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Bone and the immune system are both complex tissues that
respectively regulate the skeleton and the body’s response to
invading pathogens. It has now become clear that these organ
systems often interact in their function. This is particularly
true for the development of immune cells in the bone marrow
and for the function of bone cells in health and disease. Be-
cause these two disciplines developed independently, inves-
tigators in each don’t always fully appreciate the significance

that the other system has on the function of the tissue they are
studying. This review is meant to provide a broad overview of
the many ways that bone and immune cells interact so that a
better understanding of the role that each plays in the devel-
opment and function of the other can develop. It is hoped that
an appreciation of the interactions of these two organ systems
will lead to better therapeutics for diseases that affect either
or both. (Endocrine Reviews 29: 403–440, 2008)
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I. Introduction

BONE IS A COMPLEX organ with multiple functions. It
provides structural integrity for the body, it is the site

of hematopoiesis, and it is a storehouse for calcium and
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phosphorus (1). Likewise, the immune system is complex
and provides organisms with protection from invading
pathogens (2). Multiple overlapping and interacting mech-
anisms have evolved to regulate both systems. Interactions
between bone and immune cells are now well described. It
has become apparent that to explain the phenotype of many
in vivo models with abnormal bone metabolism, one can no
longer view either system in isolation. Rather, to understand
their function, they must be viewed as a single integrated
system. Examples of recently identified interactions of bone
and immune cells include the findings: 1) that cells related to
osteoblasts, which form bone, are critical regulators of the
hematopoietic stem cell (HSC) niche from which all blood
and immune cells derive; and 2) that osteoclasts, which are
the cells that resorb bone, appear to share a common origin
with the myeloid precursor cells that also gives rise to mac-
rophages and myeloid dendritic cells. It has also been shown
in vitro that cells that are relatively far along in their differ-
entiation toward antigen-presenting dendritic cells retain the
ability to form mature bone-resorbing osteoclasts (3). Finally,
over the last 30 yr, it has become well established that mul-
tiple soluble mediators of immune cell function including
cytokines, chemokines, and growth factors also regulate os-
teoblast and osteoclast activity (4). It is likely that immune
cells and cytokines are critically responsible for the changes
in bone turnover and bone mass that occur in postmeno-
pausal osteoporosis and inflammatory conditions such as
rheumatoid arthritis, periodontal disease, or inflammatory
bowel disease.

The regulation of bone by hematopoietic and immune cells
serves a variety of functions. It is likely that developing
hematopoietic cells regulate bone turnover and maintain the
marrow cavity by interacting with osteoblasts and oste-
oclasts during normal bone development (5). Conversely,
during inflammatory states either locally produced or cir-
culating cytokines, which are the products of activated im-
mune cells, mediate increased bone turnover and the bone
pathology in diseases such as rheumatoid arthritis and in-
flammatory bowel disease. We are only beginning to under-
stand the breadth of bone and immune cell interactions, and
this review is by no means complete. However, by appre-
ciating the interactions of these two systems, it is hoped that
future research into this area will develop in the context of
the synergies between them so that the mechanisms under-
lying bone and immune cell function in both health and
disease can be better understood.

II. The Origins of Bone Cells

A. Osteoclasts

Osteoclasts are multinucleated giant cells that form from
the fusion of mononuclear precursor cells. Mature osteoclasts
are unique in their capacity to efficiently resorb bone and
contain a variety of specific cell structures that facilitate this
process (1). The origin of the osteoclast precursor cell has
been well studied. Initial work demonstrated that osteoclasts
share many characteristics with macrophages (6). Although,
osteoclasts and macrophages appear to express some com-
mon antigens (7), there are also clear differences in the ex-

pression of surface antigens that separate these two cell types
(8, 9). Mononuclear cells, which can differentiate into oste-
oclast-like cells (OCL) in a variety of in vitro culture systems,
are present in the bone marrow and the peripheral blood (10,
11).

The availability of multiple antibodies recognizing cell
surface molecules, which are expressed on hematopoietic
cells (12–15), has allowed the identification of bone marrow
peripheral blood and spleen cell populations that can form
OCL in vitro. Studies from multiple laboratories have iden-
tified several candidate populations with the ability to form
OCL in coculture with stromal cells, when cultured alone in
liquid medium or when cultured in methylcellulose. In ex-
periments performed before the identification of receptor
activator of nuclear factor (NF)-�B ligand (RANKL), which
is the critical cytokine that regulates osteoclast formation
(16), investigators relied on coculture of various fractions of
cells (generally from bone marrow) with stromal or osteo-
blastic cells (17). In these assays, cells were stimulated to
induce osteoclastogenesis by treatment with a stimulator of
resorption like 1,25 OH2 vitamin D3 or PTH. Interestingly,
these assays require cell-cell interaction between osteoblastic
and osteoclastic cells because OCL did not form in these
cultures if the two cell types were separated by a membrane
(18). The majority of these early studies focused on myeloid
lineage cells. They demonstrated that rodent cells expressing
mature macrophage markers, which were isolated from the
bone marrow or spleen, gave rise to OCL when they were
cocultured with bone marrow stromal cells (BMSC) (19).
Muguruma and Lee (20) identified an osteoclast progenitor
population in murine bone marrow that was negative for
mature markers of B lymphocytes (CD45R/B220), granulo-
cytes (Gr-1), macrophages (CD11b/Mac-1), and erythroid
cells (Ter-119). This population did not express Sca-1, which
is a marker that is found on HSC but was positive for the
progenitor marker CD117/c-kit (20). These cells could
progress to tartrate-resistant acid phosphatase-expressing
mononuclear cells when they were cultured in semisolid
media and OCL when they were cultured with 1,25 OH2

vitamin D3-treated-ST2 stromal cells. However, the cells in
this fraction were considered multipotential because they
were also able to differentiate into granulocytes, macro-
phages, and erythroid cells. Interestingly, when the c-kit low
population was separated, it also could generate osteoclasts,
but in a more restricted fashion. Tsurukai et al. (9) isolated
cells from coculture of murine bone marrow hematopoietic
cells and osteoblastic cells by passage through a Sephadex
column and found that the population that was enriched for
osteoclast precursors expressed monocytic markers but not
markers of B or T lymphocytes. Using a coculture assay with
ST2 cells, Hayashi et al. (21) found that osteoclast precursors
were in the c-kit-positive (�) fraction and that expression of
c-fms, the macrophage colony-stimulating factor (M-CSF)
receptor, inhibited the efficiency of c-kit-positive cells form-
ing OCL in culture.

Arai et al. (22) used both coculture with ST2 stromal cells
and direct stimulation with RANKL and M-CSF, as well as
antibodies against c-fms and the monocytic marker CD11b/
Mac-1, to demonstrate that murine bone marrow cell pop-
ulations expressing c-kit formed OCL in culture. These au-
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thors concluded that a population of murine bone marrow
cells with the phenotype c-kit�, c-fms� CD11blo contained a
multipotential progenitor cell population that gave rise to
osteoclasts with high frequency. This population did not
express RANK (the receptor for RANKL) when it was iso-
lated from bone marrow but did after it was cultured with
M-CSF. Interestingly, these precursors were not completely
restricted to osteoclastogenesis because in methylcellulose
cultures they generated macrophages and mononuclear tar-
trate-resistant acid phosphatase-positive cells. Microglia, the
specialized phagocytic cells in the central nervous system,
also appear to arise from a precursor cell that can give rise
to osteoclasts (23). We have found that the osteoclast pre-
cursor cells in murine bone marrow are negative for CD3 and
CD45R, negative or low for CD11b, and positive for expres-
sion of c-fms (24). Expression of c-kit further separated this
population of murine bone marrow into two populations: 1)
cells that rapidly formed OCL in vitro when cultured with
M-CSF and RANKL (c-kit high cells); and 2) cells that formed
OCL more slowly in vitro (c-kit low to negative cells). Ex-
pression of CD11b in this population of osteoclast precursors
occurred transiently during in vitro culture. Initially, we
found the population that most efficiently formed osteoclasts
to be negative to low for this antigen. However, culture with
M-CSF and RANKL induced mononuclear osteoclast pre-
cursor cells to transiently express high levels of CD11b. Ex-
pression of this antigen was lost in multinucleated cells (24).

The relationship of osteoclasts to dendritic cells, which
present antigen to T lymphocytes as part of the adaptive
immune response (25), is now also established. Both human
and murine cells, expressing early markers of the myeloid
dendritic cell lineage, can differentiate into osteoclasts in vitro
(23, 26, 27). In addition, it appears that dendritic cells, which
are relatively late in their lineage development, retain the
ability to form osteoclasts in vitro. Alnaeeli et al. (3) showed
that murine bone marrow cells, which were treated in vitro
with cytokines so that they could present antigen to T lym-
phocytes, formed OCL in culture when they were treated
with M-CSF and RANKL. However, Speziani et al. (28) found
that neither mature myeloid dendritic cells generated in vitro
nor plasmacytoid dendritic cells generated in vivo formed
OCL in culture.

The ability of a common progenitor cell to differentiate
into macrophages, osteoclasts, and myeloid dendritic cells
has been proposed for some time (26, 27). However, only
recently has it been demonstrated that a myeloid murine
bone marrow cell can be isolated to the purity of single cell
clones and retain the capacity to differentiate into macro-
phages and dendritic cells (29). We now have good evidence
that this macrophage/myeloid dendritic cell precursor (29)
can also differentiate into an OCL in vitro (J. Lorenzo, un-
published data). Hence, it appears that a common precursor
cell exists for macrophages, myeloid dendritic cells, and os-
teoclasts. Commitment of the common macrophage/my-
eloid dendritic cell/osteoclast precursor to the osteoclast lin-
eage occurs relatively quickly (within 24 h) after treatment of
these cells with RANKL (30).

Expression of the myeloid-specific antigen CD11b has
been used by a number of investigators to identify a circu-
lating osteoclast precursor cell (31–34). The number of these

cells in the circulation is regulated by the inflammatory state
of the organism and in particular by TNF�. Most recently,
Yao et al. (34) demonstrated that expression of CD11b and
Gr-1 could be used to identify this circulating osteoclast
precursor population. In humans, expression of CD14 and
the lack of expression of CD16 have been used to identify
osteoclast precursor cells in peripheral blood (35, 36). In
addition to CD14, osteoclast precursors in human peripheral
blood also express receptor activator of NF-�B (RANK) (37).
Migration and adhesion of human CD14-positive monocytes
to sites of inflammation from the peripheral circulation may
be mediated through activation of microvascular endothelial
cells by proinflammatory cytokines (38)

One interesting aspect of osteoclastogenesis is that cells
with a cell surface phenotype that is similar to that of oste-
oclast precursor cells in bone marrow can be identified in the
spleen. However, osteoclastogenesis does not occur in the
spleen under any known condition. One possible explana-
tion for this paradox is that the population of cells found in
the spleen, despite having a similar phenotype to cells found
in the bone marrow, are missing crucial elements that pre-
vent their forming osteoclasts in splenic tissues. However,
this hypothesis seems improbable because multiple investi-
gators have established the in vitro osteoclastogenic potential
of splenocytes. Another possibility is that the microenviron-
ment in the spleen does not allow the production of oste-
oclasts either because it lacks critical signaling molecules or
because it produces inhibitory signals. Miyamoto et al. (39)
proposed that to complete osteoclastogenesis an adherent
condition, which is defined by the expression of specific
molecules, is required. This would ensure the correct inter-
actions between osteoclast progenitors and supporting cells
that express the correspondent ligands. Osteoblast lineage
cells in the bone marrow might produce these signals,
whereas the spleen or other nonbone tissues would not.

The latter hypothesis is supported by the recent findings
that late osteoclast differentiation and activation require a
novel combination of costimulatory molecules, which act in
concert with M-CSF and RANKL to complete osteoclasto-
genesis (40). These molecules involve proteins containing an
immunoreceptor tyrosine-based activation motif (ITAM) do-
main. They are found in adapter molecules like DAP12 and
the Fc receptor � (FcR�). The search for receptors associated
with these ITAM adapters in myeloid cells has identified at
least two candidates that associate with FcR� [osteoclast-
associated receptor (OSCAR) and paired Ig-like receptor A
(PIR-A)] and two that associate to DAP12 [the triggering
receptor expressed by myeloid cells-2 (TREM-2) and the sig-
nal regulatory protein �1 (SIRP �1)] (41). The ligands for
these receptors are currently unknown.

Fusion of osteoclast precursor cells into mature resorbing
osteoclasts is a regulated process (42). Recently, expression
of CD200 and CD200R on osteoclasts was found to influence
this fusion process because osteoclast number was decreased
and bone mass was increased in CD200-deficient mice (43).
CD200-deficient mice also had a normal number of osteoclast
precursor cells but a decreased rate of osteoclastogenesis in
vitro.

Although the myeloid origin of osteoclasts is well estab-
lished, it has been proposed that cells of the B-lymphoid
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lineage can also give rise to osteoclast progenitors. Several
groups have suggested the existence of bipotential progen-
itors for B lymphocytes and macrophages in bone marrow,
which have the ability to differentiate into osteoclasts (44–
46). We have found that paired box (Pax) 5 �/� mice, which
have a block in B lymphocyte development at the pro-B cell
stage, have an increased number of osteoclasts in their bones
and decreased bone mass (47). However, the osteoclast pre-
cursor cell population in Pax5 �/� mice is myeloid in origin.
In previous work (48), we found that OCL formed in cultures
of murine bone marrow cells that express the B lymphocyte
marker CD45R. These studies relied on populations of
CD45R-positive murine bone marrow cells that were sepa-
rated by fluorescence-activated cell sorting to a purity of
98–99%. However, in more recent work (24), we found that
purification of the CD45R-positive murine bone marrow
population by a second round of fluorescence-activated cell
sorting to a purity more than 99.9% essentially eliminated the
ability of purified CD45R population to form OCL in vitro.
Hence, it appears that the OCL, which form in cultures of
CD45R-positive cells, require the presence of a contaminat-
ing non-CD45R-expressing population of cells to form OCL.
We are aware of no other studies of the osteoclastic potential
of CD45R-expressing murine bone marrow cells that purified
their populations to the degree that we have now done.
However, we suspect that additional rounds of purification
of other CD45R-positive populations, which have been pro-
posed to contain osteoclast precursors, will likely also dem-
onstrate them to be contaminated with small amounts of
non-CD45R-expressing osteoclast precursors. We believe
that these contaminating cells are critical for OCL formation
in these cultures and may represent osteoclast precursor cells
with a high proliferative capacity.

In humans it was recently demonstrated that the nuclei of
myeloma cells, which are malignant cells of B lymphocyte
origin, can be identified in osteoclasts. It was further pro-
posed that this may be a mechanism for the increased oste-
oclastic activity seen in this condition (49). However, it has
not been demonstrated that nonmalignant B lymphocyte lin-
eage cells integrate into osteoclasts in vivo in humans.

B. Osteoblasts

Osteoblasts are derived from a mesenchymal progenitor
cell that is multipotential and also can differentiate into mar-
row stromal cells and adipocytes (50). The signals that reg-
ulate the decision of mesenchymal progenitor cells to form
osteoblasts are incompletely understood. However, a num-
ber of critical paracrine signals and cell autonomous tran-
scription factors have been identified. These include the tran-
scription factors Runx2 and osterix, which when absent
prevent osteoblast formation, and the bone morphogenic
protein (BMP) family (51–53), which initiates the signals for
osteoblast differentiation. Most recently, it was found that
Wnt signaling pathways are involved in the decision of the
mesenchymal progenitor cell to become either an adipocyte
or an osteoblast (54–58).

As matrix calcifies under the influence of the osteoblast-
produced enzyme, bone-specific alkaline phosphatase, a por-
tion of the osteoblasts are entrapped in the calcified matrix

and persist in bone as unique cells called osteocytes. These
cells are believed to sense mechanical force on bone and to
send signals, which regulate bone turnover, to cells at the
bone surface. Osteocytes interconnect with each other and
the cells at the bone surface via cellular projections, which are
termed dendritic processes. These reside in channels in the
mineralized bone, named canaliculi (59, 60). Most recently
much interest has been generated by the discovery that the
relatively osteocyte-specific protein sclerostin is an impor-
tant regulator of the Wnt signaling pathway in osteoblast
lineage cells (61).

III. Role of Osteoblasts in Hematopoiesis

In mammals during the early stages of gestation, hema-
topoiesis takes place in the yolk sac and then in the fetal liver.
Eventually, it migrates to the bone marrow where, unless
disturbed, it remains throughout the rest of life. Several
investigators have documented the close proximity and/or
attachment of hematopoietic cells to bone matrix and/or
bone cells. These studies showed that multipotential HSC in
the bone marrow were located adjacent to the endosteal
surfaces of bone. They also demonstrated that cells closest to
the bone surface were more proliferative than those that were
farther away from the endosteum (62–67). Electron micro-
graphs from Deldar et al. (68) found that granulocytes and
reticular cells were either in close juxtaposition or in contact
with endosteal bone-lining cells. There is a relatively high
frequency of pre-B and terminal deoxynucleotidyl trans-
ferase-positive (TdT�) cells near the endosteal bone surface,
and this frequency declines in cells that are closer to the
center of the bone marrow cavity (69). HSC differentiation
was also demonstrated to occur in close proximity to en-
dosteal osteoblasts (70). Cheng et al. (71) observed, when
isolating BMSC (a source of osteoblast progenitors) from
bone marrow, that complexes existed, which were composed
of BMSC and megakaryocytes (MK). This result implied that
there was a physical association between mesenchymal and
hematopoietic cells. It was also found that long-term HSC
were attached to spindle-shaped osteoblast-like cells on bone
surfaces, which expressed N-cadherin but not CD45 (72).
However, this result is controversial because other investi-
gators do not find HSC to express N-cadherin (73). These
authors also demonstrated that the majority of HSC associate
with sinusoidal vessels in the bone marrow and that only a
minority of HSC are in close proximity to endosteal cells (73).
Other authors have found that interaction of the chemokine
CXCL12 on support cells with its receptor CXCR4 on HSC is
critical for maintenance of HSC in the bone marrow (74).
Expression of CXCL12 on support cells is found on cells in
both the vasculature and the endosteum (75). The interac-
tions of support and hematopoietic cells lead to the concept
of the hematopoietic niche, which is a specialized structure
that supports HSC and facilitates their replication and dif-
ferentiation (Fig. 1).

It is clear that even the use of the most vigorous methods
to expel bone marrow from mouse long bones leaves many
cells adherent to endosteal surfaces. In the hematopoietic
literature, these cells are often referred to as osteoblasts.
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Although this population predominantly contains cells of the
osteoblast lineage, adherent cells of hematopoietic origin,
such as osteoclasts and macrophages, are also present. It is
also possible that bone-lining cells support HSC in the niche.
Bone-lining cells are members of the osteoblast lineage and
are thought to be mature cells that are different from osteo-
cytes. Both bone-lining cells and osteocytes are believed to be
more mature than matrix-producing osteoblasts. It has been
recently demonstrated that osteoclasts are important for the
release of hematopoietic progenitors from the niche (76).
Mice injected with lipopolysaccharide (LPS) have increased
numbers of osteoclasts on the endosteum and increased
numbers of hematopoietic colony-forming cells in the pe-
ripheral blood, as a result of a marked mobilization of HSC
from the bone marrow (76). Mice treated with RANKL also
had an increased number of osteoclasts on their bone sur-

faces and increased levels of circulating colony-forming pro-
genitors including Lin-Sca-1�c-kit� progenitor cells (76).
Conversely, mice treated with calcitonin, an inhibitor of os-
teoclast formation, or mice with defective osteoclasts had a
reduced number of circulating progenitors (76).

Primary osteoblast lineage cells, which are established from
humans and/or mice, have been shown to synthesize granu-
locyte colony-stimulating factor (G-CSF), granulocyte M-CSF
(GM-CSF), M-CSF, IL-1, IL-6, lymphotoxin, TGF�, TNF�, leu-
kemia inhibitory factor (LIF), and stem cell factor (SCF) or c-kit
ligand (77–89). Importantly, all of these cytokines have been
demonstrated to play a role in hematopoiesis (90, 91) and many
are also involved in osteoclast development.

One of the first definitive findings regarding the role for
osteoblast lineage cells in hematopoiesis was the demonstra-
tion that when CD34� hematopoietic progenitors were cul-

FIG. 1. Scheme for the interactions of osteoblasts with hematopoiesis. HSCs reside in the bone marrow adjacent to either osteoblast lineage
cells or sinusoids. Both of these likely produce signals that control HSC replication and differentiation. HSC can remain dormant or replicate
to either self-renew or differentiate into multipotential progenitor (MPP) cells. MPP can differentiate into either common lymphoid progenitors
(CLP), which have the capacity to differentiate into precursors for T-lymphocytes, B-lymphocytes or natural killer (NK) cells; or MPP can become
common myeloid precursor (CMP) cells, which are the precursor cells for all other hematopoietic lineages. CMP can differentiate into either
granulocyte-macrophage progenitor (GMP) cells or megakaryocyte-erythroid progenitor (MKEP) cells. In turn, MKEP can differentiate into
either erythrocytes or megakaryocytes. GMP can differentiate into monocytes or granulocytes. Bone marrow monocytes are precursors for
myeloid dendritic cells, macrophages, and osteoclasts. Osteoblasts derive from a mesenchymal precursor cell (MSC) that is multipotential and
can also differentiate into chondrocytes and adipocytes. Like the hematopoietic system, differentiation of MSC toward the osteoblast lineage
involves multiple intermediates including mesenchyme precursors, preosteoblasts, and mature (matrix producing) osteoblasts. Finally, some
mature osteoblasts appear to differentiate further into osteocytes, which are encased in the mineralized matrix of bone. [Derived from Ref. 578.]
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tured on a monolayer of osteoblast lineage cells for 2 wk,
there was an 8-fold increase in hematopoietic cell number
(89). It was then demonstrated that human osteoblast lineage
cells constitutively produce membrane-bound G-CSF and
that osteoblast lineage cell-bound G-CSF was responsible for
approximately 55% of the increase in hematopoietic cell
number (89). Assessment of the morphology of hematopoi-
etic progenitors, which were cultured with osteoblast lineage
cells, showed that the osteoblast lineage cells were able to
support the survival of immature hematopoietic cells such as
the long-term culture-initiating cells (92). In addition, osteo-
blast lineage cells were able to support the survival and, to
a smaller extent, the proliferation of early myeloid progen-
itors (89). Interestingly, the coculture of CD34� bone marrow
cells with osteoblast lineage cells did not alter the secretion
of G-CSF, GM-CSF, or TGF�-1 by the osteoblast lineage cells
(93). However, the coculture of CD34� bone marrow cells
with osteoblast lineage cells minimally elevated LIF secretion
and markedly elevated osteoblast lineage cell IL-6 produc-
tion (93). Although the exact mechanism(s) responsible for
the increase in osteoblast lineage cell-synthesized IL-6 re-
mains to be determined, it appears to be regulated by un-
known factor(s), which are secreted by CD34� cells. Two
likely candidates, IL-1� and TNF�, were found not to be
responsible (93). Transgenic mice with a constitutively active
PTH/PTHrP receptor, whose expression is restricted to os-
teoblast lineage cells, had increased trabeculae and trabec-
ular osteoblasts (94). Bone marrow from these transgenic
mice had an increased number of Lin-Sca-1�cKit� HSC
compared with controls (94). The increase in HSC was due
to the increased ability of the stromal cells from the trans-
genic mice to support HSC growth and differentiation. In-
jection of wild-type mice with PTH also produced an increase
in these HSC (94). These data support the idea that cells of
the osteoblast lineage are important regulators of the bone
marrow hematopoietic niche.

Recently, significant insights have been generated con-
cerning the molecular mechanisms regulating osteoblast lin-
eage cell-hematopoietic cell interactions (72, 94, 95). Long
term HSC were shown to be adjacent to osteoblast-lineage
cells, and their number was increased by approximately 2.3-
fold in mice upon deletion of the bone morphogenetic pro-
tein receptor 1A. Significantly, bone morphogenetic protein
receptor 1A-deficient mice also had a similar increase in
osteoblast-lineage cell number (72). Similarly, it was dem-
onstrated that expansion of the osteoblast-lineage cell pop-
ulation in bone by stimulation of the PTH/PTHrP receptor
increased the number of HSC in bone marrow (94). This effect
appeared to be mediated by Jagged-1-Notch-1 signaling be-
cause Jagged-1 levels were increased in mice with osteoblast-
targeted activation of the PTH/PTHrP receptor. In addition,
the increase in the number of HSC in cultures of cells from
transgenic mice with osteoblast-lineage cell-targeted activa-
tion of the PTH/PTHrP receptor was abrogated by inhibitors
of Notch signaling. It has also been shown that PTH directly
stimulates production of Jagged-1 by osteoblast-lineage cells
(96). In a converse experiment, it was found that targeted
destruction of osteoblast-lineage cells in mice led to a de-
crease in HSC in bone marrow (95). Interactions of HSC and
osteoblast lineage cells appear to be mediated by interactions

of Tie2 on HSC and angiopoietin-1 on osteoblast lineage cells.
This signaling system appears to inhibit cell division in HSC,
while maintaining their capacity for self-renewal (97, 98).

Annexin II also appears to be involved in osteoblast-lin-
eage cell-HSC interaction (99). Osteoblasts express this pro-
tein, which appears to mediate HSC adhesion, and HSC
number in the marrow of annexin II-deficient mice was sig-
nificantly reduced. Production of IL-10 by osteoblasts has
also been shown recently to promote the self-renewal of HSC
in the bone marrow (100).

Erythropoietin-producing hepatocyte kinases (Ephs) are
small receptor tyrosine kinases that function to regulate a
variety of cellular systems including immune and bone cells
(101, 102). The Eph family has 15 members and is separated
into Eph A and Eph B subgroups. The ligands of Ephs are
called ephrins. Both Ephs and ephrins are cell surface mol-
ecules, and both mediate cellular responses. In bone, ephrinB
and EphB receptors control skeletal patterning in the devel-
oping organism (103). Mice lacking ephrinB1 have defects in
rib, joint, and digit development (104). It is now known that
osteoclasts express ephrinB2, whereas osteoblasts express
EphB receptors, particularly EphB4 (105). Zhao et al. (105)
demonstrated that activation of ephrinB2 in osteoclasts by
EphB4 on osteoblasts had bidirectional effects, which re-
sulted in inhibition of osteoclastogenesis and increased os-
teoblast differentiation. Inhibition of osteoclastogenesis by
ephrinB2 signaling was mediated by decreases in Fos and
NFATc1, whereas enhanced osteoblast differentiation re-
quired RhoA inactivation.

IV. Role of Osteoblasts in Bone Marrow Cell

Transplantation

Cells of the osteoblast lineage facilitate bone marrow trans-
plantation. Specifically, it has been shown that transplanta-
tion of donor bone (containing BMSC and/or osteoblast lin-
eage cells) or osteoblast lineage cells isolated from mouse
long bones, along with HSC or bone marrow cells, promoted
hematopoietic engraftment (106–108). Indeed, this combina-
tion allowed for successful transplantation where HSC or
bone marrow cells alone failed (106, 107). As another exam-
ple, a transgenic mouse model was studied. This mouse
expressed the herpes virus thymidine kinase gene under the
control of the rat collagen �1 type I promoter. The transgene
conferred lineage-specific expression of thymidine kinase in
developing and mature osteoblast lineage cells and allowed
for the conditional ablation of these cells after treatment of
the transgenic mice with ganciclovir (GCV) (95). After GCV
treatment, these mice had marked changes in bone formation
leading to a progressive bone loss. Importantly, treated an-
imals also lost lymphoid, erythroid, and myeloid progenitors
in the bone marrow, followed by decreases in the number of
HSC. After withdrawal of GCV, osteoblasts reappeared in
the bone, and medullary hematopoiesis was reestablished.
Because PTH is able to regulate HSC number in vivo, PTH has
therapeutic potential to enhance bone marrow transplanta-
tion. Pharmacological use of PTH increased the number of
HSC that were mobilized into the peripheral blood, protected
stem cells from repeated exposure to cytotoxic chemother-

408 Endocrine Reviews, June 2008, 29(4):403–440 Lorenzo et al. • Osteoimmunology



apy, and expanded stem cells in transplant recipients (36,
109).

V. B Lymphocyte Differentiation

B lymphopoiesis is a highly ordered process proceeding
from progenitor cells in the fetal liver to development in the
bone marrow and to mature B cells in the secondary lym-
phoid organs. The mature B cell terminally differentiates into
Ig-secreting plasma cells after activation (110). B cell devel-
opment is organized around the assembly of a functional B
cell receptor through a process of gene rearrangement called
V(D)J recombination (111). The bone marrow B cell devel-
opmental pathway can be divided into several distinct
stages, based on the recombination status of the immuno-
globulin genes and the expression of surface antigens (112–
114). The earliest characterized committed B cell progenitor
(pre-pro-B) expresses the cell surface markers CD45R and
AAr.1 and has its Ig heavy (IgH) chain locus in the germ-line
configuration (not rearranged) (42, 115). Subsequent differ-
entiation generates pro-B cells that harbor rearranged IgH D
and J genes and express the surrogate light chains �5 and
VpreB and signaling adapters Ig� and Ig� (116, 117). As the
cells mature, rearrangements occur initially in V gene seg-
ments of the IgH chain gene and then in the Ig light chain
genes, a process that culminates in a functional surface an-
tigen receptor (111, 118). The molecular dissection of the B
cell differentiation pathway has been greatly facilitated by
the identification of transcription factors, which are critical
for this process. These include PU.1, Ikarous, E2A, Ebf-1, and
Pax5, which are required for developmental transitions dur-
ing B lymphopoiesis. Loss of these specific factors precludes
the cells from continued maturation and results in a devel-
opmental block of cells at the latest stage of differentiation
before the arrest.

Three transcription factors (PU.1, Ebf-1, and Pax5), which
act early in B cell differentiation, surprisingly also have pro-
found effects on bone cell development. Because these pro-
teins function in close temporal sequence during B cell de-
velopment, it might be expected that loss of their function
would result in similar bone phenotypes. However, with the
exception of being runted and lacking B cells, deletion of
these transcription factors in mice produces animals with
strikingly different bone phenotypes.

A. PU.1

PU.1, a member of the ETS domain transcription factors,
regulates the proliferation and differentiation of B cell and
macrophage lineage progenitors (119, 120). The commitment
of early progenitors to the B cell lineage depends on a low
level/activity of PU.1 in cells. In contrast, macrophage (os-
teoclasts) lineage commitment depends on high level/activ-
ity of PU.1 (121). PU.1-deficient (�/�) mice have no B cells
and fail to develop either osteoclasts or macrophages (120).
This observation was one of the first to definitively show that
osteoclasts are members of the macrophage lineage. PU.1
regulates the lineage fate of these progenitors by directly
controlling expression of the IL-7 receptor and c-fms genes
(122, 123).

B. Early B cell factor (Ebf)

Ebf-1 is the founding member of a small multigene family
of helix-loop-helix proteins that are evolutionarily conserved
and have defined roles in cellular differentiation and func-
tion. This factor was cloned both from Saccharomyces cerevi-
siae in experiments aimed at identifying the olfactory-re-
stricted olfactory marker protein-1 promoter (124) and by
biochemical purification of a factor interacting with the B
lymphocyte restricted mb-1 promoter (125). It was named
Olf-1, or early B cell factor (Ebf), which in turn led to its
current designation as O/E-1. Mice express at least three
additional members of this family, Ebf-2 (mMot1/O/E-3),
Ebf-3 (O/E-2), and Ebf-4 (126–128). Isolation of the Ebf ho-
molog Collier from Drosophila demonstrated the existence of
a new family of evolutionarily conserved proteins Collier/
Olf/EBF. Mouse Ebf-1, -2, -3, and -4 bind DNA as homo- or
heterodimers (129). Ebf1 gene expression is required for B
cell fate specification, whereas Pax5, which is regulated by
Ebf1, is required for the differentiation of B lymphocyte
lineage cells (130, 131). Mice deficient in either of these tran-
scription factors have arrested B cell differentiation at very
early stages of B lymphopoiesis (Hardy A and B) (130).

Ebf proteins are involved in both embryonic and adult
development of the nervous system. Ebf-1 and -3 expression
is seen in Purkinje cells and the cerebellum, and all four Ebf
proteins are expressed at high levels in olfactory epithelium
(132). Interestingly, OAZ is an Ebf-interacting protein in-
volved in BMP signaling (110). OAZ interacts with Smad1
where Smads and O/E proteins compete for OAZ. Thus, it
may be that Ebf proteins regulate BMP signaling. Additional
support for this idea comes from the observation that Ebf-1
potentates activation of the B cell-specific gene mb-1 (CD79a)
by Pax5 (133). Importantly, Runx1 and Ebf-1 synergized to
activate mb-1. This may be important because Runx1, a runt
homology domain transcription factor, which is required for
hematopoiesis during embryonic development, is expressed
in cartilaginous anlagen in the embryo, resting zone chon-
drocytes, and suture lines of the calvaria (134). Runx1 con-
tinues to be expressed in these tissues in adult mice, but not
in mature cartilage or mineralized bone. Our preliminary
data confirm the original report that Ebf-1-deficient (�/�)
mice are growth retarded (130). This is most likely due to the
skeletal phenotype, which appears to result from a cell au-
tonomous role of Ebf-1 on osteoblasts. Ebf-1, like all of the
known Ebf genes, is highly expressed in adipocytes (130,
135). Analysis of the preadipocyte cell lines, 3T3 L1, indicates
that these genes are expressed strongly in undifferentiated
cells and their expression increases with differentiation (135).
Overexpression of Ebf-1 enhances terminal adipocyte differ-
entiation in preadipocyte cell lines and induces adipogenesis
in multipotential cells. The fact that Ebf genes are expressed
throughout adipocyte differentiation raises the possibility
that they are key regulators of the pathway. However, the
exact mechanism by which Ebf-1 stimulates adipogenesis in
vitro or in vivo remains to be elucidated. Ebf1 mRNA is
expressed in osteoblasts at all stages of differentiation and
also in adipocytes (136). Tibiae and femora from Ebf-1�/�

mice had a striking increase in all bone formation parameters
examined, including the number of osteoblasts, osteoid vol-

Lorenzo et al. • Osteoimmunology Endocrine Reviews, June 2008, 29(4):403–440 409



ume, and bone formation rate (136). Serum osteocalcin, a
marker of bone formation, was significantly elevated in mu-
tant mice. The number of osteoclasts in bone were normal in
younger (4 wk old) Ebf1�/� mice but increased in older (12
wk old) Ebf1�/� mice. This correlated well with in vitro
osteoclast development from bone marrow cells. In addition
to increased osteoblastogenesis, Ebf1�/� mice had a dra-
matic increase in adipocyte number in the bone marrow.
Increased adiposity was also seen histologically in the liver
but not in the spleen of these mice (136). Thus Ebf1�/� mice
appear to be a new model of lipodystrophy. EBF1 is a rare
example of a transcription factor that regulates both the
osteoblast and adipocyte lineages similarly.

It is possible that the loss of B cells could account for the
changes in bone that are seen in these mutants. However, this
seems unlikely because RAG-1- or �MT-heavy chain-defi-
cient mice, which also lack most B cells, do not have a similar
bone phenotype (47). It has been reported recently that B
cell-deficient mice (�MT heavy chain-deficient) are os-
teopenic due to increased bone resorption caused by a de-
crease of B cell-secreted osteoprotegerin (OPG) (137). In con-
trast, Ebf1�/� mice, which lack all but the very earliest
population of pro-B cells, have increased bone mass and
increased osteoclasts.

C. Pax5

Pax5 is a member of the multigene family that encodes the
Pax transcription factors. This highly conserved motif was
originally identified in Drosophila (138). At present, nine
paired box containing genes (Pax1–Pax9) have been isolated
in mammals (131, 139). Three Pax gene-deficient conditions
have been studied, and all exhibit developmental mutations.
The Pax1 gene is mutated in different forms of undulated,
which have skeletal changes in the vertebra (140). It is un-
known whether any of these mutant mice express an altered
bone phenotype. Human disorders have also been associated
with mutations of Pax genes. Pax3 is mutated in Waarden-
burg’s syndrome, which causes deafness, and Pax6 is altered
in aniridia and in Peter’s anomaly (141, 142). All of these
mutations suggest the importance of Pax proteins in the
specialization, proliferation, and migration of progenitor
cells.

The Pax5 gene codes for the transcription factor B-cell
specific activation protein (BSAP) (143). During embryogen-
esis, Pax5 is transiently expressed in the mesencephalon and
spinal cord in a pattern that is different from other Pax genes
(143). Later in development, expression moves to the fetal
liver where it correlates with the onset of B lymphopoiesis.
Within the hematopoietic system, BSAP is expressed exclu-
sively in the B lymphocyte lineage cells, extending from
pro-B cells to mature B cells, but it is not found in terminally
differentiated plasma cells (143, 144). Testis is the only other
tissue in the adult mouse that expresses BSAP.

Loss of Pax5 results in an unanticipated massive decrease
in trabecular bone in both the tibia and femur of 15-d-old
mice (47). Bone volume (tibia) was reduced by 67%, and
osteoid volume was reduced by 55%. Observed increases in
bone resorption may be accounted for, at least in part, by a
greater than 100% increase in the number of osteoclasts in

Pax5-deficient (�/�) bone. These data demonstrate a
marked increase in the number of osteoclasts in Pax5�/�

mice and suggest that they are functional. The number of
osteoblasts in the mutant mice was reduced, although not
significantly. These results imply that osteopenia in
Pax5�/� mice was due, in large part, to an increase in
osteoclasts. However, we cannot rule out the possibility that
a delay in the development of osteoblasts contributes to the
bone phenotype. In fact, a delay in osteoblast development
may be responsible, at least in part, for the runting of these
mice. Therefore, we propose that loss of Pax5 causes a bone
phenotype by deregulating certain genes that enhance oste-
oclastogenesis and delay formation.

VI. Role of Megakaryocytes in Bone Turnover

Similar to their role in hematopoiesis, cells of the osteoblast
lineage support megakaryopoiesis. Studies by Ahmed et al.
(145) demonstrated that culture of CD34� cells on osteoblast
lineage cells resulted in expansion of CD34� and
CD34�CD41� (early MK) cells. When various combinations
of cytokines were added to the cultures, it was determined
that SCF, IL-3, IL-11, and thrombopoietin (TPO) were most
effective in increasing CD34�CD41� and CD41� (late MK)
cell number. Similarly, it was determined that BMSC were
able to support MK differentiation and platelet formation
(71). In other experiments, it was shown that culture of hu-
man MK on BMSC, which express SCF, resulted in adhesion
of the MK to the BMSC and proliferation of the MK through
SCF-c-kit interaction (146). Separation of the MK from the
BMSC by a cell-impermeable membrane blocked prolifera-
tion, indicating that a cell-cell interaction was required.

MK arise from pluripotential hematopoietic progenitor
cells that pass through a series of identifiable stages of dif-
ferentiation that culminate in the production of terminally
differentiated MK and the release of platelets. As with B cell
differentiation, the molecular dissection of the MK differen-
tiation pathway has been greatly facilitated by the identifi-
cation of transcription factors that are required for the suc-
cessful advance of cells from stage to stage. Loss of these
specific factors precludes the cells from continued matura-
tion and results in the accumulation of cells at the latest stage
of differentiation, before the arrest. The selective loss of two
different transcription factors, GATA-1 and NF-E2, which
were originally thought to be required exclusively for ery-
throid lineage development, has now been shown to play a
critical role in MK differentiation. GATA-1 knockdown mice
and NF-E2-deficient mice exhibit a phenotype characterized
by marked megakaryocytosis and thrombocytopenia (147,
148).

The GATA family of zinc-finger transcription factors in
vertebrates is presently composed of six members, GATA-1
through GATA-6. GATA is a single polypeptide chain with
DNA binding activity in the C-terminal zinc finger (149).
GATA-1 is almost solely restricted to hematopoietic lineage
cells and is a critical factor for erythroid cell development.
GATA-1 is expressed in MK, multipotential hematopoietic
progenitors, and mast cells (150). In GATA-1-deficient mice,
MK number is increased approximately 10-fold in the bone
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marrow and spleen of adult mice, and platelet numbers in the
peripheral blood are markedly reduced (15% of normal)
(151). It has been documented that MK from GATA-1-defi-
cient mice express lower levels of TGF�-1, platelet-derived
growth factor, and vascular endothelial growth factor than
do wild-type control MK (152). TGF�-1 levels are increased
in the spleen and bone (including bone marrow) of GATA-
1-deficient mice but not in the plasma. The animals develop
myelofibrosis after 1 yr of age (152, 153), which is preceded
by a high bone mass phenotype (detected after 3–4 months),
which is associated with a greater than 3-fold increase in
bone volume and bone formation indices (154).

NF-E2 is a heterodimeric nuclear protein comprised of two
polypeptide chains, a hematopoietic-specific 45-kDa subunit
and a widely expressed p18 subunit. Both proteins belong to
the basic leucine zipper family of transcription factors (155,
156). Expression of p45 is restricted to erythroid precursors,
MK, mast cells, and multipotential progenitors. Mice lacking
p45 NF-E2 exhibit profound thrombocytopenia, which re-
sults from a maturational arrest of MK and a lack of platelets
in the peripheral blood (148). MK number is increased 2- to
5-fold in the bone marrow and spleen of adult p45NF-E2-
deficient mice. These mice respond to exogenous TPO with
a marked increase in bone marrow cell proliferation but no
detectable increase in platelet production. Although MK
number is markedly elevated in p45 NF-E2-deficient mice,
TPO levels are normal (148, 157, 158) Interestingly, these mice
also develop a high bone mass phenotype with up to a 5-fold
increase in bone volume and bone formation parameters
(154, 159).

The strikingly similar bone phenotype, along with the
elevated osteoblast number and MK number in both NF-E2
and GATA-1-deficient animal models, led us to examine the
potential interaction between osteoblast lineage cells and
MK. We showed that when osteoblast lineage cells were
cocultured with MK, osteoblast proliferation was increased
3- to 6-fold by a mechanism that required direct cell-to-cell
contact (154). Miao et al. (160) also demonstrated that direct
cell-to-cell contact of BMSC with MK enhanced osteoblas-
togenesis. In other studies, MK have also been reported to
stimulate the differentiation of osteoblasts as defined by en-
hanced expression of procollagen (161). Thus, MK acts to
stimulate both osteoblast proliferation and differentiation in
vitro.

MK may also play a role in osteoclastogenesis as docu-
mented by the expression of OPG and RANKL in MK (161–
166). The fact that MK expresses RANKL suggests that they
may be an additional vector for osteoclast induction, partic-
ularly during inflammatory responses.

In contrast, MK expression of OPG suggests that MK may
also play a role in inhibiting osteoclastogenesis. Recent data
by our laboratory demonstrated that, in vitro, MK and MK
conditioned media (CM) inhibited osteoclast development
by up to 10-fold (98). We examined MK CM for known
inhibitors of osteoclastogenesis and could demonstrate by
ELISA that low levels of OPG were present (167). However,
Chagraoui et al. (164) did not find OPG in MK CM, suggest-
ing that the OPG, if secreted, was not detectable because it
was bound to MK-expressed RANKL (161, 164, 165). Impor-
tantly, in our work, the addition of anti-OPG antibody failed

to neutralize the ability of MK CM to inhibit osteoclast for-
mation, suggesting that MK-secreted OPG was not respon-
sible for the inhibition of osteoclast development.

We confirmed that OPG was not responsible for the MK-
mediated inhibition of osteoclast development by testing MK
derived from OPG-deficient (�/�) mice. These experiments
demonstrated that MK from OPG�/� and control mice
inhibited osteoclast formation equivalently. Finally, using
tandem mass spectrophotometry, we demonstrated that
there exists a factor or factors in MK CM that inhibit oste-
oclast development, and while the identity of this inhibitory
factor remains to be determined, it was not any of the major
factors known to inhibit osteoclast formation including OPG,
IL-4, IL-10, IL-12, IL-13, IL-18, interferon � (IFN-�), TGF�,
GM-CSF, osteoclast inhibitory lectin, calcitonin, amylin, or
calcitonin-gene-related peptide (167).

Taken together, these data suggest that MK play a dual
role in regulating skeletal mass. They secrete a factor(s) that
inhibits osteoclast formation while directly stimulating os-
teoblast proliferation and differentiation. Both of these MK-
mediated actions may contribute to the osteosclerosis seen in
GATA-1-deficient and NF-E2-deficient mice.

VII. Cytokines and Local Immune Cell Factors as

Regulators of Bone Cell Functions

A. Receptor activator of nuclear factor-�B ligand (RANKL),

receptor activator of nuclear factor-�B (RANK), and

osteoprotegerin (OPG)

Characterization of the functions of RANKL and its re-
ceptors (RANK and OPG) (Fig. 2) have contributed signifi-
cantly to the emergence of osteoimmunology, specifically
with respect to examination of the interplay between active
immunity and maintenance of bone homeostasis (16, 168,
169). Because there are a number of recent reviews on the
diverse physiological function of the RANKL-RANK-OPG
axis (169–171), we will focus here on its role in the context
of osteoimmunology.

The discovery of RANKL, a TNF superfamily member that
has potent activity as a stimulator of both the formation of
osteoclasts from precursor cells and bone-resorbing activity
in mature osteoclasts, clarified our understanding of how
stromal and osteoblastic cells regulate bone resorption (172,
173). RANKL is the critical cytokine that directs the terminal
differentiation of osteoclast precursor cells and stimulates
and maintains resorption activity in mature cells. Impor-
tantly, this activity occurs in vitro in the absence of BMSC
(172–174).

In vivo RANKL-deficient mice have significant osteope-
trosis and no osteoclasts, but a normal number of monocyte/
macrophages (175). These mice also exhibit failed tooth erup-
tion, which is a common defect associated with
developmental osteopetrosis, and diversion of hematopoie-
sis to the spleen and liver because a functional bone marrow
cavity fails to form in the absence of osteoclasts (175, 176).
Marrow stromal and osteoblastic cells produce RANKL, and
regulation of its mRNA expression in murine marrow cell
cultures correlates with activation of osteoclastogenesis
(177). Many well-known osteotropic factors, including cyto-
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kines and hormones, are now believed to exert their primary
osteoclastogenic activity by inducing RANKL expression in
osteoblast lineage cells (16, 170). Conversely, the shedding of
membrane-bound RANKL appears to be a mechanism for
inhibiting osteoblast-mediated osteoclast formation by re-
moving RANKL from the osteoblast surface. The process
appears mediated by expression of matrix metalloproteinase
(MMP) 14 (178) because osteoclasts were increased in mice
deficient in this enzyme.

OPG is a novel secreted TNF receptor superfamily mem-
ber (TNFRSF-11B) and a potent inhibitor of osteoclast for-
mation that acts as a decoy receptor for RANKL (173, 174,
179). It was initially identified as a soluble factor that was
capable of inhibiting osteoclastogenesis in vitro (179, 180) and
inducing osteopetrosis when transgenically overexpressed
in mice (179). In marrow, it is produced by a variety of cells,
including stromal cells, B lymphocytes, and dendritic cells

(181). In addition to RANKL, OPG also binds the TNF-like
ligand TRAIL (TNF-related apoptosis inducing ligand) (182).
Mice that lack OPG were shown to have severe osteoporosis,
increased numbers of osteoclasts, and arterial calcification
(183, 184). The latter finding highlights a potential genetic
link between osteoporosis and vascular calcification (170).
Overexpression of OPG in transgenic mice caused osteope-
trosis, decreased osteoclast numbers, and extramedullary
hematopoiesis (179).

The biologically active receptor for RANKL is RANK. Like
OPG, RANK is a TNF receptor superfamily member (TN-
FRSF-11A). It was first identified on dendritic cells (185), but
it is also present on osteoclast precursors and mature oste-
oclasts (186). RANK expression at the RNA level is detected
in a variety of cell types and tissues (185). RANK-deficient
mice were demonstrated to phenocopy the defect in oste-
oclast development that was observed in the RANKL-knock-
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FIG. 2. Activation of osteoclastogenesis. Osteoclast precursor cells replicate and are induced to express RANK when stimulated by the binding
of M-CSF to its receptor c-fms. In states in which osteoclastogenesis is stimulated, osteoblast or stromal support cells express relatively more
RANKL than OPG. This facilitates the binding of RANKL to RANK, which is the critical signal for the differentiation of mature osteoclasts
from precursor cells. However, the formation of mature osteoclasts is significantly enhanced by costimulatory molecules on osteoclast precursor
cells. It is critical that the ITAM proteins DAP12 and Fc�R on the surface of osteoclast precursor cells interact with their respective Ig-like
receptors (TREM-2 and SIRP-�1 with DAP12; OSCAR and PIR-A with Fc�R) for costimulation to occur. In addition, in inflammatory states
and, possibly, in normal physiology, B and T lymphocytes also produce RANKL, which can influence osteoclastogenesis.
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out mouse, confirming the exclusive specificity of RANKL
for osteoclast-expressed RANK (186). In humans, gain-of-
function mutations in RANK were found to be associated
with familial expansile osteolysis and expansile skeletal hy-
perphosphatasia (17–21, 187–191) .

Although OCL can form in vitro in the absence of RANK
or TNF receptor-associated factor (TRAF) 6 signaling when
exposed to a cocktail of cytokines and growth factors (192–
194), the significance of this in vitro finding is questionable
because osteoclasts are not detected in RANK-deficient an-
imals (186, 195). More likely, additional cytokines and
growth factors produced at sites of inflammation or physi-
ologically during bone turnover act as cofactors that enhance
or modulate the response of osteoclasts and their precursors
to RANKL-RANK stimulation (196–198).

B. RANKL-RANK mediated signals for osteoclast

differentiation

Efforts aimed at elucidating the signaling mechanisms in-
volved in RANKL-mediated osteoclastogenesis have been
informative (16, 170, 199). RANK signal transduction is me-
diated by adapter proteins called TRAFs (174, 200–203). Of
the six known TRAFs, RANK interacts with TRAF1, -2, -3,
and -5 in a membrane-distal region of the cytoplasmic tail
and with TRAF6 at a distinct membrane-proximal Pro-X-
Glu-X-X-(aromatic/acid residue) binding motif (200–203).
Genetic experiments show that TRAF6-deficient mice have
severe osteopetrosis, implying that the key signals sent
through RANK in osteoclast precursors are mediated by the
adapter molecule TRAF6 (204, 205) (Y. Choi, unpublished
data).

Downstream of TRAF6, RANKL signaling in osteoclasts
has been shown to activate phosphatidylinositide-3-kinase
(PI3K), TAK1, c-Src, JNK1, p44/42 ERK, p38 MAPK, Akt/
PKB, and mTOR, and subsequently a series of transcription
factors including NF-�B, c-Fos, Fra-1, and NFATc1. This as-
pect of RANKL signaling has been recently reviewed else-
where (16, 168–171, 206–208). In addition to the signaling
pathways mentioned above, RANKL stimulation also trig-
gers reactive oxygen species (ROS) production (209). ROS,
like superoxide anions, hydroxyl radicals, and H2O2, have
been associated with many cellular responses, including met-
abolic bone diseases found in aged osteoporotic women
(210). Recent reports suggest that ROS act as a key second
messenger during osteoclastogenesis (209), such that
RANKL stimulation induces the production of ROS in os-
teoclast precursors via the small GTPase Rac1 and the ROS-
inducing factor nicotinamide adenine dinucleotide phos-
phate oxidase 1. It is not clear how ROS cross-regulates the
signaling pathways necessary for osteoclast differentiation,
although one interesting hypothesis is that ROS may poten-
tiate MAPK activation by inactivating protein tyrosine phos-
phatase activity in a manner similar to mechanisms recently
described in B cells (211).

C. Costimulation in RANKL-induced osteoclast

differentiation

The formation and activation of osteoclasts are processes
that are tightly regulated by osteoblast lineage cells, which

provide at least two known essential factors for osteoclas-
togenesis, RANKL and M-CSF (Fig. 2). In addition, stromal
cells produce various osteotropic factors that influence os-
teoclastogenesis. These factors can be divided into two
groups: those that influence the activity of osteoblasts (e.g.,
TNF�, which induces RANKL on osteoblasts), and those that
affect the osteoclast precursors or osteoclasts per se. A series
of experiments showed that M-CSF and RANKL together
appear to be sufficient to induce the differentiation of bone
marrow precursors, spleen cells, or blood monocytes to be-
come mature osteoclasts in vitro. However, the expression of
M-CSF, RANKL, and their receptors is not limited to bone
cells. For example, M-CSF and RANKL are important cyto-
kines for the activity/viability of macrophages and dendritic
cells. Despite this pleiotropy, osteoclasts are not found in soft
tissues, raising the question of why the same set of signaling
receptors leads to different functional outcomes in different
anatomical environments. One possibility is the existence of
costimulatory molecule(s) present only in bone. Alterna-
tively, there could be powerful inhibitors of osteoclastogen-
esis in soft tissues that are not found in bone.

To address this question, we proposed the hypothesis a
few years ago that there exists a mechanism in preosteoclasts
analogous to the costimulation requirement for T cell acti-
vation (212). Hence, our hypothesis proposed that osteoclast
differentiation is controlled not only by two “essential fac-
tors,” M-CSF and RANKL (analogous to major histocom-
patibility complex/antigen complexes interacting with T-cell
receptor(TCR)/CD4 or TCR/CD8), but also by other “non-
essential but critical costimulatory molecules” (analogous to
B7 family proteins interacting with CD28) (213). Because the
in vivo concentrations of M-CSF and RANKL produced by
osteoblasts in response to bone-resorbing hormones are
likely to be much lower than that used in in vitro experiments,
costimulatory molecules are likely to influence physiological
differentiation of osteoclasts in a manner analogous to T cell
activation, whereby signals from the costimulatory receptor
CD28 amplify requisite signals from the TCR complex (212,
213). In addition, as with T cells, the requirement for a par-
ticular set of costimulatory factors/receptors for osteoclasts
should vary depending on the microenvironment. Cells ex-
pressing ligands for costimulatory receptors expressed on
osteoclasts also vary, but those interacting with osteoclasts
themselves, such as osteoblasts, most often provide costimu-
lation (analogous to dendritic cell providing B7 family pro-
teins or TNF family proteins like 4–1BBL to T cells) (212). The
signals resulting from the interaction of costimulatory factors
and their receptors on osteoclast precursors determine the
efficacy of the signals from the essential osteoclastogenic
receptor, RANK (similar to TCR/CD4 or TCR/CD8 for T
cells), and the sum of the two will determine the quality of
osteoclast differentiation and activation.

In support of the costimulation hypothesis, we have iden-
tified a novel cell surface receptor, OSCAR, which is pref-
erentially expressed on osteoclasts, and have shown that in
addition to normal RANKL-RANK signaling, interaction of
OSCAR with its putative ligand (OSCAR-L) is important for
osteoblast-induced osteoclast differentiation (213). More-
over, it appears that OSCAR-L expression is most prevalent
on osteoblastic cells (213). Therefore, the OSCAR receptor/
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ligand pairing could be characterized as a putative costimu-
lation receptor/factor for efficient osteoclast differentiation
and may provide bone-specific costimulation required for
the differentiation of osteoclasts in conjunction with the es-
sential factors M-CSF and RANKL. This signaling combina-
tion may provide a mechanistic explanation of why oste-
oclasts are found only on bone surfaces in vivo.

Although the nature of bone-specific costimulatory mol-
ecules, such as OSCAR-L, requires further study, a series of
recent experiments have supported our costimulation hy-
pothesis (41, 214). For osteoclast development in vivo, it ap-
pears that some surface receptors on osteoclast precursors,
such as PIR-A, OSCAR, TREM2, and SIRP�1, associate with
ITAM-containing molecules, DAP12 and FcR�, and provide
necessary costimulation and activation of Ca2� signaling (41,
214). Hence, whereas a single deficiency for either DAP12 or
FcR� results in only minor osteoclast defects, double defi-
ciency results in severe osteopetrosis (41, 214). Additional
analysis of mutant mice suggests that these receptors activate
calcineurin via Syk and phospholipase-C (PLC)� (41, 214,
215). More signaling proteins have been identified in lym-
phocytes that bridge Syk (or ZAP-70) and PLC�, and lead to
Ca2� activation (216, 217). Indeed, Gab2 and PLC�2 have
recently been shown to be critical for generation of functional
osteoclasts (218, 219). In addition, after the implication that
Tec family kinases are likely to be involved in ITAM-medi-
ated signaling (220), we have obtained data that Brutun’s
tyrosine kinase-deficient cells from X-linked immunodefi-
ciency mice have defects in the multinucleation of preoste-
oclasts (Y. Choi, unpublished data). It will not be surprising
if additional molecules (or family members) that were pre-
viously implicated in the ITAM-mediated signaling in im-
munocytes (e.g., lymphocytes or monocytes) are identified as
playing an equivalent role in osteoclast differentiation.

However, it is important to point out that the osteopetrosis
observed in the mice with defects in the costimulation path-
way (e.g., DAP12/FcR� double-deficient mice) is much less
severe than that in RANKL or RANK knockout mice, and
that, in contrast to RANKL or RANK knockout mice, these
animals exhibit significant numbers of osteoclasts. This is
consistent with the hypothesis that costimulatory receptors
for osteoclast differentiation are not essential and that mul-
tiple redundancies probably exist (213).

Sustained Ca2� mobilization is necessary for osteoclast
differentiation because NFATc1 activation is absolutely re-
quired for the process (221). The NFAT family of transcrip-
tion factors was originally identified as a set of regulators of
gene transcription in activated T cells (222). Recently, it was
found that RANK signaling induces expression of the NFAT
family member NFATc1 (NFAT2) and that this factor is crit-
ical for osteoclast development because NFATc1-deficient
precursor cells exhibit an absolute failure to differentiate into
osteoclasts (221). Like other NFAT family members, the in-
duction and activation of NFATc1 relies on the calcium-
regulated phosphatase, calcineurin, thereby explaining neg-
ative effects of calcineurin inhibitors like FK506 and
cyclosporine on osteoclastogenesis. The ability of NFATc1 to
regulate its own expression points to the existence of an
autonomic feedback loop. This likely triggers NFATc1 in-
duction through a TRAF6 and c-fos-mediated mechanism

that is initiated by RANKL/RANK stimulation (223). Thus,
Ca2� signaling via costimulatory receptors on preosteoclasts
is critical for amplification of NFATc1 activity to a level
sufficient for osteoclast differentiation. Interestingly,
NFATc1, in conjunction with microphthalmia-associated
transcription factor (MITF) and PU.1, transactivates OSCAR
expression during RANKL-induced osteoclast differentia-
tion (Y. Choi, unpublished data). This suggests that there is
a positive feedback circuit from RANKL to NFATc1 via co-
stimulatory receptors such as OSCAR during osteoclast dif-
ferentiation, which ensures a high level of NFATc1 activity.
Recent data suggest that costimulatory receptors also acti-
vate another transcription factor, cAMP response element-
binding protein, via CaMKIV, that cooperates with NFATc1
to activate osteoclast-specific genes (224).

Key to the analogy with lymphocyte costimulation,
RANK, like TCR, is still the primary, requisite receptor, the
absence of which renders the secondary receptors inconse-
quential for osteoclastogenesis. However, we still do not
fully understand why this system evolved and whether there
exists a state in osteoclast development that mimics anergy-
(induced tolerance) in lymphocytes.

D. Macrophage colony-stimulating factor

In addition to RANKL, M-CSF is important for normal
osteoclast formation (Fig. 2). This cytokine was originally
identified as a regulator of macrophage formation (225);
however, it was subsequently shown that a spontaneous
mouse mutant (op/op) with a phenotype of absent osteoclasts
and defective macrophage/monocyte formation was defi-
cient in M-CSF (226–228). Injection of M-CSF into op/op mice
corrected the defect in osteoclast formation and bone resorp-
tion (229), as did expression of the protein specifically in
osteoblastic cells (230).

Stimulators of bone resorption were shown to increase the
production of M-CSF in bone (231–233), and multiple tran-
scripts of M-CSF are produced by alternative splicing (234,
235). The membrane-bound form of M-CSF is regulated by
stimulators of resorption and facilitates the differentiation of
osteoclasts from precursor cells (232, 236). This may be sig-
nificant because in marrow cultures soluble M-CSF inhibited
OCL formation that was stimulated by 1,25-dihydroxyvita-
min D3 (237, 238).

The role of M-CSF in regulating osteoclast apoptosis has
also been examined. Addition of M-CSF to mature osteoclast
cultures prolongs their survival (239, 240). This response may
be important for the development of the osteopetrotic phe-
notype in op/op mice because transgenic expression in my-
eloid cells of Bcl-2, which blocks apoptosis, partially reversed
the defects in osteoclast and macrophage development in
these animals (241). The effects of M-CSF on osteoclasts has
been linked to activation of a Na/HCO3 cotransporter (242).
M-CSF also is a potent stimulator of RANK expression in
osteoclast precursor cells (22), and it is critical for the ex-
pansion of the osteoclast precursor pool size (24).

E. Additional colony stimulating factors

Like M-CSF, GM-CSF and IL-3 affect osteoclast differen-
tiation (238, 243, 244). Both appear to inhibit RANKL-medi-
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ated osteoclastogenesis (245, 246). In contrast, these factors
enhance the expansion of osteoclast precursor cells (247, 248).
It is now known that these CSF drive a common myeloid
precursor cell toward lineages other than osteoclasts (3, 245).
Both also inhibit expression of TNF receptors on myeloid
precursor cells (249). IL-3 also inhibits osteoblast differenti-
ation, which may be one mechanism for how multiple my-
eloma influences bone because this malignancy can produce
IL-3 (250).

G-CSF decreases bone mass in rodents when injected sys-
temically (251, 252), and this response appeared to result
from increased osteoclast formation and decreased osteo-
blast function. G-CSF also mobilizes hematopoietic precursor
cells from bone marrow into the circulation (253) and in-
creases the number of circulating osteoclast precursor cells
(254), which is likely related to its ability to increase oste-
oclast resorptive activity. In mice, overexpression of G-CSF
inhibited the ability of osteoblasts to respond to bone mor-
phogenetic protein (255). In addition, mice overexpressing
G-CSF had increased bone resorption, which was not in-
creased with ovariectomy, as occurred in wild-type mice
(256).

F. Interleukin-1

There are two separate IL-1 gene products, IL-1� and
IL-1�, which have identical activities (257). IL-1 is a potent
peptide stimulator of in vitro bone resorption (258), and it also
has potent in vivo effects (259). Its effects on resorption appear
to be both direct on osteoclasts (260) and indirect through its
ability to stimulate RANKL production (261). In addition,
both RANKL- and 1,25-dihydroxyvitamin D3-stimulated os-
teoclast formation in vitro are mediated, in part, by effects on
IL-1 (197, 262). IL-1 enhances the activity of RANKL to stim-
ulate osteoclastogenesis (263) and also increases prostaglan-
din synthesis in bone (258, 264), which may account for some
of its resorptive activity because prostaglandins are also po-
tent resorption stimuli (265). Direct stimulation of osteoclas-
togenesis by IL-1 in mixed murine stromal and hematopoi-
etic cell cultures is dependent on RANKL expression in the
stromal/osteoblastic cells but not TNF (266).

IL-1 is produced in bone (267), and its activity is present
in bone marrow serum (268, 269). A natural inhibitor of IL-1,
IL-1 receptor antagonist, is an analog of IL-1 that binds but
does not activate the biologically important type I IL-1 re-
ceptors (270–272).

There are two known receptors for IL-1: type I and type II
(273). All known biological responses to IL-1 appear to be
mediated exclusively through the type I receptor (274). IL-1
receptor type I requires interaction with a second protein,
IL-1 receptor accessory protein, to generate postreceptor sig-
nals (275–277). Signaling through type I receptors involves
activation of specific TRAFs and NF-�B (278, 279). IL-1 re-
ceptor type II is a decoy receptor that prevents activation of
type I receptors (280). One recent report found a decrease in
the bone mass of mice that were deficient in the bioactive
type I IL-1 receptor (281); however, this has not been our
experience (282).

Expression of myeloid differentiation factor 88 (MyD88)
but not Toll/IL-1 receptor domain-containing adapter in-

ducing IFN-� (TRIF) was necessary for IL-1 to stimulate
RANKL production in osteoblasts and prolong the survival
of osteoclasts (283). Survival of osteoclasts by treatment with
IL-1 appears to require PI3K/AKT and ERK (284).

G. Tumor necrosis factor

Like IL-1, TNF represents a family of two related polypep-
tides (� and �) that are the products of separate genes (285–
289). TNF� and TNF� have similar biological activities and
are both potent stimulators of bone resorption (258, 290, 291).

In vivo administration of TNF� was shown to increase the
serum calcium of mice (291) and to stimulate new osteoclast
formation and bone resorption (292). Like IL-1, TNF also
enhances the formation of OCL in bone marrow culture (291).
The ability of TNF to stimulate osteoclast formation in mixed
stromal cell/osteoclast precursor cell cultures was depen-
dent on the production of IL-1 (293). In addition, TNF-in-
duced osteolysis was found to be dependent on M-CSF pro-
duction (294).

TNF was shown to directly stimulate osteoclast formation
in an in vitro culture system by a mechanism that was in-
dependent of RANK because it occurred in cells from RANK-
deficient mice (192, 193, 295). The significance of this in vitro
finding is questionable, however, because in vivo adminis-
tration of TNF to RANK-deficient mice caused only an oc-
casional osteoclast to form (195).

Like IL-1, TNF binds to two cell surface receptors, TNF
receptor 1 or p55 and TNF receptor 2 or p75 (296). In contrast
to IL-1, however, both receptors transmit biological re-
sponses. Mice deficient in TNF receptor 1 and TNF receptor
2 have been produced (297–299). These animals appear
healthy and are not reported to have an abnormal bone
phenotype. TNF may also regulate c-fms expression in os-
teoclast precursor cells (34)

TNF also appears to regulate the abundance of osteoclast
precursor cells in the bone marrow by increasing expression
of c-fms, the receptor for M-CSF (300). It also enhances RANK
signaling mechanisms, which activate osteoclasts and their
precursor cells (196), and it enhances expression of the co-
stimulatory molecule PIR-A leading to activation of NFATc1
(301).

H. Additional TNF superfamily members

Fas ligand (FasL), which binds its receptor Fas on respon-
sive cells, regulates apoptosis and other cellular processes in
multiple cell types (302). In osteoblasts, FasL inhibits differ-
entiation through a caspase 8-mediated mechanism (303). In
osteoclasts, addition of FasL to cultures of osteoclast precur-
sor cells, which were also treated with M-CSF and RANKL,
increased osteoclast formation. Osteoclast precursors and
mature osteoclasts express Fas and FasL (304). Expression of
Fas was up-regulated by RANKL treatment in the RAW 264.7
osteoclast precursor cell line and treatment of mature oste-
oclasts with Fas-induced apoptosis (305). However, in con-
trast to their similar effects on osteoclastogenesis in cultures
of precursor cells, there appears to be counterregulatory roles
of RANKL and FasL on mature osteoclast apoptosis because
at high concentrations, RANKL inhibited the ability of FasL
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to induce this response (306). The effect of FasL deficiency on
bone mass is controversial. One group has found that this
index is decreased in FasL-deficient mice (305), whereas an-
other found it to be increased (307). However, the signifi-
cance of studying bone mass in Fas- or FasL-deficient mice
is probably minimal because these models have a general-
ized lymphoproliferative disorder, which activates a wide
variety of immune responses affecting bone and makes in-
terpreting the results of these studies difficult. Most recently,
it was shown that estrogen receptor � in osteoclasts regulates
FasL production by these cells, which, in turn, mediates bone
loss induced by estrogen withdrawal in mice (308).

TRAIL is another TNF-superfamily member that has a
wide variety of activities. Treatment of osteoclasts with
TRAIL induced apoptosis (309), and this effect may be me-
diated through up-regulation of the death receptor DR5
(310). In bone, injection of TRAIL for 8 d in 4-wk-old mice
induced an increase in bone mass. In vitro this effect was
associated with an increase in the cyclin-dependent kinase
inhibitor, p27Kip1, through effects of TRAIL on the ubiquitin-
proteosome pathway (311). TRAIL may also be a factor in the
effects of myeloma on osteoblasts (312).

CD40 ligand (CD40L) is involved in the differentiation of
naive T lymphocytes into T-helper (TH) 1 effector cells (313).
In humans, deficiency of CD40L causes X-liked hyper IgM
(XHIM) syndrome. Bones of XHIM patients develop spon-
taneous fractures and are osteopenic (314). Activated T lym-
phocytes from XHIM patients have normal RANKL and
deficient IFN-� production, which may contribute to de-
creased bone mass in these patients (314). In addition, ex-
pression of CD40L in rheumatoid arthritis synovial cells in-
duced RANKL expression in these cells and enhanced their
ability to stimulate osteoclastogenesis, which suggests that
this mechanism is involved in the effects of rheumatoid ar-
thritis on bone (315).

I. Interleukin-6

IL-6, like IL-1 and TNF, has a wide variety of activities
related to immune cell function and to the replication and
differentiation of a number of cell types (316, 317). Osteo-
blastic cells (both rodent and human) produce IL-6 and IL-6
receptors (318, 319). Another source of IL-6 in the bone mi-
croenvironment is BMSC, which can produce IL-6 after they
are stimulated with IL-1 and TNF (320). The receptor for IL-6
is composed of two parts: a specific IL-6 binding protein (IL-6
receptor), which can be either membrane-bound or soluble,
and gp130, an activator protein that is common to a number
of cytokine receptors (321). Soluble IL-6 receptor binds IL-6,
and this complex can then activate cells that contain the
gp130 signal peptide (321, 322). The shedding of IL-6 receptor
from osteoblasts is stimulated by IL-1 and TNF� (323).

The ability of IL-6 to stimulate bone resorption in vitro is
variable and depends on the assay system that is used (319,
324–326). It appears that a major effect of IL-6 is to regulate
osteoclast progenitor cell differentiation into mature oste-
oclasts (327, 328). IL-6 also directly stimulates both RANKL
and OPG mRNA production in bone (329), and it enhances
production of prostaglandins (330). There is also one pub-
lication that suggests that IL-6 can stimulate osteoclastogen-

esis in vitro by a RANKL-independent mechanism (331). IL-6
appears to mediate some of the increased resorption and
bone pathology that is seen in the clinical syndromes of
Paget’s disease (185), hypercalcemia of malignancy (332),
fibrous dysplasia (333), giant cell tumors of bone (334), and
Gorham-Stout disease (335). There have been conflicting data
on the role of IL-6 in PTH-mediated responses in bone be-
cause some investigators have found it critical (336) whereas
others have not (337).

J. Additional interleukin-6 family members

IL-6 is a member of a group of cytokines that share the
gp130 activator protein in their receptor complex (338, 339).
Each family member utilizes unique ligand receptors to gen-
erate specific binding. Signal transduction through these re-
ceptors utilizes the JAK/STAT (Janus kinase/signal trans-
duction and activators of transcription) pathway (321).

1. Interleukin-11
IL-11 is produced by bone cells in response to a variety of

resorptive stimuli (340). It stimulates osteoclast formation in
murine bone marrow cultures (341) and bone resorption in
a variety of in vitro assays (342, 343). Interestingly, it has no
effect on isolated mature osteoclasts. In mice deficient in the
specific IL-11 receptor, trabecular bone mass is increased,
and this appears to result from decreased bone turnover,
which is associated with decreased in vitro osteoclast forma-
tion and resorption (344).

2. Leukemia inhibitory factor
LIF is produced by bone cells in response to a number of

resorption stimuli (86, 345, 346). The effects of LIF on bone
resorption are variable. In a number of in vitro model sys-
tems, LIF stimulated resorption by a prostaglandin-depen-
dent mechanism (347), whereas in other in vitro assays, it had
inhibitory effects (348, 349). In neonatal murine calvaria cul-
tures, LIF stimulated both RANKL and OPG (329).

Local injections of LIF in vivo were shown to increase both
resorption and formation parameters, as well as the thickness
of the treated bones (350). In mice that lacked the specific LIF
receptor and hence, could not respond to LIF, bone volume
was reduced, and osteoclast number was increased 6-fold
(351).

3. Oncostatin M
Oncostatin M was demonstrated to stimulate multinuclear

cell formation in murine and human bone marrow cultures
(322, 352). These cells appeared to be macrophage polykary-
ons, however, and not osteoclasts (352). In contrast, oncosta-
tin M inhibited OCL formation that was stimulated by 1,25-
dihydroxyvitamin D3 in human marrow cultures (352), and
it decreased bone resorption rates in fetal mouse long bone
cultures (353). In vivo, overexpression of oncostatin M in
transgenic mice induced a phenotype of osteopetrosis (354).
Hence, it appears that oncostatin M is an inhibitor of oste-
oclast formation and bone resorption (355).

The role of all IL-6 family members in osteoclast formation
has to be examined in the light of data demonstrating that
mice lacking the gp130 activator protein have an increased
number of osteoclasts in their bones compared with normal
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animals (356). Because gp130 is an activator of signal trans-
duction for all members of the IL-6 family, this result argues
that at least some IL-6 family members have a predominantly
inhibitory effect on osteoclast formation and bone resorption.
Available data implicate oncostatin M (353) and possibly LIF
(348, 349) in this role.

K. Interleukin-7

IL-7 is a cytokine that has diverse effects on the hemato-
poietic and immunological systems (357) and is best known
for its nonredundant role in supporting B and T lympho-
poiesis. Studies have demonstrated that IL-7 also plays an
important role in the regulation of bone homeostasis (358,
359). However, the precise nature of how IL-7 affects oste-
oclasts and osteoblasts is controversial, because it has a va-
riety of actions in different target cells. Systemic adminis-
tration of IL-7 up-regulated osteoclast formation in human
peripheral blood cells by increasing osteoclastogenic cyto-
kine production in T cells (360). Significantly, IL-7 did not
induce bone resorption and bone loss in T cell-deficient nude
mice in vivo (361). In addition, treatment of mice with a
neutralizing anti-IL-7 antibody inhibited ovariectomy-in-
duced proliferation of early T cell precursors in the thymus,
demonstrating that ovariectomy up-regulates T cell devel-
opment through IL-7. This latter effect may be a mechanism
by which IL-7 regulates ovariectomy-induced bone loss
(362). However, the interpretation of results from in vivo IL-7
treatment studies is complicated by secondary effects of IL-7,
which result from the production of bone-resorbing cyto-
kines by T cells in response to activation by this cytokine (360,
361).

In contrast with previously reported studies (358, 360,
361), we found differential effects of IL-7 on osteoclastogen-
esis (363). IL-7 inhibited osteoclast formation in murine bone
marrow cells that were cultured for 5 d with M-CSF and
RANKL (363). In IL-7-deficient mice, osteoclast number was
markedly increased and trabecular bone mass was decreased
compared with wild-type controls (364). In addition, we
found that trabecular bone loss after ovariectomy was similar
in wild-type and IL-7-deficient mice (364). Curiously, IL-7
mRNA levels in bone increase with ovariectomy, and this
effect may be linked to alterations in osteoblast function with
estrogen withdrawal (359, 365). Addition of IL-7 to the me-
dium of newborn murine calvaria cultures inhibited bone
formation, as did injection of IL-7 above the calvaria of mice
in vivo (359). When IL-7 was overexpressed locally by os-
teoblasts, trabecular bone mass was increased compared
with wild-type mice (366). Furthermore, targeted overex-
pression of IL-7 in IL-7-deficient mice rescued the osteopo-
rotic bone phenotype of the IL-7-deficient mice (367). These
studies indicated that the actions of IL-7 on bone cells are
dependent on whether IL-7 is delivered systemically or
locally.

L. Interleukin-8 and other chemokines

Recruitment and homing of myeloid cells often occur un-
der the direction of chemokines and their receptors. This
superfamily of relatively small proteins induce interactions

through cognate G protein-coupled receptors to initiate cy-
toskeletal rearrangement, adhesion, and directional migra-
tion (368, 369). Chemokines can be divided into four
branches, depending on the spacing and sequence motifs of
their first cysteine (C) residues. These are CXC, CC, C, and
CX3C, where X is any other amino acid (370, 371). The ma-
jority of chemokine receptor interactions occur through the
CC and CXC chemokines, which are referred to as major,
whereas C and CX3C chemokines are referred to as minor.

Many cells produce chemokines that bind specific G pro-
tein-coupled receptors. IL-8, a CXC chemokine, is produced
by osteoclasts (372) and stimulates osteoclastogenesis and
bone resorption by a mechanism that is reported to be in-
dependent of the RANKL pathway (373–375). IL-8 may also
be produced by certain cancers and stimulate lytic bone
lesions in metastatic disease (373–375). Effects of IL-8 on bone
may be in part mediated by up-regulation of nitric oxide
synthase expression in osteoclasts (376).

CCL3 (macrophage inflammatory protein-1 �) is a direct
stimulator of osteoclastogenesis that is expressed in bone and
bone marrow cells (377–380). This response is proposed to be
independent of RANK activation (381). CCL3 is also a me-
diator of the osteolytic activity of multiple myeloma (382–
384). Activation of osteoclastogenesis by CCL3 is mediated
by the receptors CCR1 and CCR5 (385). Interestingly, CCL3
and IL-8 stimulate motility but suppress resorption in mature
osteoclasts (386).

CCL9 (macrophage inflammatory peptide �) and its re-
ceptor, CCR1, are also an important chemokine ligand re-
ceptor interaction that regulates osteoclasts (387). Injection of
M-CSF to induce osteoclastogenesis and bone resorption in
osteopetrotic tl/tl rats, which lack M-CSF, caused a rapid
(within 2 d) up-regulation of CCR1 as well as its ligand CCL9
in the bones of tl/tl mice and a rapid increase in osteoclas-
togenesis (388). Furthermore, antibodies to CCL9 amelio-
rated the ability of M-CSF injections to stimulate osteoclas-
togenesis in this model.

RANKL appears to be a major inducer of CCL9 and CCR1
in osteoclasts (389), and induction of CCR1 by RANKL is
dependent on NFATc1 expression (390). CCL9 and other
chemokines that bind CCR1 (CCL3, CCL5, and CCL7) are
produced by osteoclasts, osteoblasts, and their precursors in
bone. In addition, expression of these chemokines in differ-
entiating osteoblasts is induced by proinflammatory cyto-
kines (IL-1 and TNF) (391). Additional chemokine receptors
that are produced on osteoclasts include CCR3, CCR5, and
CX3CR1 (385, 387).

Inhibition of CCR1 expression with small interfering RNA
or by blocking NFATc1 activation with cyclosporin A inhib-
ited migration of RAW 264.7 cells (a model for osteoclast
precursors) and murine bone marrow cells in Boyden cham-
bers (390). Furthermore, inhibition of CCR1 signaling with a
mutated form of CCL5, which blocks the binding of CCR1 to
its ligands, prevented OCL formation in murine bone mar-
row cultures (390). In addition, antibody neutralization of
CCL9 inhibited RANKL-induced osteoclastogenesis by 60–
70% in murine bone marrow cultures (389).

CXCL12 (stromal cell derived factor-1) and its receptor
CXCR4 are involved in a variety of cellular processes in-
cluding hematopoietic cell homeostasis and immune re-
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sponses (392). Osteoclast precursor cells express CXCR4
(393), and expression of this receptor is down-regulated by
differentiation of these cells toward the osteoclast lineage
(394, 395). Treatment of the cell line RAW 264.7 with CXCL12
induced expression of MMP9, which may be a mechanism for
the migration of precursor cells toward bone (393). In human
osteoclast precursor cells, CXCL12 stimulated migration and
enhanced osteoclastogenesis in response to RANKL and M-
CSF (393, 394). Expression of CXCL12 is up-regulated in
osteoclasts when they differentiate on a calcium phosphate
matrix (394). Production of CXCL12 may also be involved in
the recruitment of precursor cells, which form giant cell
tumors of bone (396), and in the increased osteolysis that is
seen in multiple myeloma (397).

CCL2 (monocyte chemoattractant protein-1) is a potent
chemokine for monocytes and a variety of other immune
cells. Its receptor is CCR2, which is expressed at high levels
on monocytes (398). In bone with an induced inflammatory
lesion, CCL2 was expressed at high levels in osteoblasts
(399). Induction of CCL2 in these lesions was mediated by
proinflammatory cytokines (400). CCL2 also may be in-
volved in tooth eruption because it is expressed by dental
follicle cells (401–403). Among the factors that stimulate
CCL2 in the dental follicle are PTHrP (404), platelet-derived
growth factor-BB, and fibroblast growth factor-2 (405). How-
ever, CCL2 is not critical for tooth eruption because there
were only minor changes in the temporal pattern of this
process in CCL2-deficient mice (406). CCL2 is induced by
RANKL in mononuclear precursor cells (407) and enhances
OCL formation in these cells (408). However, cells induced
by treatment of cultures with CCL2 alone, while multinu-
cleated and calcitonin receptor positive, did not resorb bone
unless they were also exposed to RANKL (408). Most re-
cently, it was shown that treatment of osteoblasts with PTH
increased CCL2 expression and enhanced the fusion of
preosteoclasts (409).

M. Interleukin-10

IL-10 is produced by activated T and B lymphocytes (410).
It is a direct inhibitor of osteoclastogenesis (411, 412) and
osteoblastogenesis (413). This effect is associated with in-
creased tyrosine phosphorylation of a variety of proteins in
osteoclast precursor cells (414). The direct effects of IL-10 on
RANKL-stimulated osteoclastogenesis are associated with
decreases in NFATc1 expression and reduced translocation
of this transcription factor into the nucleus (415) as well as
suppressed c-Fos and c-Jun expression (416). Administration
of IL-10 may have utility as a mechanism to control wear-
induced osteolysis (417). In the dental follicle cells, which
function to regulate tooth eruption, treatment in vitro with
IL-10 inhibited RANKL production and enhanced OPG (418).
Hence, there appears to also be an indirect effect of IL-10 on
osteoclastogenesis that is mediated by its ability to regulate
RANKL and OPG production.

Treatment of bone marrow cell cultures with IL-10 sup-
pressed the production of osteoblastic proteins and pre-
vented the onset of mineralization (413). IL-10 also inhibited
the formation of OCL in bone marrow cultures without af-
fecting macrophage formation or the resorptive activity of

mature osteoclasts (419). This effect appears to involve the
production of novel phosphotyrosine proteins in osteoclast
precursor cells (414). IL-10 also stimulates a novel inducible
nitric oxide synthase (376).

4-1BB is an inducible T cell costimulatory molecule that
interacts with 4-1BB ligand. Treatment of RANKL-stimu-
lated osteoclast precursor cells in vitro with 4-1BB ligand
enhanced IL-10 production. In addition, expression of IL-10
was greater in RANKL-stimulated wild-type osteoclast pre-
cursor cell cultures than in cultured cells from 4-1BB-defi-
cient mice (420). These results imply that some effects of IL-10
on osteoclasts may be mediated through interactions of
4-1BB with 4-1BB ligand.

N. Interleukin-12

IL-12 is a cytokine that is produced by myeloid and other
cell types. It induces TH1 differentiation in T lymphocytes
and the subsequent expression of IFN-� (421). IL-12 has an
inhibitory effect on osteoclastogenesis. However, the mech-
anism by which this effect occurs in vitro is controversial.
Some authors have demonstrated direct inhibitory effects of
IL-12 on RANKL-stimulated osteoclastogenesis in purified
primary osteoclast precursors and RAW 264.7 cells (422).
This effect was associated with inhibition of the expression
of NFATc1 in the osteoclast precursor cells. Interestingly, the
inhibitory effects of IL-12 on osteoclastogenesis were absent
in cells that were pretreated with RANKL (422). In contrast,
others have found that the inhibitory effects of IL-12 on
osteoclastogenesis are indirect. One group demonstrated
that the inhibitory effects of IL-12 are mediated by T lym-
phocytes and do not involve production of IFN-� (423). A
second group disputes this result and found inhibition of
osteoclastogenesis by IL-12 in cells from T lymphocyte de-
pleted cultures and cells from T lymphocyte-deficient nude
mice (424). The latter authors also demonstrated that anti-
bodies to IFN-� blocked some of the inhibitory effect of IL-12
on RANKL-stimulated osteoclast formation.

O. Interleukin-15

IL-15, like IL-7, is a member of the IL-2 superfamily and
shares many activities with IL-2 including the ability to stim-
ulate lymphocytes. It has been shown to enhance osteoclast
progenitor cell number in culture (425). Production of IL-15
by T lymphocytes has been linked to the increased osteoclas-
togenesis and bone destruction seen in the bone lesions of
rheumatoid arthritis (426).

P. Interleukin-17 and interleukin-23

IL-17 is a family of related cytokines that are unique and
contain at least six members (A–F) (427). IL-17E is also called
IL-25 (428). These cytokines are central for the development
of the adaptive immune response and the products of a
subset of CD4 T lymphocytes with a unique cytokine ex-
pression profile, termed TH17. This is in contrast to the more
established T lymphocyte cytokine-expressing subsets TH1
and TH2.

IL-17A was initially identified as a stimulator of osteoclas-
togenesis in mixed cultures of mouse hematopoietic cells and
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osteoblasts (429). It stimulated osteoclastogenesis by induc-
ing prostaglandin synthesis and RANKL. Production of IL-
17A in rheumatoid arthritis appears involved in the produc-
tion of activated osteoclasts and bone destruction in involved
joints (429–431). Effects of IL-17 on osteoclastogenesis and
bone resorption are enhanced by TNF�, which is also pro-
duced in the inflamed joints of patients with rheumatoid
arthritis (432). Inhibition of IL-17A in an antigen-induced
arthritis model inhibited the joint and bone destruction that
is typically seen and decreased production of RANKL, IL-1�,
and TNF� in the involved lesions (433).

IL-23 is an IL-12-related cytokine composed of one subunit
of p40, which it shares with IL-12, and one subunit of p19,
which is unique (434). It is critical for the differentiation of
the TH17 subset of T lymphocytes along with TGF� and IL-6
(435). IL-23 appears most important for expanding the pop-
ulation of TH17 T lymphocytes. This is a subset of T lym-
phocytes that produce RANKL and have a high osteoclas-
togenic potential that is mediated by their production of
IL-17 (436). Using a LPS-induced model of inflammatory
bone destruction, Sato et al. (436) found markedly decreased
loss of bone in mice that were deficient in either IL-17 or
IL-23. Hence, production of both IL-23 and IL-17 is involved
in the bone loss in this model. These authors also demon-
strated IL-23 mRNA expression in the synovial tissue of
involved joints from patients with rheumatoid arthritis,
which suggests that similar mechanisms are involved in the
bone loss that occurs in this condition in humans.

Q. Interleukin-18

IL-18 is similar to IL-1 in its structure and is a member of
the IL-1 superfamily (437). IL-18 synergizes with IL-12 to
induce IFN-� production (438), and its levels are increased at
sites of inflammation such as rheumatoid arthritis (439). It is
expressed by osteoblastic cells and inhibits osteoclast for-
mation through a variety of mechanisms. These include its
ability to stimulate GM-CSF (100), which is produced by T
cells in response to IL-18 treatment (440). It also stimulates
IFN-� production in vivo in bone (441), and its inhibitory
effects on osteoclastogenesis and bone resorption are en-
hanced by cotreatment with IL-12 (442). Finally, it has been
shown to increase production of OPG (443). In IL-18 over-
expressing transgenic mice, osteoclasts were decreased; al-
though, curiously, so was bone mass. These results indicate
that there also may be effects of IL-18 on bone growth (441).
Interestingly, IL-18 has been shown to indirectly stimulate
osteoclastogenesis through its effects on T lymphocytes
(444). IL-18 is also a mitogen for osteoblastic cells in vitro
(445).

R. Interferons

IFN-� is a type II IFN with a wide variety of biological
activities. In vitro, IFN-� has inhibitory actions on bone re-
sorption (446, 447). These appear to be direct and are medi-
ated by its effects on osteoclast progenitor cells. IFN-� in-
hibits the ability of 1,25-dihydroxyvitamin D3, PTH, and IL-1
to stimulate the formation of OCL in cultures of human bone
marrow (448). IFN-� also inhibits RANK signaling by accel-

erating the degradation of TRAF6 through activation of the
ubiquitin/proteasome system (449); however, it does not
directly inhibit resorption in mature osteoclasts (450). IFN-�
is also reported to have stimulatory effects on resorption
through its ability to stimulate RANKL and TNF� produc-
tion in T lymphocytes (451). It is an inhibitor of osteoblast
proliferation (445, 452, 453) and has variable effects on os-
teoblast differentiation (452, 454, 455).

The effects of IFN-� on bone in vivo are variable because
both inhibitory and stimulatory effects have been reported.
In mice with collagen-induced arthritis, loss of the IFN-�
receptor leads to increased bone destruction (456, 457). Sim-
ilarly, in mice that are injected with bacterial endotoxin over
their calvaria, loss of IFN-� receptor resulted in an enhanced
resorptive response (449).

In contrast in rats, ip injection of IFN-� for 8 d induced
osteopenia (458). In patients who have osteopetrosis, because
they produce defective osteoclasts, administration of IFN-�
stimulated bone resorption and appeared to partially reverse
the disease. The latter effects are possibly due to the ability
of IFN-� to stimulate osteoclast superoxide synthesis (459,
460), osteoclast formation in vivo (461), or a generalized im-
mune response (462).

Type I IFNs (IFN-� and IFN-�) are typically produced in
response to invading pathogens (463). Mice deficient in the
IFN-�/� receptor component IFNAR1 have a reduction in
trabecular bone mass and an increase in osteoclasts (464).
RANKL induces IFN-� in osteoclasts, and IFN-�, in turn,
inhibits RANKL-mediated osteoclastogenesis by decreasing
c-fos expression (464). IFN-� has also been shown to inhibit
bone resorption in vitro although its mechanism of action is
not as well studied as that of IFN-� and -� (465). In vivo, IFN-�
had no effect on bone turnover (466).

S. Additional cytokines

IL-4 and IL-13 are members of a group of locally acting
factors that have been termed “inhibitory cytokines.” The
effects of IL-4 and IL-13 seem related and appear to affect
both osteoblasts and osteoclasts. Transgenic mice that over-
express IL-4 had a phenotype of osteoporosis (467). This
effect may result from both an inhibition of osteoclast for-
mation and activity (468, 469) and an inhibition of bone
formation (470). IL-13 and IL-4 inhibited IL-1-stimulated
bone resorption by decreasing the production of prostaglan-
dins and the activity of cyclooxygenase-2 (471). IL-4 and
IL-13 have also been demonstrated to induce cell migration
(chemotaxis) in osteoblastic cells (472). IL-4 and IL-13 influ-
ence the ability of osteoblasts to regulate osteoclast formation
and activity through their ability to increase OPG and inhibit
RANKL production (473, 474). The direct inhibitory actions
of IL-4 on osteoclast precursor cell maturation into oste-
oclasts are stronger than that of IL-13 and involve effects on
STAT6, NF-�B, peroxisome proliferator-activated receptor
�1, MAPK signaling, Ca2� signaling, NFATc1, and c-Fos
(474–479) .

Macrophage migration inhibitory factor (MIF) was ini-
tially identified as an activity in conditioned medium from
activated T lymphocytes that inhibited macrophage migra-
tion in capillary tube assays (480). Once purified and cloned
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(481), it became available for functional studies and was
shown to have a variety of activities. In addition to T lym-
phocytes, it is produced by pituitary cells and activated mac-
rophages. Mice that overexpress MIF globally were found to
have high turnover osteoporosis (482). In contrast, MIF-de-
ficient mice failed to lose bone mass or increase osteoblast or
osteoclast number in bone with ovariectomy (483). Hence,
MIF appears to be another mediator of the effects of estrogen
withdrawal on bone. Estrogen down-regulates MIF expres-
sion in activated macrophages (484), and a similar response
may occur in bone or bone marrow to mediate some of the
effects of ovariectomy on bone mass. MIF is made by osteo-
blasts (485), and its production by these cells was up-regu-
lated by a variety of growth factors including TGF�, FGF-2,
IGF-II, and fetal calf serum (486). In vitro, MIF increased
MMP9 and MMP13 expression in osteoblasts (487) and in-
hibited RANKL-stimulated osteoclastogenesis (488).

VIII. Regulation of Osteoblasts by Immune Cells and

Cytokines

A variety of cytokines are known to regulate osteoblastic
cells. TNF� inhibits the differentiation of osteoblasts (489–
492). IL-1, TNF�, and IFN-� inhibits collagen synthesis in
osteoblasts (452, 455, 493–495). IL-4 and IL-13 suppress pros-
taglandin synthesis in bone and are reported to be chemoat-
tractants for osteoblasts (471, 472). IL-4 has been shown to act
as a direct stimulator of proliferation and inhibitor of dif-
ferentiation in an osteoblastic cell line (496). Similarly, IL-4-
overexpressing mice exhibited a decrease in bone formation
and decreased differentiated osteoblasts on their bone sur-
face (467). The role of cytokines in osteoblast apoptosis has
also been studied. TNF� is potently proapoptotic for osteo-
blasts (497), possibly through induction of the Fas-FasL sys-
tem (498). Activated T lymphocytes also produce products
that drive differentiation of human BMSC toward an osteo-
blastic phenotype (499). B7-H3 is an Ig superfamily member
that is expressed on the surface of antigen-presenting cells.
Recently, B7-H3 was found to be expressed on developing
osteoblasts, and its expression was increased during cell
maturation (500). Furthermore, B7-H3-deficient mice had de-
creased cortical bone mineral density compared with litter-
mate controls (500).

IX. Role of Osteoclasts in Regulating Osteoblasts

It is generally believed that, in addition to their bona fide
function as mediators of bone resorption, osteoclasts can
influence osteoblast differentiation and function through a
process termed “coupling” (501–504). It has been postulated
that, during remodeling of adult bone, bone formation occurs
via the coupling process in response to bone resorption.
Failure of such coupling was suggested to cause unbalanced
bone remodeling, resulting in osteopetrosis or osteoporosis
(502, 503). In support of the coupling hypothesis, a variety of
osteopetrotic mouse models with defective osteoclast for-
mation or function demonstrate decreased bone formation.
For example, c-Fos and RANKL-deficient mice, which lack
osteoclasts, also have reduced bone formation although these

mice have no known osteoblast-intrinsic defects (175, 213). In
addition to these genetically altered mice, clinical trials also
support the concept of coupling. Humans who are treated
with bisphosphonates to inhibit bone resorption in combi-
nation with daily PTH injections, which increase bone mass,
have a diminished anabolic response to PTH compared with
patients given daily PTH without bisphosphonates (505).
One interpretation of these data is that anabolic regimens of
PTH require osteoclasts (and the coupling factors produced
by them) to increase bone formation. Not all osteopetrotic
mice demonstrate altered bone formation. For example,
blockade of chloride channel-7 prevents bone resorption in
ovariectomized rats, whereas bone formation in this rodent
model is unaltered (506). In addition, mice lacking c-Src also
show osteopetrosis with increased bone formation (507, 508).
However, interpretation of this model is more complicated
because c-Src also has a role in osteoblasts and its absence
causes increased osteoblast differentiation in vitro (509).

Many of the correlative studies supporting the notion of
coupling have previously been extensively reviewed (503,
504). However, we know of no direct evidence supporting
the hypothesis that osteoclasts per se trigger enhanced bone
formation during remodeling. Thus, we would like to discuss
several outstanding issues that need to be clarified to validate
our understand of coupling. For example, it is critical to
clarify genetically whether coupling does indeed require
bone resorption by mature osteoclasts and, hence, the release
of byproducts from bone matrix (502, 503). Although it can-
not be mutually excluded, it is possible that coupling simply
requires the presence of mature osteoclasts because their
encoded gene products are sufficient to carry out the cou-
pling mission.

It is unknown whether coupling requires contact between
osteoclasts and osteoblasts. Many soluble factors (e.g., IGF-I)
have been implicated in the coupling process (502, 503), but
these hypotheses still require genetic confirmation. As men-
tioned above, a membrane-associated factor (EphrinB2),
which is produced by osteoclast-lineage cells independent of
their resorptive action, has been suggested to influence bone
formation by osteoblasts (105). However, the question re-
mains whether EphrinB2-expressing mature osteoclast-lin-
eage cells are the cells mediating the coupling of bone for-
mation and resorption because the recruitment of bone-
forming cells occurs after resorption is completed. Along this
line, it is necessary to first define, molecularly, the differen-
tiation status of the tentatively identified osteoclasts and
osteoblasts in the coupling process. For example, one may
have to define what the differentiation state of osteoblast
lineage cells that potentially interact with osteoclasts is. Are
they bone matrix-producing cells or RANKL-expressing
cells? Conversely, it needs to be determined whether the
osteoclasts that are involved in the coupling process are
bone-resorbing multinucleated cells or osteoclast lineage
cells that are committed but not necessarily fully differenti-
ated. Our recent data show that an increased number of
gene-mutated mononuclear osteoclasts can induce increased
bone formation in vivo (510). This result suggests that even
mononuclear osteoclast lineage cells can potentially interact
with osteoblast lineage cells to regulate coupling.

In summary, the coupling hypothesis needs further veri-
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fication because it is of great importance both physiologically
and clinically to identify the factor(s) involved in this phe-
nomenon and, more importantly, to show whether oste-
oclasts do indeed influence bone formation during bone
remodeling.

X. Role of the Immune System in Bone Disease: the

Birth of Osteoimmunology

Production of proinflammatory cytokines by immune cells
and the subsequent induction of RANKL-mediated oste-
oclast formation and bone resorption have been linked to
human diseases. Perhaps the most extensive studies have
been on the role of cytokines in the development of the
osteolytic lesions observed in rheumatoid arthritis and other
inflammatory joint diseases (Fig. 3).

RANKL expression on T lymphocytes is induced upon T
cell receptor engagement and depends on Ca�2 mobilization
(208, 511). Initial experiments demonstrated that activated T
lymphocytes, or even supernatants from activated T lym-

phocyte cultures, were capable of supporting osteoclasto-
genesis in vitro (512). It was subsequently observed that mice
lacking CTLA4 (ctla4�/�), in which T lymphocytes are sys-
temically activated, exhibit an osteoporotic phenotype asso-
ciated with increased osteoclast numbers. Transfer of
ctla4�/� T lymphocytes into rag2�/� mice, which lack lym-
phocytes, leads to decreased bone density over time, which
can be prevented by OPG treatment. This finding indicated
that activated T cells can disrupt bone homeostasis by mod-
ulating RANKL expression (512), although it is not clear
whether T cell-derived RANKL per se is responsible for the
aberrant bone metabolism in this model. In a complementary
study, transgenic overexpression of RANKL restricted to T
or T/B lymphocytes was sufficient to partially correct the
osteopetrotic phenotype observed in RANKL-deficient mice
(213) (Y. Choi, unpublished data). Together these data de-
finitively showed the ability of lymphocytes to regulate bone
homeostasis in vivo through expression of RANKL and con-
firmed a bona fide interplay between the adaptive immune
system and bone metabolism.

FIG. 3. Regulation of osteoclastogenesis in inflammation. In inflammatory states such as inflammatory arthritis, local production of proin-
flammatory cytokines (IL-1, IL-6, and TNF) as well as RANKL by inflamed tissues such as the synovium leads to stimulation of osteoclas-
togenesis and bone destruction. In addition, IL-17-producing TH17 T lymphocytes stimulate local production of RANKL by inflamed tissues and
produce RANKL themselves, which enhances resorptive destruction of bone at sites adjacent to the inflammation.
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In human arthritis, inflammation of the synovial joints is
accompanied by bone and cartilage destruction. Various an-
imal models have been established for the study of arthritis,
and the role of RANKL in their pathogenesis has been in-
vestigated. Treating adjuvant-induced arthritis in Lewis rats
with OPG had no discernible effect on inflammation but
prevented bone loss and cartilage destruction (512). These
experiments could not resolve whether preservation of car-
tilage was an indirect benefit of inhibiting bone erosion or
was due to independent mechanisms. A subsequent study
demonstrated that bone loss and cartilage destruction were
independent in an arthritis model induced by transfer of
serum from K/BxN transgenic mice, where T cell activity is
not required for the onset of disease (513). When K/BxN
serum was transferred into RANKL-deficient mice, inflam-
mation and cartilage destruction were comparable to control
recipients, but bone erosion was greatly reduced (513). These
findings reinforced the notion that RANKL per se mediates
induction of bone destruction by osteoclasts in animal mod-
els of autoimmune arthritis. Examination of the cellular con-
stituents of synovial fluid, collected from human arthritis
patients, revealed that all local T lymphocytes expressed
RANKL, establishing the clinical relevance of the connection
between arthritis and immunologically derived RANKL
(512). Recently, it has been demonstrated that RANKL, in
combination with M-CSF, can induce transdifferentiation of
immature dendritic cells to the osteoclast lineage and that
this process is significantly enhanced by rheumatoid arthritis
synovial fluid, potentially identifying another mechanism
for disease-related bone destruction (27).

Periodontitis, induced by infection with various subgin-
gival bacteria, is a major cause of tooth loss and is associated
with increased risk for heart failure and stroke (514, 515). To
examine the etiology of the disease, peripheral blood leuko-
cytes from patients with localized juvenile periodontitis were
transferred into rag2�/� mice, which were then orally inoc-
ulated with the Gram-negative bacterium Actinobacillus ac-
tinomycetemcomitans (515). Localized juvenile periodontitis
was recapitulated in the recipient animals and was accom-
panied by accumulation of osteoclasts at the alveolar sockets
(515). It was demonstrated that treatment with OPG inhib-
ited the osteoclast infiltration and bone damage (515). In vitro
stimulation of peripheral blood lymphocytes showed that
RANKL was induced on CD4� T lymphocytes that were
activated with A. actinomycetemcomitans antigens and that
disease was attenuated when the same cells were specifically
depleted from recipient mice (515). This study demonstrated
the importance of CD4� T lymphocytes in the pathogenesis
of periodontitis, specifically with regard to disease-related
bone destruction.

Bone loss has long been recognized as an extraintestinal
complication of inflammatory bowel disorders, like Crohn’s
disease and ulcerative colitis (516). One recent study found
that patients with these diseases have elevated levels of se-
rum OPG, which derive from the site of inflammation, and
inversely correlate with severity of bone loss (517), whereas
another study found that Crohn’s disease patients have el-
evated levels of both OPG and soluble RANKL (518). Mech-
anistic insight into this link is provided by a study demon-
strating that OPG treatment of mice suffering from IL-2

deficiency-induced ulcerative colitis results not only in re-
duced osteopenia, but also mitigation of colitis due to re-
duced colonic dendritic cell survival (519).

In addition to arthritis, periodontal disease, and inflam-
matory bowel disorders, pathological bone loss is observed
in patients suffering from other autoimmune diseases (dia-
betes mellitus and lupus erythematosus), chronic viral in-
fections (HIV), allergic diseases (asthma), and metastatic
breast and lung cancers (520–522). The contribution to patho-
geneses by osteoimmunological factors merits further inves-
tigation and may provide viable therapeutic options for al-
leviating painful sequella associated with a variety of
conditions.

Although autoimmunity is, in some cases, associated with
bone loss, all T cell responses do not necessarily have such
a deleterious outcome. T Cells also secrete cytokines, like
IFN-�, IL-4, and TGF�, that have been shown to inhibit the
proosteoclastogenic effects of RANKL (520, 521, 523). In par-
ticular, the role of the TH1 cytokine, IFN-�, appears to be
crucial in preventing T lymphocyte-mediated osteoclasto-
genesis (449). TGF� is characterized as both an osteotropic
and immunosuppressive cytokine. Although the largest re-
pository of latent TGF� is in bone, its role in osteoclast for-
mation is complex and insufficiently understood (168). TGF�

down-modulates RANKL expression in osteoblasts, thereby
negatively impacting their ability to mediate osteoclastogen-
esis in culture (524). However, TGF� has also been shown to
potentiate RANKL expression in activated T lymphocytes
(208) and enhance osteoclastogenesis in cultures supple-
mented with soluble RANKL (524). Additional studies will
be necessary to determine whether TGF� utilizes multiple
regulatory mechanisms, and if so, what disparate purposes
they might serve. If most of the cytokines produced by ac-
tivated T cells are antiosteoclastogenic, the question becomes
how T cells induce bone loss by activating osteoclasts in, for
example, inflammatory joints. The answer is recently pro-
vided by the discovery of TH17 cells (Fig. 3), which produce
IL-17 and have been shown to be critical mediators of many
inflammatory autoimmune diseases such as multiple scle-
rosis or rheumatoid arthritis (525). TH17 cells do not produce
large amounts of IFN-� or IL-4 that are antiosteoclastogenic,
rather they produce IL-17 (525). Recent data show that IL-
17-producing TH17 cells can induce monocytes to become
osteoclasts via RANKL. In addition, IL-17 can further in-
crease the level of RANKL in stromal cells, thereby enhanc-
ing overall osteoclastogenesis in the pathogenic joint (436).
Given the variety of T lymphocyte-associated cytokines with
osteotropic function, it will also be useful to clarify the cor-
relation between TH1/TH2/TH17 cytokine polarization and
any attendant osteoimmunological bone destruction.

XI. Role of Immune Cells in Estrogen-Withdrawal-

Induced Bone Loss

Estrogen withdrawal after menopause is associated with
a rapid and sustained increase in the rate at which bone is
lost. This phenomenon seems to result from an increase in
bone resorption that is not met by an equivalent increase in
bone formation. Production of cytokines is likely involved
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because in mice deficient in the receptor for IL-1 (526), TNF�

(527), and IL-6 (528), estrogen withdrawal induced by ovari-
ectomy did not cause bone loss. Production of IL-1 (529), IL-1
receptor (530), TNF� (531), M-CSF (532), IL-6, and IL-6 re-
ceptor (533–535) is regulated by estrogen in bone or hema-
topoietic cells, which may link cytokines to estrogen with-
drawal-induced bone loss. Production of IL-7 has also been
linked to the bone loss that occurs with estrogen deficiency
(359). However, this result is controversial because trabec-
ular bone loss after ovariectomy was found to be similar in
wild-type and IL-7-deficient mice (364). Responses of oste-
oclast precursor cells to RANKL are inhibited by estrogen,
and this effect is mediated, in part, by a down-regulation of
JNK activation in these cells (536, 537).

T cells have also been proposed to influence the rapid bone
loss that occurs after acute estrogen deficiency. This response
was postulated to be mediated by enhanced TNF� produc-
tion (528, 538). In a series of experiments involving ovariec-
tomy (OVX)-induced bone loss in mice, an animal model for
postmenopausal bone disease, it was reported that nude
mice, which lack T lymphocytes, did not lose bone mass after
OVX. This result suggested that T cells are critical for this
response (528, 538). However, this hypothesis is controver-
sial because similar experiments using nude rats (539) and
nude RAG2- or TCR-�-deficient mice (all of which lack func-
tional T lymphocytes) demonstrated that OVX-induced tra-
becular bone loss in these models was equivalent to that seen
in wild-type mice (540). Curiously, loss of cortical bone with
OVX was different between T cell-deficient and wild-type
models and dependent on the bone that was examined (540).
These results suggest that there may be compartmental and
bone-specific effects of T cell depletion on OVX-induced
bone loss. Additional experiments will be required to deter-
mine how T cells are involved in this response of bone. These
studies will likely require mutant mouse models that are
deficient in specific immunoregulatory molecules to mech-
anistically examine the causes of OVX-induced bone loss.

Partially purified populations of B lymphocytes from mu-
rine bone marrow are reported to form osteoclasts in vitro
when they were treated with M-CSF and RANKL (44, 46, 48,
541). In addition, production of osteoclastogenic activity in
these populations was increased after ovariectomy. How-
ever, when isolated to very high purity, purified B lympho-
cytes failed to differentiate into osteoclasts in vitro (24). These
results demonstrate that the osteoclastogenic potential of B
lymphocyte populations in murine bone marrow is depen-
dent on contaminating cells. Most recently, we and others
have found that trabecular bone loss after ovariectomy was
similar in wild-type mice and mice that were deficient in the
majority of their B lymphocytes (364, 540, 542).

XII. Modulation of Immunity by the RANKL-RANK-

OPG Axis

The significance of RANKL-RANK-OPG signaling in reg-
ulating the immune system continues to emerge. Initial stud-
ies of RANKL- and RANK-deficient mice demonstrated the
importance of these signals for secondary lymphoid organ
development because these animals display a lack of pe-

ripheral lymph nodes and abnormalities in B cell follicle
formation and marginal zone integrity in the spleen (171,
199). In this section, however, we will focus on the role that
RANKL-RANK plays in shaping the immune response in the
adult immune system.

To date, most reported data indicate that RANKL mod-
ulates immunity through dendritic cells. Dendritic cells are
the most potent professional antigen-presenting cells and are
required to initiate T cell-mediated immunity in vivo (543).
Dendritic cells differentiate from the hematopoietic mono-
cyte/macrophage progenitor cell lineage and, as close rela-
tives of osteoclasts, can be generated in vitro by treating a
common precursor cell with GM-CSF. Such treatment has
been shown to suppress c-Fos and Fra-1 (26, 544), which are
key transcription factors for osteoclast differentiation. These
results highlight a mechanism of developmental divergence
between these two cell types. Upon receipt of inflammatory
or activating stimuli, dendritic cells home to the T cell areas
of the lymph nodes to activate antigen-specific T cells. Pro-
ductive activation relies on numerous dendritic cell-specific
factors, including alteration of the chemokine receptor rep-
ertoire, up-regulation of costimulatory molecules, and cyto-
kine production. These modifications are induced by exog-
enous inflammatory stimuli, as well as signals transmitted by
the TNF family members TNF� and CD40L.

RANKL signaling has also been implicated in dendritic
cell function, particularly with regard to regulation of den-
dritic cell survival. Activated dendritic cells are relatively
short-lived cells, with a half-life as low as 1–2 d upon arrival
in the lymph node (545), yet in situ imaging studies suggest
that individual T dendritic cell couplings may last 37 h or
longer (546–548). RANKL-prolonged dendritic cell survival
is attributed to up-regulation of the antiapoptotic protein
Bcl-xL (549), through a pathway requiring the NF-�B com-
ponents p50 and c-Rel (550). Treatment of dendritic cells with
RANKL also activates the antiapoptotic serine/threonine ki-
nase, Akt/PKB, through recruitment of PI3K by TRAF6 and
Cbl-b to RANK, in a mechanism dependent on the kinase
activity of c-Src (201, 551). RANKL-prolonged dendritic cell
survival also has in vivo relevance because pretreatment of
peptide-pulsed dendritic cells with RANKL before sc injec-
tion into recipient mice results in significantly elevated den-
dritic cell persistence in draining lymph nodes and enhanced
Th-1 cytokine production and T cell memory formation (552).
Dendritic cell vectors intended for use in immunotherapy
have been shown to persist longer when pretreated with
RANKL (553), and enforced autocrine RANKL-RANK, but
not CD40L-CD40, signaling on dendritic cells has been
shown to enhance antitumor immunity (554). Opg�/� den-
dritic cells potentiate in vitro mixed lymphocyte reactions,
despite CD86, MHCII, and antigen presentation levels iden-
tical to syngeneic opg�/� dendritic cells (555).

Blockade of RANKL signaling in vivo results in a slightly
reduced CD4� T cell response to lymphocytic choriomenin-
gitis virus infection, although the response is severely in-
hibited in the absence of CD40 signaling (556). These exper-
iments highlight the requirement for TNF family member
signaling in the generation of antiviral immunity, as well as
the degree to which the functions of RANK-RANKL and
CD40-CD40L interactions overlap. However, physiological
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signaling through RANK is more limited in scope than CD40,
in that treatment of immature dendritic cells with RANKL
cannot initiate activation, and RANKL signaling does not
complement the cd40�/� defect in germinal center formation
and B cell affinity maturation (549, 555). This disconnect is
likely not explained by intrinsic signaling differences be-
cause RANK and CD40 activate the same set of signaling
cascades, but instead by differential expression patterns and
kinetics. For example, on T cells CD40L is rapidly and tran-
siently expressed and is limited only to the CD4� T cell subset
(557). In contrast, RANKL is expressed on both CD4� and
CD8� T cells (552) and is capable of binding both its func-
tional (RANK) and decoy (OPG) receptors. These interac-
tions are also likely to succeed CD40-CD40L signaling be-
cause CD40L is a key inducer of RANK and OPG expression
by dendritic cells (181). The physiological role of CD40-
CD40L vs. RANK-RANKL signaling in dendritic cell func-
tion may, therefore, depend on the phase of the immune
response. CD40-CD40L signaling may be more prominent
during the initiation and effector phases, when many cellular
components of the immune system are strongly activated. By
contrast, RANK-RANKL signaling may be more important
during the waning phases, to ensure that T memory forma-
tion is established, and then to wind down remaining T
dendritic cell interactions, possibly through OPG interfer-
ence with RANKL signaling. The severe phenotype of
RANKL and RANK-deficient mice has thus far not allowed
a thorough examination of the role of RANKL in memory T
cell formation.

Evidence also suggests that RANKL may be important for
survival of interstitial dendritic cells engaged in antigen sur-
veillance during the interim period separating immune re-
sponses. Human CD34� immature dendritic cells have been
shown to express both RANK and RANKL and are therefore
capable of providing an autocrine survival signal. Peripheral
maturation of these dendritic cells leads to a down-regula-
tion of RANKL, suggesting a requirement for an indepen-
dent source of RANKL to validate dendritic cell activation
(558).

RANKL may also be involved in actively inducing toler-
ance. RANKL signaling has been directly implicated in the
induction of oral tolerance in mice. Feeding low-dose ovalbu-
min to mice concomitant with iv RANKL treatment pro-
duced T cells that were refractory to rechallenge and corre-
lates with in vitro production of the suppressive cytokine
IL-10 by mucosal dendritic cells (559). Another study has
demonstrated that RANKL-mediated signaling is required to
prevent the onset of autoimmune disease in a TNF�-induc-
ible mouse model of diabetes and that blockade of RANKL-
RANK interactions parallel a diminution of CD4�CD25�

regulatory lymphocytes, which are necessary to prevent cy-
totoxic T lymphocyte-mediated islet cell destruction (560). In
a recent study of murine cardiac allograft tolerance, RANKL-
RANK signaling was shown to be important for the gener-
ation of regulatory T cells via intratracheal delivery of al-
loantigen (561). It remains unclear, however, whether
RANKL directly triggers T lymphocyte suppression or, al-
ternatively, acts through dendritic cell intermediaries.
RANKL has also been shown to be induced preferentially
among key costimulatory molecules on T cells activated by

tolerogenic dendritic cells (562). In addition to systemic ac-
tion of RANKL, a recent report suggests a potential role of
RANKL-RANK interactions in UV-induced immunosup-
pression in the skin. In the study, Loser et al. showed that
UV-activated keratinocytes, by expressing RANKL, acti-
vated nearby Langerhans cells, which in turn preferentially
expanded regulatory T cells (563).

In addition to modulating T cell tolerance via dendritic
cells, RANKL may mediate its action during thymic selec-
tion. Although earlier studies using RANKL or RANK null
mice did not reveal any significant defect in thymocyte de-
velopment, recent studies nonetheless indicate that the
RANKL-RANK interaction and its signaling molecule
TRAF6 are required for the development of autoimmune
regulator (AIRE)-expressing medullary thymic epithelial
cells (564, 565). AIRE-expressing medullary thymic epithelial
cells play a critical role in preventing autoimmune diseases
by expressing tissue-restricted antigens and thus deleting
potentially self-reactive thymocytes during development
(566–568). Whether the RANKL-RANK interaction is con-
tinuously required for the maintenance of AIRE-positive thy-
mic epithelia cells during adult life is an important question
because interference with this pathway may limit the ther-
apeutic use of anti-RANKL blockers to treat various chronic
bone diseases like osteoporosis. Further studies are necessary
to yield molecular insights into the generation and mainte-
nance of T lymphocyte tolerance that critically requires the
interaction of RANKL-RANK.

Study of the role of RANKL-RANK-OPG signaling in the
immune system continues to emerge, although progress is
slower than that produced by the extensive analysis of this
pathway in bone (169, 206). Future studies will provide more
insight into how much the RANKL axis controls immune
responses during normal homeostasis, infection, or inflam-
matory challenges. The outcome of these studies will have a
major impact on the feasibility of using anti-RANKL therapy
to treat chronic diseases of bone such as osteoporosis.

XIII. Toll-Like Receptors, Inflammation, and

Osteoimmunology

Toll-like receptors (TLRs) are members of an ancient re-
ceptor family that share homology with IL-1R and are critical
activators of the innate immune response (569). They are
most highly expressed on antigen-presenting cells like den-
dritic cells, macrophages, and B cells, but some members are
expressed on a diverse array of tissues. Ligation of these
receptors by conserved microbial molecules or endogenous
“danger” factors results in the up-regulation of costimula-
tory molecules and the elaboration of inflammatory cyto-
kines in preparation for an adaptive immune response. TLR
signaling is mediated by the adapters MyD88, TRAF6, and
TRIF, which activate various downstream signaling path-
ways, including inhibitory �B kinase-NF-�B, MAPK, and
IFN regulatory factor-1 (569).

Because macrophages and dendritic cells share a common
progenitor with osteoclasts, it is not surprising that TLR
expression is also detected on bone cells (74, 570, 571). Direct
signaling of various TLRs (including TLR4) on osteoclast

424 Endocrine Reviews, June 2008, 29(4):403–440 Lorenzo et al. • Osteoimmunology



precursors inhibits RANKL-mediated osteoclastogenesis
(74). The data that microbial products inhibit osteoclast dif-
ferentiation via TLRs is counterintuitive because bacterial
infection can cause inflammatory bone diseases such as pe-
riodontitis, osteomyelitis, and bacterial arthritis (572). Bone
mineral density is reduced in such diseases because of ex-
cessive bone resorption by osteoclasts. In addition, LPS has
been suggested to be a potent stimulator of bone loss by
causing an increase in the number of osteoclasts in mice.
Moreover, TLR activation can enhance osteoblast-mediated
osteoclast differentiation by inducing RANKL and TNF� on
osteoblasts (570, 571, 573). Our recent data suggest that TLR
inhibits RANKL-induced osteoclast differentiation in part by
inducing the expression of type I IFNs. IFN-� receptor-de-
ficient monocytes are resistant to TLR-mediated suppression
during RANKL-induced osteoclast differentiation (Y. Choi,
unpublished data). A negative feedback regulatory mecha-
nism via type I IFN has been previously described (464).
Activation of the fos gene by RANKL leads to up-regulation
of IFN-�, which mediates a feedback mechanism blocking
further c-Fos-dependent activity (464). As such, it was shown
that mice deficient for the IFN-�/� receptor (IFNAR1) suffer
from an osteoporotic phenotype that is characterized by an
increase in osteoclasts (464). Promoter characterization
showed that RANKL-mediated up-regulation of IFN-� uti-
lizes activator protein-1 binding sites, and that c-fos-deficient
osteoclast precursors are incapable of inducing IFN-� pro-
duction (464). To facilitate osteoclast development, therefore,
osteoclast precursors need to up-regulate the cytokine sig-
naling regulator suppressors of cytokine signaling 3 to in-
hibit IFN-mediated suppression (483, 574, 575) . Additional
studies are needed to determine whether type 1 IFN pro-
duction or its action is different when osteoblast lineage cells
are present with osteoclast precursors during bacterial
infection.

The basis for the apparent discrepancy between TLR stim-
ulation as a potent negative regulator of osteoclastogenesis
and the association of bacterial infection with excessive bone
resorption by osteoclasts remains unclear. As described ear-
lier, alveolar bone destruction in periodontitis caused by
infection of Gram-negative bacteria is mediated by enhanced
osteoclastogenesis, which results in T cell activation and
subsequent up-regulation of RANKL (515). In the same
study, bacterial infection of severe combined immunodefi-
cient mice did not lead to significant levels of alveolar bone
loss. This result implies that bacterial products do not have
a direct role in osteoclastogenesis because severe combined
immunodeficiency mice have no known defect in osteoclast
precursors or osteoblasts (515). Therefore, it is likely that
bone loss associated with bacterial infection may be an in-
direct outcome of exacerbated T cell responses.

Similar to macrophages or dendritic cells, osteoclast pre-
cursors also produce proinflammatory cytokines, such as
TNF�, in response to various TLR ligands (74). Moreover,
whereas TLR stimulation inhibits osteoclast differentiation,
osteoclast precursors treated with TLR ligands still retain
high levels of phagocytic activity, which is a major host-
defense mechanism for the clearance of bacterial infection.
Therefore, the net outcome of TLR stimulation in osteoclast
precursors is likely the enhancement of immune responses

toward achieving bacterial clearance. This enhancement of
immune responses can be achieved by promoting cytokine
production from precursor cells and by inhibiting their dif-
ferentiation into nonphagocytic, nonimmune cells, such as
mature osteoclasts. Thus, interaction of these microbial prod-
ucts with TLRs on osteoclast precursors appears to favor the
role of osteoclast precursors as part of the proinflammatory
system by inhibiting their differentiation into mature oste-
oclasts and promoting the production of inflammatory cy-
tokines. However, because these cells can differentiate into
mature osteoclasts if TLR ligands are removed (74), it ap-
pears that after a microbial infection is cleared the presence
of residual activated T cells can lead to the differentiation of
phagocytic precursors into mature, bone-resorbing oste-
oclasts. In addition, TNF� produced by osteoclast precursors
upon TLR stimulation can enhance osteoclastic bone
resorption.

Conversely, the RANKL axis may regulate the inflamma-
tory action of TLR stimulation. For example, a recent report
suggests that LPS-induced production of proinflammatory
cytokines via TLR4 was reduced in OPG-deficient mice,
whereas it was increased in RANKL null mice, which dem-
onstrated increased lethality after LPS injection. Moreover, if
mice were pretreated with RANKL, they were somewhat
protected from LPS-induced death (576). These results sug-
gest that RANKL may suppress cytokine responsiveness to
LPS (or other TLR ligands) in vivo.

TLRs are thus likely to regulate the balance of immune
responses and bone metabolism during acute attacks of ver-
tebrate hosts by various microbes. However, physiological in
vivo stimulation of TLRs, which are expressed on various
cells, may result in different effects on bone metabolism
depending on the nature of the given immune responses. In
addition, ongoing stimulation of TLRs by commensal bac-
teria might affect bone metabolism. In support of this idea,
recent data show that mice deficient in mediators of the
TLR/IL-1R signaling pathway (MyD88 or IL-1 receptor-as-
sociated kinase-M) exhibit an altered bone metabolism, al-
though it is not clear whether the defects are due to the
signals from TLRs or IL-1R (283, 577).
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