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ABSTRACT 
In human melanoma cells, expression of the c& integrin is cor- 

related with the metastatic potential. The expression of osteopontin 

(OPN or OP), a protein ligand for the integrin ~,.&, also correlates 
with metastatic potential-of some tumors. Analysis of signal trans- 

duction. stimulated bv OPNIn.,& in human melanoma cells (M21). 
revealeh activation of”ppGOc~“‘c asiociated with the integrin. pp6”C-BrC 

stimulation by OPN was dose dependent, and it was inhibited in vitro 
by a tyrosine kinase inhibitor, herbimycin-A. To determine the need 
for the cytoplasmic domain of the a,-subunit, in the association of 
pp”,h” 

with u,&, a cell line expressing truncated 01,. was studied. 
M21-L cells lacked OL, expression but stably transfected with com- 
plementary DNAs encoding 01, full length protein a,.1018 or a,995 
(lacking 23 carboxyl-terminal amino acids), and a fibroblast cell line 

(FG) expressing u,,& but not u&,, were used. Western analysis and 
immune complex kinase assays of anti-a, immunoprecipitates dem- 
onstrated that M21-Uu,995 cells did not exhibit pp6”‘-“” association 
with (Y,., whereas the a,1018 complementary DNA transfected cells 
and FG cells had pp6”‘-“” associated with the LY, integrins. Immuno- 

fluorescence analysis revealed pp6”C-6rC, CY,,& integrin, and actin dis- 
tribution along the plasma membrane of M21 cells. “%-labeling of 
cells and analysis of complexes immunoprecipitated by a monoclonal 
antibody against 01& demonstrated association of actin with the 
immune complexes. We conclude that OPN stimulates pp6”-“” kinase 
activity associated with the cu,p3 integrin and that the association 
requires the cytoplasmic tail of the LY, chain. (Endocrinology 137: 
2432-2440,1996) 

H UMAN MELANOMA is a highly metastatic skin can- 

cer with a high mortality when not detected early. 

Melanoma cells express a wide variety of integrins (1) for 
extracellular matrix recognition. Integrin binding to matrix 

components such as vitronectin, fibronectin, or laminin in- 

fluences cell morphology, growth, and differentiation (2). 
Some of the integrins reported in both human and murine 

melanomas are: CX,& and &3, (3), a& (4), c@, (5), and c& 

(1, 6). During the process of tumor progression, there are 
marked changes in integrin expression. Specifically, the level 

of integrin (Y,& expression has been directly correlated to 

neoplastic progression and tumorigenicity in melanoma cells 

(1, 7, 8). 
Human melanoma (M21) and lung carcinoma cells 

(H2981) use two integrins containing a,,-subunits, (Y& and 

(Y&, in adhering to vitronectin (9), although only CY,& can 
be detected in focal contacts and colocalized with cytoskel- 

eta1 proteins. A stable variant cell line, M21-L, lacking (Y,., 

fails to express c& (6) and exhibits reduced rates of pro- 

liferation. M21-L cells, transfected with complementary 
DNA (cDNA) coding for cy,., exhibited a restored growth rate 

ir? V~ZJO (8). These results demonstrated that integrins are 

important in metastatic processes and also in the control of 
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cell proliferation. The effects of integrins on proliferation and 

cell migration are mediated by cell signals generated through 

their interactions with extracellular matrix proteins. Activa- 

tion of the proto-oncogene pph”‘-‘” has been implicated in the 

proliferation events triggered by growth-factor receptors (10) 

and recently has been demonstrated to be activated by as- 

sociation with pp’25FAK through the linker protein GRB, in 

fibroblasts adherent to fibronectin (11). Thus, we questioned 

whether pp hflc-src was associated with a,& and whether a,.&- 

dependent activation of pp hOc-src would be observed in M21 

cells. 

Many integrin receptors interact with extracellular matrix 

components via the tripeptide, arginine-glycine-aspartic 

acid, in the ligand. This sequence has been identified as a 

sequence that promotes cell attachment (12). Osteopontin 
(OPN), an arginine-glycine-aspartic acid-containing extra- 

cellular matrix protein, is one of the ligands for the integrin 

(Y,&. OPN expression has been observed in human cancer 

cells, and it promotes tumor cell migration and invasion 

predominantly through CX,& (13). Expression of antisense 

messenger RNA to OPN in high OPN-producing tumor cells 

reduces tumorigenicity (14,15). It has been hypothesized that 

OPN might function as a chemoattractant and an attachment 
factor for tumor cells (16); specifically, it might play a role in 

targeting metastatic cells to bone. Also, OPN may be an 

autocrine factor in metastatic cells that suppresses the pro- 

duction of nitric oxide synthase, thereby inhibiting the pro- 

duction of nitric oxide, which is necessary for the cytotoxic 

oxidative burst of macrophages. Thus, OPN protects the 

tumor cells from being destroyed by macrophages (17). 
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OPN STIMULATES c-arc KINASE ASSOCIATED WITH cll,& 

Integrin activation stimulates a number of intracellular 

signaling events including changes in intracellular Ca2+ 

([Ca”],) levels (18,19) and second messenger formation (20, 
21). Signaling processes by integrins involve both inside-out 

and outside-in pathways (22, 23). Unlike growth factor re- 

ceptors, integrin receptors are not tyrosine kinases and the 
exact biochemical mechanism of postreceptor signaling 

events remains elusive. Platelet-derived growth factor 

(PDGF)-stimulated phosphorylation of an a&-associated 

phosphoprotein, 190 kDa, has been observed in NIH3T3 cells 
(24). Interaction of fibronectin with an integrin (25), or inte- 

grin clustering using an antiintegrin Pi-subunit antibody 

(26), triggers protein tyrosine phosphorylation. Also, inte- 
grin-induced phosphorylation of pp’2”“AK was identified in 

human epidermoid carcinoma cells (KB cells) as a conse- 

quence of adhesion to fibronectin (27). We have previously 

shown that OPN treatment of chicken osteoclasts stimulates 

PP hOc-src and phosphatidylinositol 3-hydroxyl kinase associ- 

ated with the integrin a& (28). The increased tyrosine phos- 

phorylation of pp’2”FAK attracts the linker protein GRB2, 

which then allows p~~“~-“‘~ and PtdIns 3-hydroxyl kinase to 

be modulated by cell adhesion to plasma fibronectin and 

transformation by pp h”“-src in NIH3T3 cells (11, 29). These 
studies indicate that identification of the kinases associated 

with the integrin (~$a is critical to elucidating the mechanism 

of integrin-initiated signal transduction pathways. 

We have used the human melanoma (M21) cell line to 

evaluate the role of the extracellular matrix protein, OPN, in 
c&-mediated signaling events. We report here that OPN 
induces pp60c-src tyrosine kinase activity in human melanoma 

cells and that pphOc-src coimmunoprecipitates with the inte- 
grin av&. Furthermore, the deletion of the (Y, cytoplasmic 

domain resulted in the loss of pphnC-5” association with in- 

tegrin and failure of ligand activation of p~~“~-“” kinase. Our 
results demonstrate an important signaling event brought 

about by the interaction of the extracellular matrix protein, 

OPN, with the integrin (~$a. 

Materials and Methods 

Materials 

[“‘PI-orthophosphate (9000 Ci/mmol), y-a’I’ ATP, rainbow mol wt 
markers for proteins were obtained from Amersham (Arlington Heights, 
IL). [aiS]-methionine was obtained from ICN Bio-Medicals, Inc. (Costa 
Mesa, CA). Herbimycin-A was obtained from GIBCO-BRL (Gaithers- 
burg, MD). Anti-P, antibody was obtained from Chemicon (Tamecula, 
CA). Protein A sepharose, mouse IgG, antiactin, and other chemicals 

were obtained from Sigma Chemical Co. (St. Louis, MO). Polyvinyldi- 
fluoride membrane was obtained from Millipore Corp. (Bedford, MA). 

A protein assay reagent kit and all the reagents for polyacrylamide gel 
electrophoresis were purchased from Bio-Rad (Hercules, CA). pEZZl8 
plasmid for the expression of human OPN cDNA and IgG sepharose 
were purchased from Pharmacia (Piscataway, NJ). Collagenase enzyme 
was obtained from Boehringer Mannheim Biochemicals (Indianapolis, 
IN). Rhodamine phalloidin was obtained from Molecular Probes, Inc. 
(Eugene, OR). Monoclonal antibody to pph’lV~S” was purchased from 
Oncogene (Uniondale, NY). Human OPN cDNA was kindly provided 
by Chiron Corp. (Emeryville, CA). 

Cell culture 

Human melanoma cell lines (M21, M21-L/ 1018 ry,, and M21-L/ 995 cy,) 

and human carcinoma cell lines (FG) were previously reported (30, 31) 

and used in the present studies. All the cell lines were grown in Roswell 
Park Memorial Institute-1640 Media with 10% FBS and 50 wg/ml gen- 
tamicin. 

Ligands 

A plasmid encoding a fusion protein consisting of protein A and 
osteopontin joined by a peptide. NSGPVGPVGPVGW, sensitive to col- 
lagenase, was expressed in bacteria. The expressed protein was purified 
by IgG sepharose affinity chromatography. The isolated fusion protein 

was cleaved with collagenase, and pure OPN was isolated by a second 
purification through an IgG column. Purified OPN was quantitated and 

used for all the experiments. 

Cell labeling and stimulation 

Labeling of cells with [“*I’-orthophosphate was carried out as de- 

scribed previously (32) with some modifications. Briefly, cells were 
incubated with phosphate-free medium for 2 h. They were then washed 
three times with the same medium and incubated with carrier-free 
[“‘I’]-orthophosphate (500 &i/ml) for 2 h. For [‘isS]-methionine label- 
ing, cells were washed three times with methionine-free medium and 
incubated in the same medium with 200 kCi/ml [‘sS]-methionine for 
16-18 h. Labeled cells were washed three times and incubated in the 
presence of vehicle or OPN (25 pg/ml except where otherwise men- 
tioned) for 15 min at 37 C. Incubations at 37 C were stopped by rapidly 
aspirating the medium, washing the cells three times with ice-cold PBS 
containing 136 rnM NaCl, 3 rnM KC], 8 mM Na,HPO,, 1.5 mM KH,PO,, 
pH 7.4, and immediately lysing them with ice-cold lysis buffer (50 mM 
Tris-HCl, pH 8.0,150 mM NaCl, 2 rnM EDTA, 5 rnM NaF, 10 mM Chaps, 
0.1 rnM sodium orthovanadate, and 1 rnM phenylmethyl sulfonyl fluo- 
ride (freshly prepared). Insoluble materials were removed from lysates 
by centrifugation (15,000 rpm, 15 min, 4 C). Protein concentrations were 
determined by using a Bio-Rad protein assay reagent kit. Equal amounts 
of protein lysates were used for immunoprecipitations. The lysates were 

precleared with protein A sepharose presoaked in a lysis buffer con- 
taining 0.1% BSA and with protein A sepharose preabsorbed with an- 

timouse IgG. The precleared lysates were immunoprecipitated with 
either a monoclonal antibody to pp”““-“’ (oncogene) or with anti-o, 

integrin antibodies, overnight at 4 C with shaking. The immune com- 
plexes were collected by addition of protein A sepharose (Sigma). The 
beads were collected by centrifugation and washed sequentially, each 
three times with the following buffers: lysis buffer, 0.2 M LiCl, with 20 
rnM Tris-HCl, pH 8.0, and finally with buffer containing 20 rnM HEPES, 
pH 7.4,5 rnM MgCl, and 0.1 rnM NaaVO,. The immune complexes were 
eluted by boiling with electrophoresis sample buffer. The eluted samples 
were analyzed by SDS-PAGE (33). Gels were dried and autoradio- 
graphed using Kodak (Rochester, NY) X-OMAT film. 

Immune complex kinase assay analysis 

Cells were kept in serum-free media for 2 h and treated with vehicle 
or OPN (25 pg/ml)for 15 min at 37 C. Lysates were made with lysis 
buffer as mentioned above after washing the cells several times with 
ice-cold PBS. Equal amounts of protein lysates were immunoprecipi- 
tated with antiintegrin or anti-pp”O’-“c antibodies. The immune com- 
plexes collected by the addition of protein A sepharose were used for 
kinase assay. The sepharose beads, after washing several times with the 
buffers as mentioned above, were resuspended in 20 ~1 of kinase buffer 
(20 rnM HEPES, pH 7.4,5 rnM MgCl, and 0.1 rnM Na,VO,) containing 10 
FM [y-?‘]ATP (10 &i) either in the presence or absence of casein (1 
mg/ml) as an exogenous substrate. The mixture was incubated at 25 C 
for 20 min, and the reaction was stopped by the addition of SDS-sample 
buffer (34,35). The samples were boiled and subjected to SDS-PAGE and 
detected by autoradiography. 

Herbimycin-A treatment (100 fig/ml) of the immune complexes of 
a,& was performed for 20 min at room temperature. The herbimycin-A 
untreated immune complexes were also incubated at room temperature 
for 20 min with 1% dimethylsulfoxide (solvent for herbimycin-A). The 
immune complex kinase assays were then conducted in the presence of 
the exogenous substrate, casein. Recombinant pp”‘“” protein (UBI) was 
used as a control in all the experiments. 
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Immunostaining 

Cells were grown on coverslips and stained for indirect immunoflu- 
orescence as described (36). Briefly, cells were fixed with 3% parafor- 
maldehyde and permeabilized with 10 mM Tris-HCl, pH 7.4, i50 mM 
NaCl, and 1 mM CaCl, containing 0.1% Triton X-100 for 1 min. The cells 
were washed and stained with antibodies to pp60y-s’c or LM609 (anti- 
OI&), washed, and counterstained with fluorescein isothiocyanate-con- 
jugated goat antimouse IgG. Actin staining of the same cells stained for 

PP60c-s’c or (Y& was performed using rhodamine phalloidin (1:20 di- 
lution) in PBS-EGTA. The cells were rinsed by several changes of PBS- 
EGTA and mounted on a slide in a mounting solution (Vector Labora- 
tories, Inc., Burlingame, CA). Fluorescence was detected with a 
microscope fitted with epifluorescence (Zeiss Axioskop, Carl Zeiss, Inc., 
Oberkochen, Germany) 

Results 

OPN stimulation of pp60c-src phosphorylation in melanoma 

cells 

Because autophosphorylation is a measure of SYC family 
kinase activation, M21 human melanoma cells were labeled 
with 32[Pi]-orthophosphate and treated with vehicle or OPN. 
After cell lysis, equal amounts of lysate proteins were im- 
munoprecipitated with an anti-pp60”+rc antibody. SDS- 
PAGE was performed, and autoradiograms were developed. 
As shown in Fig. 1, OPN stimulated pp60c-src phosphoryla- 
tion (lane 2), as compared with vehicle-treated cells (lane 1). 
Immunoprecipitation performed with nonimmune serum 
failed to bring down a pp60c+rc band (lane 3). The experiment 
shown in Fig. 1 was representative of three. 

’ * 3 MW (Kd) 
. . . . . 

- 200 
\, 

-97 

.:. ‘: -46 
,. ” :: 
><~, .I. 

: \ 
,< \’ 

OP: -+u 

I P with mab : Src NI 
serum 

FIG. 1. OPN stimulated pp60c-8m phosphorylation in viva. After la- 
beline with r3’P1-orthoahosnhate for 2 h. human melanoma cells 
(M2l‘jwere washed w&phosphate and serlm-free medium and then 
incubated with vehicle or OPN (25 pg/ml) for 15 min. Cell lysates were 
made as designed in Methods. Equal amounts of the lysate protein 
were immunoprecipitated with an anti-pp6’“-“” monoclonal antibody. 
SDS-PAGE and autoradiography of the src immunoprecipitates from 
vehicle- (lane 1) or OPN-treated (lane 2) cells demonstrated that 
OPN-stimulated pp60c-8’c phosphorylation. Lane 3, Immunoprecipi- 
tate obtained from untreated cell lysates by nonimmune serum. 

Association of pp60c-S”c kinase with integrin a,& 

To further investigate the basis of OPN stimulation of 

PP60c-src phosphorylation in melanoma cells and to analyze 
whether pp60c-src was associated with the integrin c&, ly- 
sates were made from OPN-treated or vehicle-treated M21 
cells. The lysates were immunoprecipitated using an anti- 
body directed to the (Y& integrin complex (LM609) or an 
anti-pp@JC-S’C antibody. The effect of OPN on the tyrosine 
kinase activity of pp60c-src was examined by the ability of 

PP 60c-src associated with the integrin complex from vehicle- 
treated or OPN-treated cells to autophosphorylate itself and 
to phosphorylate an exogenous substrate, casein, in vitro. As 
shown in Fig. 2, a 60-kDa protein migrating exactly similar 

to PP 60c-src was coimmunoprecipitated with the integrin Q3 
(lanes 1 and 2), and OPN stimulated its autophosphorylation 
and the phosphorylation of the casein substrate (lane 2). OPN 
also stimulated the auto hosphorylation and activity of 

PP60c-Src kinase in anti-pp”+” ’ lmmunoprecipitates (lanes 3 
and 4). Identification of the 60-kDa autophosphorylated pro- 
tein as pp60c+rc kinase was accomplished by cutting it from 
the gel and using V-8 protease to produce a peptide digest. 
SDS-PAGE of the digest of o$,-associated p~60c-src com- 
pared with the digest of phosphorylated pp Oc ST= positive 
control revealed an identical pattern of labeled peptides. The 
amount of pp60c-src immunoprecipitated by LM609 (lane 2) 
was less than the amount of phosphorylated pp60c-src seen in 

1234567 
MW fKdl 

- 200 

- 97 

-68 

-46 

Casein + 

-30 
$, 

OP: - + + Src 
Ill_ L-r-2-J 

IP with mab: LM609 Src NI Serum 

FIG. 2. Association of pp60c-src with the integrin a,& and its activa- 
tion by OPN treatment of M21 cells. M21 cells were treated with or 
without OPN (25 pg/ml for 15 min), and cell lysates were prepared. 
Equal amounts of lysate proteins were immunoprecipitated using 
anti-a& (LM609) or anti-pp60’src monoclonal antibodies. The im- 
mune complexes were washed and assayed for protein kinase activity 
in the presence of Y-~‘P-ATP and the exogenous substrate, casein, as 
described in Methods. Casein and pp60c-src are indicated by arrows. 
Lanes 1 and 2, anti-@,; lanes 3 and 4, anti-pp60’-s”. Lane 5, UBI, 
which was used as a positive control. Lanes 6 and 7, Immunopre- 
cipitates formed by nonimmune serum. They failed to demonstrate 
c-src or casein phosphorylation. This experiment was one of six. See 
text for the mean t SE. 
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antiwpp60C+JC immunoprecipitates (lane 4), but the OPN ac- 
tivated pp60c-src activity was roughly equal in the two types 
of immunoprecipitates. This suggested that a large portion of 
the OPN-activated c-SYC was (Y,& associated. The integrin 
a&-associated kinase activity was significantly increased 
by OPN treatment as shown in the representative experiment 
portrayed in Fig. 2. In six similar experiments, an increase in 

60c-src phosphorylation of 80% + 27 (P < O.Ol), and an 
Erease in casein phosphorylation of 25.8 +- 9.7 (P < 0.05) 
was observed. 

The effect of OPN on pp60c-src phosphorylation was dose 
dependent. As shown in Fig. 3, the increased phosphoryla- 
tion of pp 60c-src is dependent upon the concentration of sol- 
uble OPN added to cells. A dose of 2 pg / ml of OPN increased 

PP 60c-src autophosphorylation. The response to OPN had not 
saturated at the highest dose of OPN used. Twenty-five 
PLg / ml of OPN was more than half as effective as 100 pg / ml, 
and therefore it was used for the rest of the studies. The dose 
responsiveness of M21 melanoma cells to OPN was similar 
to that of avian osteoclasts (28). The physiological concen- 
trations of OPN are unknown and difficult to ascertain be- 
cause OPN is an autocrine substance and because the con- 
centration in particular local environments is what is 
important. It circulates at concentrations circa 2 rig/ml. 

Truncation of the a, chain reduces pp60c-S” association 

To examine the role of the cytoplasmic domain of (Y, in the 
association of the (Y,& integrin with pp60C-srC, cell lines ex- 
pressing a mutant (Y, were used. The M21-L cell line, which 
does not express endogenous (Y, protein or messenger RNA, 
but maintains abundant &-subunit proteins (6), was trans- 
fected with cDNAs, encoding one of two cY,-subunit proteins, 
(~~1018 (wild-type) or a,995 (a truncation mutant missing 23 
amino acid residues) at the carboxyl terminus of (Y, (30). 
Lysates made from M21-L cells transfected with a,1018 or 
a,995 were immunoprecipitated using an antibody against 
cy, (LM142). LM142 is equally effective in immunoprecipi- 
tating a,1018 or a,995. Immune complex kinase assays were 
performed using the immunoprecipitates formed by LM142 
as enzyme sources. The results revealed that OPN stimulated 

PP 60c-src kinase activity in M21-L/ a,1018 cells (Fig. 4, lane 2) 
as compared with vehicle-treated cells (lane 1). The immu- 
noprecipitates from the (~“995 cell lysates revealed the ab- 
sence of pp60c+rc kinase autophosphorylation. Phosphoryl- 
ation of the exogenous casein substrate was observed both in 

1 2 3 4 5 6 7 Src 

OP (pg): - 2 5 10 25 50 100 

IP with mab: LM609 

FIG. 3. Dose-dependent effect of OPN on pp60c-src kinase activity. 
M21 cells were treated with increasing concentrations of recombinant 
human OPN (2-100 pg/ml) (lanes 2-7) for 15 min at 37 C. Cell lysates 
were immunoprecipitated with anti-a,& (LM609). The immune com- 
plexes were assayed in vitro for pp60c-src autophosphorylation as de- 
scribed in Methods. A dose-dependent increase in the phosphorylation 
of PP60c-8m kinase is observed. pp 6oc-src is indicated by arrow. These 
results are representative of two additional experiments. 

Cell lines: 

Src + 

1018 995 FG 1018 Src 

1121134115611781191 
* >: 1”- 

1 
MW (Kd) 

/ 

-96 

-46 

Casein + f  

OP: - + - + - + 
IL.5 

IP with mab: LM142 (anti-@ NI 
Serum 

FIG. 4. Presence of pp60c-S’c kinase activity in anti-g immunopre- 
cipitates. Requirement for the cytoplasmic domain of (Y,. Cell lysates 
from M21, M21L/o1,1018, and M21IJo,995 cells were prepared after 
treatment with vehicle (-) or OPN (+) (25 pg/ml). Equal amounts of 
lysate proteins were used for immunoprecipitation with anti-a, 
(LM142) antibody. The immune complexes were assayed in vitro for 
protein kinase activity using casein as the exogenous substrate. OPN- 
stimulated pp60c-s” kinase activity in M21 cell immunoprecipitates 
formed by the anti-a, antibody (lane 2) compared with immunopre- 
cipitates from vehicle-treated cell. Immunoprecipitates from M21L/ 
(~~1018 cells revealed pp6”-‘” kinase activity associated with the (Y, 
chain (lanes 3 and 4). Deletion ofthe cytoplasmic domain of a;, in 01,995 
cells did not show pp60c-src phosphorylation in anti-a, immunopre- 
cipitates. PP60C-Sre is seen in anti-a, immunoprecipitates of FG-cells, 
but OPN did not stimulate kinase activity (lanes 5 and 6). Lanes 7 and 
8, Immunoprecipitates of cell lysates (01~1018) with nonimmune se- 
rum. Lane 9, Recombinant UBI. The positions of pp60c-src and casein 
are indicated by arrows. 

vehicle-treated (lane 3) and OPN-treated (lane 4) (~“995 cells, 
but OPN did not stimulate casein phosphorylation. The 
phosphorylation of casein observed in a,995 transfected cells 
was due to kinases besides c-src in the immunoprecipitates. 
The phosphoprotein detected, and potentially auto-phos- 
phorylated in these experiments (Fig. 4, lanes 3 and 4), had 
approximate electrophoretic mobilities of 120 kDa, but its 
identity is unknown. In cell lysates from a human pancreatic 
carcinoma cell line, FG, which does not express c&but uses 
the integrin cQs as a vitronectin rece tor (37), the anti-o., 
immunoprecipitates revealed that pp kLc was associated 
with (Y, (lanes 5 and 6). OPN had inconsistent effects on 

PP 60c-src and kinase activity in FG cells, perhaps because basal 

PP60c-src activity associated with (Y, was higher in FG cells 
than M21 cells. 

The profiles of pp60c-src kinase activity in anti-a, immu- 
noprecipitates were corn ared with Western analysis per- 
formed with an anti-pp Lrc antibody (Fig. 5). In agree- 
ment with immune complex kinase assay results, Western 
analysis revealed association of pp60c-src with the (Y, chain 
of M21 cells (lanes 1 and 2) and FG cell (lanes 5 and 6). The 
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changes observed in OPN-stimulated M21 cells in immune 
complex kinase assays (Fig. 2, lanes 1 and 2) were quan- 
titatively and qualitatively similar to the Western analysis 
as shown in Fig. 5 (lanes 1 and 2). a,995 transfected M21-L 

Cells : M21 995 FG Src 
r-----l-- - 

1 2 3 4 5 6 7 MW (Kdl 
\  I  

-97 

Src -b 
IgG HC I, 

-68 

OP: - + - + - + 

IP with mab: LM142 

FIG. 5. Detection of pp60c-src association with the (Y, by immunoblot- 
ting. M21 (lanes 1 and 2), MZl/e,995 (lanes 3 and 41, and FG (lanes 
5 and 6) cells were treated with vehicle (-) or OPN, and cell lysates 
were prepared. Immunoprecipitation were performed in the antibody 
against the cr, chain and immune complexes were subjected to SDS- 
PAGE. Proteins were transferred to a polyvinyldifluoride membrane. 
PP60c-sm was detected by immunoblotting with monoclonal antibody 
directed to pp60C-sm. Protein bands were visualized by chemilumines- 
cence using the ECL-kit. IgG heavy chain, and pp60c-src are marked 
by arrows. 

FIG. 6. Localization of integrin, (Y,& 
nn60c-srr. and actin in M21 cells. M2i 
cells were grown on cover slips in RPMII 
1640 media with 10% FBS. Cells were 
fixed and stained with monoclonal an- 
tibodies for pp60c-src (B) and integrin 
(~~3s (E). The same sets of cells stained 
for ~~~~~~~~~ or integrin CX,& were 
stained for actin and are shown in C and 
F, respectively. The distribution of actin 
showed a peripheral staining closer to 
the plasma membrane where pp60c-sm 
(B) and integrin ~yv& (E) are localized. 
A and D, Cells stained with nonimmune 
serum which shows negative staining. 

cells did not show pp60c+rc association with the 01, chain 
(lanes 3 and 4). 

Immunofluorescent localization of integrin, pp60c-src, and 

actin in M21 cells 

The distribution of pp60c-s’c (Fig. 6B) and integrin IY& (Fig. 
6E) were examined in M21 cells plated on coverslips and 
grown in the presence of serum-containing media. The same 
coverslips stained for pp60c-s’c or integrin cy,& were also 
stained for actin as shown in Fi 
Much of the integrin cy& or pp 

li;d~-6;~C and F, respectively. 
immunoreactivity co- 

localized with the actin at the cell periphery. 

Coimmunoprecipitation of actin with integrin a,& 

To further investigate the apparent colocalization of C-SK 
and (~$a with the actin cytoskeleton, we determined whether 
immunoprecipitation of the integrin (Y,& coimmunoprecipi- 
tated actin. Lysates made from [35S]-methionine-labeled cells 
were immunoprecipitated with LM609 or an anti-p, anti- 
body. As expected, numerous proteins were found in asso- 
ciation with the integrin. The results revealed immunopre- 
cipitation of an integrin complex containing CX, and pa chains 
and coimmunoprecipitation of actin (Fig. 7, lanes 1 and 2). 
Coimmunoprecipitation of actin with the integrin (~,~a was 
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FIG. 7. Coimmunoprecipitation of actin with integrin (~~3s. M21 cells 
were metabolically labeled with [35S]-methionine, and cell lysates 
were made from vehicle-treated (-) or OPN-treated (+) cells. Immu- 
noprecipitations with anti-c& (lanes 1 and 2) or anti-p, antibody 
(lanes 3 and 4) or with nonimmune serum (lanes 5 and 6) are shown. 
Immune complexes were analyzed by SDS-PAGE and autoradiogra- 
phy. Antiintegrin 0~~3, immunoprecipitates revealed coimmunopre- 
cipitation of actin with the integrin LY,&. The actin band was not seen 
in anti+, immunoprecipitates. Positions of the integrin subunits and 
actin bands are indicated by arrows. 

reconfirmed by Western analysis of (Y,& immunoprecipi- 
tated with antiactin antibody (data not shown). Immuno- 
precipitation of the lysates with antibody against the pa chain 
brought down the p3 chain but less the (Y, chain compared 
with immunoprecipitation of the integrin complexes with 
LM609. The ratio of the intensity of the (Y, and pa chains 
bands (as shown by arrows) was relatively equal when im- 
munoprecipitated with anti-Q, (LM609). Actin was not 
detected in the anti-p, immunoprecipitates (Fig. 7, lanes 3 
and 4), although many other proteins in the precipitated 
complexes were similar to those observed with LM609. 

Immunolocalization of actin and pp60c-Src in vivo 

a, I995 cells 

To examine whether deletion of p-turn sequences of (Y, 
cytoplasmic domain alters colocalization of actin and 

PP60c-s’cf M21 melanoma cells (Fig. 8, A and B) and M21-L/ oV 
995 cells (Fig. 8, C and D) were double stained with rhoda- 
mine phalloidin for actin and anti-src antibody. The same sets 
of cells stained for actin and src are shown in Fig. 8. There was 
significant morphological differences between M21 cells (Fig. 
8, A and B) and M21-L / (Y, 995 cells (Fig. 8, C and D), but the 
colocalization of actin [A and C] and src [B and D] was 
unchanged. Colocalization was observed by yellow color 

formed by fusion of green pseudocolor images of pp60c-s’c 
with the red actin staining. 

Discussion 

In the present study, we have demonstrated that recom- 
binant human OPN, an extracellular matrix protein, stimu- 
lated pp60c-s’c kinase activity in M21 melanoma cells. These 
results are in agreement with studies demonstrating that 
soluble vitronectin-containing ligands triggered phosphor- 
ylation of proteins on (19,38,39) tyrosine in bovine pulmo- 
nary artery (37). It is known that one of the receptors for OPN 
is the (~$a integrin (19,38,39). A previous study has reported 
OPN stimulated phosphorylation and activity of integrin- 
associated pp60C-srC, as well as phosphorylation of pp125FAK 
and PLCy in avian osteoclasts (28). Binding of extracellular 
ligands to integrin receptors generates a cascade of biochem- 
ical events including changes in intracellular pH (40, 41); 
intracellular Ca2+ (42-44); transient increase in phosphory- 
lation of proteins (25,26,28,45-47), (reviewed in Refs. 48 and 
49); activation of protein kinases such as protein kinase C (50) 
and mitogen-activated protein kinase (51); and activation of 
gene expression (reviewed in Ref. 22). 

73-W PP60c-src family kinases become transiently activated 
when the receptor for PDGF is activated by ligand binding 
(52, 53). Unlike growth factor receptors, integrin receptors 
are not kinases. Cell surface rece tors have been shown to 
associate with members of the pp6 r c-src family such as lyn, hck, 

and fgr (54), the syk kinase (55), and the fes kinase (56). 
Tyrosine phosphorylation of pp’25FAK has been observed in 
several cell types upon integrin clusterin or adhesion to 
fibronectin (27,57, 58). Activation of ppiz5 B AK was observed 
in NIH3T3 fibroblast cells by transformation with pp60c-s’c 
(29). Adhesion of murine NIH3T3 fibroblasts to fibronectin 
promotes pp 60c-src and focal adhesion association and for- 
mation of an integrin-activated signaling complex (11). Phos- 
phorylation of pp125FAK by pp60c-s’c (or other family kinases) 
is an important step in the formation of an active signal 
complex (59). These and our results indicate that the non- 
receptor tyrosine kinase pp60c+rc phosphorylation is an early 
if not the initial response of integrin-mediated signal trans- 
duction and that activation of kinases elicited by integrin- 
mediated signaling is similar to growth-factor-mediated re- 
sponses. Members of the pp60c+‘c family of kinases have been 
shown to associate with the autophosphorylated PDGF or 
colony stimulating factor-l or interleukin-2 receptors (52, 
60-62) through SH2 domains. However, the scenario is more 
complex because the integrin receptors do not have the se- 
quences for the interaction of nonreceptor tyrosine kinases. 
Thus, their mechanism of integrin association and activation 
is unknown. 

The (Y, integrin has been suggested to play a role in the 
regulation of adhesive properties and invasiveness of carci- 
noma and melanoma cells (9, 63, 64). The (Y, integrin is a 
component of several cY,-containing integrins and shares 
structural motifs with other integrin a-subunits. A p-turn 
motif is found in several integrin o-subunits. Truncation of 
the p-turn motif in the cytoplasmic tail of (Y, (a,995) reduced 
ligand binding properties of the integrin (30). Deletion of the 
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FIG. 8. Immunolocalization of actin and pp 6oc-src in M21 and M21-Ucq995. M21 (Aand B) and M21-L/a,995 (C and D) cells were grown on cover 
slips in RPM1 1640 media with 10% FBS. Immunostaining for actin (A and C) and pp 6oc-sr‘ (B and D) was done on the same cells as shown. 
There was significant colocalization of actin and pp 6”c-src in both cell types despite the morphological differences observed in the M21-L a,995 
cells compared with the M21 cells. 

cytoplasmic tail of (Ye from the c& fibronectin receptor 
resulted in the loss of the ligand-binding function (65). Our 
studies with cr,995-truncation mutant transfected cells dem- 
onstrated that pp60c+‘c was no longer associated with (Y&. 
However, association of pp60c-s’c with (Y,& was observed in 
M21 cells as well as in human carcinoma cells (FG), which 
express (Y,& as a cell adhesion receptor. These analyses are 
in agreement with demonstrations by Chan et al. (66) that the 
cytoplasmic domain of the (Y, chain has an important role in 
post-ligand-binding events. Our observations with M21 and 
M21L/a,995 cells indicate that the (Y, cytoplasmic tail is 
required in mediating the association of the cytoskeletal/ 

PP 60c-src complex with the integrin. Coimmunoprecipitation 
of actin and pp60c-s’c with the integrin (Y,& demonstrates the 
association of the cytoskeletal/ pp60c-s’c complex with the 
integrin cy&. 

Demonstration of colocalization of actin/ pp60c-s’c and the 
integrin along the periphery of melanoma cells provides 
additional evidence for the above observations. In platelets, 
association of pp60c-s’c and GpIIb / IIIa with the cytoskeleton 
and tyrosine phosphorylation are related phenomena (67). 
GpIIb / IIIa complexes were associated with actin bundles in 
aggregated platelets (68, 69). pp60c-s’c could be an integral 
part of the so-called “integrin-rich cytoskeleton” as postu- 
lated by Kouns et al. (70). Immunofluorescent images of focal 
adhesions showed colocalization of integrins with the ter- 
mini of actin bundles and actin-binding proteins (71). The 
cytoplasmic tails of integrins have been shown to interact 
with talin, a-actinin, tensin, and other unidentified proteins 

to link the integrins to the actin cytoskeletal network (72,73). 
The protein(s) of the cytoskeletal structure to which pp60c-s’c 
directly binds is not yet known. Also, a more direct mode of 
attachment at focal adhesions is suggested by the observation 
that two different forms of the integrin with actin tightly 
bound have been isolated (74,75). In conclusion, our present 
study suggests that the cytoplasmic domain of the (Y, chain 
is essential for the association of the pp60c~s”/cytoskeleton 
complex. Furthermore, the CX,& ligand activates pp60c *I“ ki- 
nase associated with CX,& in the complex. 
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