et al.,

2018a; Bonsang et al., 2019; Hoda et al., 2020). Previous

studies on solid tumors associated with OSGC have

unraveled that these cells have a histiocytic origin based on

their phenotype and molecular features (Bauditz et al., 2006;

Dahm, 2017). To the best of our knowledge, there is an

extremely limited information regarding the specific

composition of the TIME in breast cancer with OSGC,

thus, the information provided in our study could

constitute the basis for additional research focused on the

correlation of this morphological features with the clinical

course, tumor aggressiveness, and application of therapeutic

strategies (Pruneri et al., 2016; Sajjadi et al., 2020; Criscitiello

et al., 2021). By analyzing the composition of TIME, we

observed the steady presence of TILs and high TAMs

within the TIME of all cases, providing circumstantial

evidence to suggest that OSGC might be a contributor to

the host anti-tumor immunity. In addition, we demonstrated

for the first time in the literature that the OSGC miRNA

expression landscape shares similar characteristics with that

of breast cancer cells. Hence, in our microdissected samples,

we found that OSGC could be grouped with cancer cells based

on four markers, namely hsa-miR-181a-5p, hsa-miR-181b-5p,

hsa-miR-143-3p, and hsa-miR-195-5p. These miRNAs have

been previously described as regulators of genes involved in

breast cancer tumorigenesis and immune infiltration

(Allantaz et al., 2012; Alsaweed et al., 2015; Johannessen

et al., 2017; Liu et al., 2017; Rizzo et al., 2017; Li et al.,

2021). Among these miRNAs, interestingly, miR-143

regulates the machinery of the breast epigenome (Ng et al.,

2014; Humphries et al., 2019). In breast cancer, miR-143

directly targets and regulates DNMT3A. DNMT3A

overexpression could alter the methylation status of PTEN

and TNFRSF10C which contribute to tumorigenesis (Ng et al.,

2014; Humphries et al., 2019). This highlights the tumor-

suppressive role of miR-143 in epigenetic aberration of breast

cancer.
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To assess whether OSGCs are biologically related to TAMs,

we performed targeted miRNA expression profiling of

monocyte signatures in the different cellular components of

our samples. Altogether, we found two markers that were

differentially expressed within the OSGC, namely miR-29a-

3p and miR-21-3p. Interestingly, miR29a-3p has been recently

reported to be involved in the regulation of TAMs-derived

exosomal long non-coding (lnc) RNAs that can promote

proliferation, invasion, and restrain cell apoptosis in several

conditions associated with abnormal osteoclast-mediated

osteolysis, such as osteosarcoma, osteoporosis, bone loss, and

breast cancer metastatic to the bone (Lian et al., 2019; Wu et al.,

2019; de Sire et al., 2020; Cascini and Chiodoni, 2021; Hrdlicka

et al., 2021; Nørregaard et al., 2021; Venetis et al., 2021; Zhang

et al., 2021). In addition, several studies have documented that

miR-21 is the most abundant miRNA in macrophages and

TAMs (Wang et al., 2015a; Canfrán-Duque et al., 2017). In

contrast to macrophage function in normal tissue, TAMs are

classified into two major distinctive phenotypes: the pro-

inflammatory (tumoricidal) M1 macrophages and

immunosuppressive (tumor-promoting) M2 macrophages

(Rivera and Bergers, 2013). In particular, miR-21 is

considered as a homeostatic regulator of macrophage

differentiation, as its deficiency prompts M1 polarization in

TAMs (Xi et al., 2018). For this reason, tumor cells may

stimulate miR-21 expression in TAMs to prevent tumoricidal

M1 polarization (Sahraei et al., 2019). Recently, it has been

observed that miR-21 increases the M2 macrophage-mediated

chemoresistance and downregulates major histocompatibility

complex (MHC) class I surface antigens, while upregulating

programmed death-ligand 1 (PD-L1) expression in TAMs,

which is known to inhibit phagocytic anti-tumor activity

(Caescu et al., 2015; An and Yang, 2020; Subbarayan et al.,

2021). This negative regulator of inflammation and

phosphatase and tensin homolog (PTEN)/phosphoinositide

3-kinase (PI3K) axis has also been studied for its role in

balancing apoptosis and oncogenic transformation in normal

epithelial cells and as a prognostic biomarker in breast cancer

(Buscaglia and Li, 2011; Wang et al., 2015b; Ma et al., 2015;

Fusco et al., 2020b; Amirfallah et al., 2021; Fusco et al., 2021;

Sajjadi et al., 2021). Interestingly, we found several similarities

between OSGC and M2-TAMs, particularly in their

morphology and immunophenotype, and a miRNA

monocytic signature.

Our study has several limitations. First, given the rarity of

breast cancers with OSGC, we could only analyze a relatively

small number of cases, thus this study should be regarded as

hypothesis-generating. It should be noted, however, that this

study, to the best of our knowledge, represents the first integrated

miRNA analysis of breast cancer and associated OSGC. Second,

given the relatively limited quantity of OSGC and that all cases

were microdissected from sections obtained from formalin-fixed

paraffin-embedded (FFPE) blocks, we could only perform

targeted miRNA expression profiling; hence, potential somatic

genetic alterations and dysregulations affecting miRNAs not

included in the panel studied could play a role in the

development of OSGC and modulation of TILs and TAMs

within breast cancer TIME. Finally, due to the retrospective

nature of this cohort, risk and survival analyses have not been

performed. Large prospective multicentric studies are needed to

investigate the specific outcome of breast cancer with OSGC and

the risk of development of systemic (including bone) metastases

conferred by the presence of OSGC. In this respect, it would be of

great interest to perform multi-level high-throughput analyses,

coupled with bioinformatics investigations, to include selected

miRNA and predicted target genes accompanied by functional

analysis and GO terms clustering, in order to assess further

differences and similarities among immune and cancer cells, in

different tumor types.

Despite these limitations, this study, together with previous

observations, challenges the notion that OSGC is a mere

histologic curiosity within the wide spectrum of breast cancer.

Larger multicentric clinical studies and cancer registries, coupled

with comprehensive molecular analyses will be required to 1)

determine whether OSGCmay constitute a prognostic/predictive

biomarker, 2) identify potential founder genetic/epigenetic

events in these tumors, and 3) to define whether breast

cancers with OSGC would be associated with a hyperactivated

anti-tumor immune response.

In conclusion, our findings on the presence of stromal TILs

with a high proportion of TAMs suggest an activated TIME in

breast cancer with OSGC. We found that OSGC miRNAs profile

were more similar to cancer cells than to non-neoplastic epithelial

counterparts implying the potential role of epigenetic events on

both neoplastic and OSGC component. Finally, all OSGC within

each case displayed CD68 expression and partially a monocytes’

miRNA signature, suggesting that OSGC might be resident

elements of TIME and likely belong to the spectrum of

immunosuppressive, tumor-promoting, M2 TAMs.
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