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Abstract

Background: Fetal-placental development depends on a continuous and efficient supply of nutrients from maternal blood that are ac-
quired by exchange through the placenta. However, the placenta is a low permeability barrier, and effective transport of substances
depends on specific transport mechanisms. Active transport requires that ions or nutrients be moved against an electrical and/or concen-
tration gradient. In pigs, active transport of ions occurs across the chorioallantois placenta to produce an electrochemical gradient that
changes throughout gestation. The aim of this study was to utilize Ussing chambers to detect regulation of ion transport across the porcine
chorioallantois by a factor(s) within the uterine-placental environment of pigs. Methods: For the measurement of transchorioallantoic
voltage potential as an index of ion transport across the placenta, pieces of chorioallantoic tissue from Day 60 of gestation were mounted
into the cassettes of Ussing chambers, and treatments were added to the mucasal side of the tissue. Treatments included: (1) media incu-
bated with Day 60 chorioallantois (placenta-conditioned media); (2) osteopontin/secreted phosphoprotein 1 (OPN/SPP1) purified from
cow’s milk; (3) placenta-conditioned media from which OPN/SPP1 was removed; and (4) recombinant rat OPN with an intact RGD inte-
grin binding sequence or a mutated RAD sequence. Ouabain was added to both sides of the chamber. Immunofluorescence was utilized
to localize beta 3 integrin, aquaporin 8 and OPN/SPP1 in porcine placental tissues, and OPN/SPP1 within porcine lung, kidney and small
intestine. Results: Day 60 chorioallantoic membranes had greater transepithelial voltage in the presence of porcine placenta-conditioned
media, indicating that a molecule(s) released from the placenta increased ion transport across the placenta. OPN/SPP1 purified from
cow’s milk increased ion transport across the placenta. When OPN/SPP1 was removed from placenta-conditioned media, ion transport
across the placenta did not increase. Recombinant rat OPN/SPP1 with a mutated RGD sequence that does not bind integrins (RAD) did
not increase ion transport across the placenta. Ouabain, an inhibiter of the sodium-potassium ion pump, ablated ion transport across the
placenta. Conclusions: The present study documents a novel pericellular matrix role for OPN/SPP1 to bind integrins and increase ion
transport across the porcine chorioallantoic placenta.
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1. Introduction tation that increases 4-fold by days 45-67 [5], and is main-
tained through the 107th day of gestation [4]. This electrical
potential across the porcine chorioallantois is likely main-
tained by a Na*t/K™ ATPase pump. Na™ levels in allantoic
fluid are lower, and KT levels in allantoic fluid are higher
than expected for equilibrium, indicating that these ions are
actively transported [6,7]. Export of Na™* from the cell pro-
vides a concentration gradient that drives active transport
by several membrane proteins to import glucose, fructose,
amino acids and other nutrients through the cell. As Na™
flows back through cells down the concentration gradient
formed by the Nat/K* ATPase pump, ions, water, glu-
cose, amino acids and other nutrients follow. The net result
is increased allantoic fluid volume and total allantoic fluid
nutrients, including amino acids [8], glucose, and fructose
during pregnancy in pigs [7].

Fetal growth and development depends on a continu-
ous and efficient supply of nutrients from maternal blood.
Most nutrients required by the fetus are acquired by ex-
change through the placenta [1,2]. However, the placenta
is a low permeability barrier, and the effective transport of
nutrients and substrates for fetal growth depends less on in-
trinsic diffusion, and more on a host of specific transport
mechanisms [1]. As such, the placenta resembles the in-
testinal mucosa or renal epithelium [2]. Active transport
requires that ions or nutrients be moved against an electri-
cal and/or concentration gradient.

In pigs, active transport of ions occurs across the
chorioallantois to produce an electrochemical gradient (po-
tential difference) that changes throughout gestation [3,
4]. Isolated chorioallantoic membranes mounted in Ussing
chambers produce an electrical potential at 20 days of ges-
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Nutrients that pass from the uterus through the chorion
can directly access allantoic vasculature for transport to the
fetus, but nutrients can also diffuse across the allantoic mes-
enchyme for active transport across the allantoic epithelium
into the allantoic sac. Allantoic fluid is rich in electrolytes,
sugars, amino acids, and proteins, and serves as a nutrient
reservoir. Because the allantoic epithelium is derived from
the hindgut and is, therefore, absorptive in nature, these
stored nutrients can be transported back across this epithe-
lium to the allantoic vasculature for transport to the fetus.
The mechanistic trigger(s) for these active transport events
across the maternal and fetal sides of the chorioallantois is
unknown. The regulation of transport may be affected by
intrinsic mechanisms, in which intracellular proteins inter-
act with transporters, or by extracellular influences such as
effectors and their receptors in the chorionic and allantoic
membranes [2].

Active transport requires that ions or nutrients be
moved against an electrical and/or concentration gradient.
Ussing chambers are a physiological tool to distinguish be-
tween active transport of ions, nutrients and drugs across
epithelia and passive movement of ions through paracel-
lular pathways [9]. This method utilizes short-term tissue
culture that enables precise measurement of electrical and
transport parameters of intact, polarized epithelia in a phys-
iological context [9,10]. The aim of this study was to uti-
lize these chambers to detect regulation of ion transport
across the porcine chorioallantois placenta by a factor(s)
within the uterine-placental environment of pigs. Osteo-
pontin (OPN)/Secreted Phosphoprotein 1 (SPP1) is a se-
creted matricellular effector molecule perfectly localized to
bind integrin receptors on chorion and allantoic epithelium
to increase ion and nutrient transport, e.g., glucose, fructose
and amino acids, across the pig placenta [11-15].

2. Materials and Methods

2.1 Animals, Tissue Collection, and Placental Tissue
Incubation

Briefly, seven gilts (F1 crosses of Yorkshire x Lan-
drace sows and Duroc x Hampshire boars) had free ac-
cess to a corn-soybean meal-based diet (2.7 kg/day feed
intake) beginning at 6 months of age until 8 weeks be-
fore breeding at 8 months of age [16]. Gilts were checked
daily for estrus with fertile boars and bred at the onset of
the second estrus and 12 h later. On Day 60 of gesta-
tion, gilts were anesthetized and then hysterectomized to
obtain the placentae and endometria. Several 1-1.5 cm sec-
tions of intact uterine-placental interface from the middle
of each horn were (1) embedded in OCT compound, frozen
in liquid nitrogen, and stored at —80 °C; and (2) fixed in
4% paraformaldehyde and paraffin-embedded. In addition,
portions of fresh placenta were (1) placed in 20 mL of cell
culture media (DMEM/F12 medium supplemented with 5%
fetal bovine serum (FBS), 1% penicillin/streptomycin (PS)
and 0.10 U/mL insulin; 20 g of tissue), and incubated at

25 °C for 2 h to obtain placenta-conditioned media; or (2)
mounted into the cassettes of Ussing chambers (1 cm? of
tissue) [17,18]. Lung, kidney and small intestinal tissues
were obtained from a laboratory archive from 5 Day 13
cyclic gilts. Tissue sections (~1 cm thick) were fixed in
fresh 4% paraformaldehyde in PBS (pH 7.2) and embed-
ded in Paraplast-Plus (Oxford Laboratory, St. Louis, MO,
USA).

2.2 Ussing Chambers for Measuring Transchorioallantoic
Voltage Potential

For the measurement of transchorioallantoic voltage
potential as an index of ion flux across the placenta [9],
pieces of chorioallantoic placental tissue (1 cm?) from Day
60 of gestation were mounted into the cassettes of Ussing
chambers (Physiologic Instruments, San Diego, CA, USA)
in 5 mL Krebs buffer. Both sides of the chambers con-
tained the same volume of Krebs biocarbonate buffer (pH
7.4, 37 °C) and were gassed with 95% O5 and 5% CO-
continuously. Krebs bicarbonate buffer contained 119 mM
NaCl, 4.8 mM KCl, 2.5 mM CaCl,, 1.2 mM MgSOy, 1.2
mM KHsPOy, 25 mM NaHCOg3, 20 mM Hepes, and 5 mM
glucose [16—18]. The following was added to the mucosal
side of the tissue: (1) placenta-conditioned media (placen-
tae from 7 pigs, 0.2 mL placenta-conditioned media, in-
cubation times of 0, 5, 10 and 20 min); or (2) OPN/SPP1
purified from cow’s milk as previously described [13,19]
(4 different placentae from 1 pig, concentrations of 0, 4,
8, 12 and 16 pg/mL, incubation time of 15 min); or (3)
placenta-conditioned media in which OPN/SPP1 was re-
moved (4 different placentae from 1 pig, 0.2 mL placenta-
conditioned media lacking OPN/SPP1, incubation times of
0, 5, 10 and 20 min); or (4) recombinant rat OPN with an
intact RGD (Arginine-Glycine-Aspartate) integrin binding
sequence or a mutated RAD (Arginine-Alanine-Aspartate)
sequence that does not bind OPN/SPP1 [15] (for RGD, 4
different placenta from 1 pig (20 ug/mL; for RAD, 4 dif-
ferent placentae from 1 pig, 20 pg/mL, incubation times of
0,2,5,10,12, 15 and 20 min). Ouabain (100 M), an inhib-
iter of the sodium-potassium ion pump, was added to both
the mucosal and serosal sides of the tissue for each experi-
ment.

2.3 Immunoprecipitation and Western Blotting

Immunoprecipitation of OPN/SPP1 from placenta-
conditioned media was performed by combining placenta-
conditioned media with Protein A-Sepharose (Pierce,
Rockford, IL, USA), 0.5% Triton X-100 in TBS, and
a pool of two rabbit antibodies directed against hu-
man OPN/SPP1 (LF-123 and LF-124) [20] and a rab-
bit anti-bovine OPN/SPP1 IgG (generously provided by
Dr. George J. Killian) [21], or irrelevant rabbit IgG. This
mixture was rotated gently overnight at 4 °C, centrifuged
briefly to pack down the beads with antibodies bound
to OPN/SPP1, and the supernatant containing placenta-
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conditioned media depleted, or not depleted (rabbit IgG),
of OPN/SPP1 harvested [13]. The concentrations of pro-
tein in placenta-conditioned media subjected to immuno-
precipitation with with rabbit IgG and placenta-conditioned
media subjected to immunoprecipitation with antibodies
specific for OPN/SPP1were determined using a Bradford
protein assay (Bio-Rad Laboratories, Hercules, CA, USA)
with BSA as the standard. Western blotting was per-
formed as previously described [22]. Briefly, proteins
in placenta-conditioned media (20 ug) were denatured in
Laemmli buffer, separated using 10% (total monomer) 1D-
SDS-PAGE, and transferred to nitrocellulose. Blots were
blocked overnight in TBST (20 mM Tris [pH 7.5], 137 mM
NacCl, 0.05% Tween-20) containing 5% dried milk. Blots
were washed 3 times for 5 min each in TBST and then in-
cubated overnight, rocking at 4 °C in a cocktail contain-
ing rabbit polyclonal antibodies against recombinant human
OPN/SPP1 (LF-123 and LF-124; 5 pg/mL) in TBST con-
taining 2% dried milk. Blots were then washed 3 times for
10 min each in TBST and placed in goat anti-rabbit IgG-
horseradish peroxidase conjugate (1/15,000 dilution KPL,
Bethesda, MD, USA) for 1 h at room temperature while
rocking. Blots were washed 3 times for 10 min each in
TBST, and immunoreactive proteins were detected using
enhanced chemiluminescence (Amersham Life Sciences,
Arlington Heights, Rochester, NY, USA).

2.4 Immunofluorescence Analyses

For immunofluorescence staining, primary antibodies
included rabbit anti-beta 3 integrin (ITGB3) IgG (AB1932;
EMD Millipore, Burlington, MA, USA; 1/1000 dilution
for OCT-embedded tissue sections), mouse anti-AQPS8
IgG (Sigma Aldrich, St. Louis, MO, USA; 1/200 dilu-
tion for paraffin-embedded tissue sections), rabbit anti-
OPN/SPP1 IgG (AB10910; EMD Millipore; 1/1000 di-
Iution for OCT-embedded tissue sections, and 1/200 di-
lution for paraffin-embedded tissue sections, boiling cit-
rate antigen retrieval for paraffin-embedded tissue sec-
tions), and mouse anti-E-cadherin monoclonal IgG (BD
Biosciences; San Jose, CA, USA; 610182; 1/200 dilution
for paraffin-embedded tissue sections, boiling citrate anti-
gen retrieval). The secondary antibodies included goat anti-
rabbit-Alexa Fluor 488-conjugated IgG, goat anti-rabbit
Alexa Fluor 594-conjugated IgG, and goat anti-mouse-
Alexa Fluor 594-conjugated IgG (Life Technologies, Grand
Island, NY, USA; 1/250 dilution). In addition an FITC-
conjugated lectin from Dolichos biflorus (Sigma-Aldrich;
L9142-1MG; 1/200 dilution) was used to co-localize with
OPN/SPP1 immunofluorescence.

Immunostaining of frozen tissue sections was per-
formed to localize ITGB3 to placental areolae and
OPN/SPP1 to allantoic epithelium as previously described
[23]. Briefly, frozen sections (~10 pm) of intact uterus
and placenta were cut with a cryostat (Hacker-BrightOTF,
Hacker Instruments, Inc., Winnsboro, SC, USA) and
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mounted on Superfrost/Plus microscope slides (Fisher Sci-
entific, Pittsburgh, PA, USA). Sections were fixed in—20 °C
methanol for 10 min, permeabilized at room temperature
with 0.3% Tween-20 in 0.02 M PBS (rinse solution), and
blocked in 10% normal goat serum for 1 h at room temper-
ature. Sections were then dipped in rinse solution at room
temperature and incubated overnight at 4 °C with each pri-
mary antibody, and detected with fluorescein-conjugated
secondary antibody (goat anti-rabbit-Alexa Fluor 488-
conjugated IgG for detection of ITGB3) or (goat anti-rabbit
Alexa Fluor 594-conjugated IgG and FITC-conjugated
lectin from Dolichos biflorus) [24]. Slides were then over-
laid with a cover-glass and Prolong antifade mounting
reagent containing DAPI (Molecular Probes).

Immunostaining of paraffin-embedded tissue sections
was performed to localize aquaporin 8 (AQPS) to placental
areolae as previously described [25]. Briefly, sections (5
pm thick) were deparaffinized and rehydrated in an alco-
hol gradient. Antigen retrieval was performed using boil-
ing citrate. Sections were then blocked in 10% normal goat
serum for 1 h at room temperature. Antigen retrieval was
performed using boiling citrate. Tissue sections were then
blocked in 10% normal goat serum for 1 h at room tem-
perature and incubated overnight at 4 °C with the primary
antibody. Immunoreactive proteins were detected using
goat anti mouse Alexa Fluor 594-conjugated secondary an-
tibody for 1 h at room temperature, tissue sections were then
washed three times for 5 min/wash in PBS, counterstained
with Prolong Gold Antifade reagent containing DAPI, and
coverslipped.

Dual immunofluorescence staining of OPN/SPP1 and
E-cadherin proteins in paraffin-embedded tissue sections
followed the same procedures as described for normal im-
munofluorescence staining except that the two primary an-
tibodies were added simultaneously on the first day and
the two secondary antibodies (goat anti-rabbit-Alexa Fluor
488-conjugated IgG and goat anti-mouse-Alexa Fluor 594-
conjugated IgG) were added simultaneously on the second
day [25]. Images were taken using an Axioplan 2 micro-
scope (Carl Zeiss, Thornwood, NY, USA) interfaced with
an Axioplan HR digital camera.

2.5 Statistics

All statistical analyses were performed using Graph-
Pad Prism (GraphPad Software, La Jolla, CA, USA). Data
for the effect of conditioned media and OPN/SPP1 on ion
transport were subjected to one-way ANOVA followed by
a post-hoc Tuckey analysis. For comparison of two treat-
ment groups over time, a two-way ANOVA with Bonferroni
multiple comparison test was used. All data are presented
as mean = standard errors of the mean (SEM) with signifi-
cance set at p < 0.05.
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3. Results

Day 60 chorioallantoic membranes were placed
into Ussing chamber cassettes and 0.2 mL of placenta-
conditioned media added to the mucosal side of the tissue.
A statistically significant increase in the transepithelial volt-
age, as an index of ion transport across the placenta, was
observed between 0 and 5 min after the addition of 0.2 mL
placental solution to the “mucosal side” of the using cham-
ber, and this increase was maintained through the remain-
ing 15 min (Fig. 1). When 100 M ouabain, an inhibiter of
the sodium-potassium ion pump, was added to both the mu-
cosal and serosal sides of the tissue, transepithelial voltage
was nearly eliminated (data not shown in Fig. 1, Fig. 2A,B
(Ref. [11]), but this is illustrated in Fig. 2C).
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Fig. 1. Porcine chorioallantois releases a factor(s) that in-
creases ion transport across the porcine placenta. Addition of
0.2 mL of placenta-conditioned media to the mucosal side of the
Ussing chamber increased transepithelial voltage across Day 60
chorioallantois by 10 min of incubation. Values are £ SEM, n
=7 gilts. In the absence of placental solution, ion transport was

constant for 20 min.

Day 60 chorioallantoic membranes were placed into
Ussing chamber cassettes and OPN/SPP1 purified from
cow’s milk was added to the mucosal side of the tissue.
A statistically signifant increase in the transepithelial volt-
age was observed in response to treatment with 4 pg/mL
bovine OPN/SPP1, and this increase was maintained with
doses of 8, 12 and 16 pg/mL bovine OPN/SPP1 (Fig. 2A).
Fig. 2B demonstrates Western blotting to detect OPN/SPP1
in placenta-conditioned media. Immunoreactive proteins
of about 70, 45 and 25 kDA were detected in placenta-
conditioned media immunoprecipitated with an irrelevant
rabbit IgG, similar to previously reported for the pig us-
ing these antibodies [11], however these immunoreactive
proteins were greatly decreased in placenta-conditioned

Osteopontin (OPN)/Secreted Phosphoprotein 1 (SPP1) Increases
lon Transport Across the Porcine Placenta
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Fig. 2. Osteopontin (OPN)/Secreted Phosphoprotein 1 (SPP1)
increases ion transport across the porcine placenta. (A) Effect
of addition of OPN/SPP1 purified from bovine milk to the mu-
cosal side of a Ussing chamber. OPN/SPP1 from bovine milk in-
creased transepithelial voltage across Day 60 chorioallantois in a
dose dependent manner. (B) Western blot demonstrating removal
of OPN/SPP1 from placenta-conditioned media via immunopre-
cipitation. Rabbit IgG controls for these antibodies in porcine tis-
sue have previously been published [11]. Addition of placenta-
conditioned media with OPN/SPP1 removed (immunoprecipita-
tion with anti-OPN) to the mucosal side of a Ussing chamber did
not increase transepithelial voltage across Day 60 chorioallantois.
(C) Effect of addition of recombinant rat OPN/SPP1 with an intact
integrin binding RGD sequence and recombinant rat OPN/SPP1
with an integrin binding sequence mutated to RAD to the mucosal
side of a Ussing chamber. Addition of OPN/SPP1 containing an
RAD sequence did not increase transepithelial voltage across Day
60 chorioallantois. 100 M of ouabain were added to both sides
of the Ussing chamber to demonstrate changes in transepithelial
voltage are dependent on an active sodium-potassium ion pump.
Values are means & SEM, n = 4 different placentae.
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Beta 3 Integrin/ITGB3 and Aquaporin 8/AQP8 Protein in Areolae

Areola

Alantoic
Epithelium

LE ———a
anti Beta 3 Integrin/ITGB3

Osteopontin (OPN)/Secreted Phosphoprotein 1 (SPP1) Protein in the Allantoic Epithelium

Alantoic
Epithelium

Co-Localization

DBA Lectin

Fig. 3. Immunofluorescence (IF) staining for proteins in the porcine placenta. (A) IF localization of the beta 3 integrin subunit
(ITGB3) to the tall columnar cells of a Day 60 chorionic areola. (B) IF localization of aquaporin 8 (AQP8) to the tall columnar cells of a
Day 60 chorionic areola, as well as to the allantoic epithelium. (C) IF co-localization of OPN/SPP1 and DBA lectin to the apical surface
of allantoic epithelial cells on Day 60 of gestation. LE, uterine luminal epithelium; GE, uterine glandular epithelium. Rabbit and mouse
IgG controls are shown in Fig. 4. Width of fields is 895 pm.
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media immunoprecipitated by anti-OPN/SPP1 IgGs, illus-
trating successful removal of OPN/SPP1 from placenta-
conditioned media through immunoprecipitation. When
Day 60 chorioallantoic membranes were placed into Uss-
ing chamber cassettes and placenta-conditioned media in
which OPN/SPP1 was removed was added to the mucosal
side of the tissue, no increase in transepithelial voltage
across the placenta was observed (Fig. 2B). Similar to re-
sults shown in Fig. 1, placenta-conditioned media contain-
ing OPN/SPP1 increased transepithelial voltage within 5
min of incubation. A further increase was observed at 10
min and this was maintained through 20 min of incubation
(Fig. 2B). When Day 60 chorioallantoic membranes were
placed into Ussing chamber cassettes and recombinant rat
OPN with an intact RGD integrin binding sequence or a
mutated RAD sequence that does not bind OPN/SPP1 were
added to the mucosal side of the tissue, OPN/SPP1 with an
RGD sequence significantly increased transepithelial volt-
age across the placenta between 0 and 10 min of incubation.
A further increase was observed between 10 and 12 min,
and again between 15 and 20 min of incubation (Fig. 2C).
OPN/SPP1 with an RAD sequence did not increase transep-
ithelial voltage as an index of ion transport across the pla-
centa (Fig. 2C). Addition of ouabain, an inhibiter of the
sodium-potassium ion pump, resulted in near elimination
of transepithelial voltage (Fig. 2C).

Chorionic areolac are composed of specialized tall
columnar epithelial cells that are not closely apposed to
the uterine luminal epithelium (LE), and form a pouch at
the openings of the mouths of uterine glands to receive
the secretions of uterine glandular epithelium (GE). Are-
olae transport glandular secretions across the placenta and
into the fetal-placental circulation [26]. ITGB3 can non-
covalently link to the alpha v integrin subunit (ITGA3) to
form an integrin receptor that binds to OPN/SPP1 and has
been demonstrated to engage OPN/SPP1 on porcine uter-
ine LE and conceptus trophectoderm cells [13,14]. Aqua-
porins (AQPs) are water-selective channels that function
as pores for water transport through the plasma membrane
[27]. Fig. 3A,B demonstrate expression of ITGB3 and
AQPS protein at the apical surface of the tall columnar cells
ofporcine areolae on Day 60 of gestation. In addition AQPS
is expressed at the apical surface of uterine GE and allantoic
epithelial cells (Fig. 3B).

The allantoic epithelium lines the allantoic cavity and
is a tissue conduit for transport of ions, water and nutrients
from the allantois of the placenta to the allantoic cavity for
storage in allantoic fluid [26]. Fig. 3C demonstrates the
localization of OPN/SPP1 protein to the allantoic epithe-
lium, and this expression is at the apical surface of the allan-
toic epithelium because OPN/SPP1 expression co-localizes
with DBA lectin, which is only expressed at the apical sur-
face of epithelial cells (Fig. 3C).

Results strongly suggest that OPN/SPP1 mediates ion
transport across the porcine choriollantois. The porcine pla-

centa, indeed all placentae, are highly adapted for trans-
port of ions, water, nutrients, etc. across the tissue, and
OPN/SPP1 is expressed by porcine uterine LE and GE
[11,12]. Therefore we examined the cell-type specific ex-
pression of OPN/SPP1 in other tissues known to be adapted
for transport including the lung, kidney and small intestine.
Within the lung, OPN/SPP1 protein was localized to a small
subset of bronchioles with a punctate pattern of immunos-
taining (Fig. 4A). In addition OPN/SPP1 protein was de-
tected in the bronchial cartilage, which is to be expected,
and suggests effective immunostaining (Fig. 4A). Within
the kidney, OPN/SPP1 protein was localized to the collect-
ing ducts of both the cortical medullary rays and the renal
medulla (Fig. 4B). Within the small intestine OPN/SPP1
protein was localized to a subpopulation of goblet cells
(Fig. 4C).

4. Discussion

Prevailing dogma asserts that OPN/SPP1 binds inte-
grins to mediate attachment and migration of placental ep-
ithelia during implantation and placentation [28—31]. How-
ever, in the present study we have documented a novel peri-
cellular matrix role for OPN/SPP1 as it binds integrins to in-
crease ion transport across the porcine chorioallantoic pla-
centa. Day 60 chorioallantoic membranes from pigs were
placed in Ussing chambers and the transepithelial voltage
potential was measured as an index of ion flux across the
placenta. Addition of Day 60 placenta-conditioned me-
dia doubled the transepithelial voltage, indicating that a
molecule(s) released from the pig placenta increases ion
transport across the placenta. We tested the ability of
OPN/SPP1 to affect ion transport. OPN/SPP1 purified from
cow’s milk increased ion transport, and maximum transep-
ithelial voltage plateaued at levels similar to those for
placenta-conditioned media. To confirm that OPN/SPP1
is the factor in placenta-conditioned media responsible
for increasing ion transport, we removed OPN/SPP1 from
placenta-conditioned media by immunoprecipitation us-
ing a mixture of antibodies developed against OPN/SPP1.
We also performed immunoprecipitation using an irrele-
vant rabbit IgG. Placenta-conditioned media depletion of
OPN/SPP1 did not stimulate ion transport across the pla-
centa. To confirm that OPN/SPP1 binds integrins to medi-
ate ion transport, Day 60 chorioallantoic membranes from
pigs were placed into Ussing chambers, recombinant rat
OPN with an intact RGD integrin binding sequence was
added to the mucosal side of the chamber, and transep-
ithelial voltage and current were measured. Addition of
increasing amounts of rat OPN/SPP1 with an intact RGD
dose-dependently increased ion transport across the pla-
centa. When the same experiment was performed using re-
combinant rat OPN/SPP1 with a mutated RGD sequence
that does not bind integrins (RAD), no increase in placental
ion transport was observed.
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Osteopontin(OPN)/Secreted Phosphoprotein 1 (SPP1) Protein in the Porcine Lung
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Osteopontin (OPN)/Secreted Phosphoprotein 1 (SPP1) Protein Expression in the Kidney

Medullary Rays

anti OPN/SPP1 Renal Cortex
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Renal Medulla
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anti OPN/SPP1__ a
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Fig. 4. Immunofluorescence (IF) staining for OPN/SPP1 protein. (A) IF localized OPN/SPP1 protein to some bronchioles and the
cartilage of bronchi within the lung. (B) IF localized OPN/SPP1 protein to collecting ducts within the kidney. (C) IF localized OPN/SPP1
protein to some goblet cellswithin the small intestine. Rabbit and mouse IgG negative controls are shown. Width of fields for overview
image is 4120 pm. Width of fields for microscopic images at 10X, 20X, 40X, and 63X is 895, 448, 224, and 142 pm, respectively.

OPN/SPP1 is highly expressed within the intrauterine
environment of pregnant pigs [32]. During pregnancy, in
pigs, OPN/SPP1 mRNA is induced initially by estrogens
secreted by the conceptus (embryo and associated placen-
tal membranes) in discrete regions of the uterine LE jux-
taposed to the conceptus during the apposition and adhe-
sion phases of implantation. OPN/SPP1 mRNA expands
to the entire uterine LE by Day 20 when firm adhesion of
conceptus trophectoderm to uterine LE occurs [11,12], and
OPN/SPP1 protein remains abundant along the apical sur-
faces of uterine LE and trophectoderm in all areas of di-
rect contact throughout pregnancy. In addition, there are
specialized cells of the chorionic areolae at the openings of
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the mouths of uterine glands. Indeed, the open space be-
tween the chorionic areolae and uterine GE is filled with
secretions of the uterine GE collectively termed histotroph
[33]. The areolae transport secretions of uterine GE such
as macromolecules, particularly proteins, across the pla-
centa. Total uterine OPN/SPP1 mRNA increases 20-fold
between Days 25 and 85 of gestation in the uterine GE
[11], which results in accumulation of OPN/SPP1 in allan-
toic fluid (unpublished results). Therefore, large amounts
of soluble OPN/SPP1 are present at both the maternal and
fetal surfaces of the chorioallantois. OPN/SPP1 expression
in uterine GE during the later stages of pregnancy is sim-
ilar in sheep [34], and a microarray study in rats showed
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Fig. 5. Working model for OPN/SPP1 mediated ion transport across the porcine placenta. In the pig, for an ion to transport from the

mucosal to the serosal side of the chorioallantois it must pass through the cytoplasm and basement membrane of the chorionic epithelial

cells of the folded inter-areolar regions of placentation and areolae, across the remaining allantoic stroma, and through the basement

membrane and cytoplasm of the allantoic epithelial cells [26]. OPN/SPP1 is highly expressed by both the uterine LE and GE of pigs

which potentially supply secreted OPN/SPP1 protein to the to areolar and inter-areolar chorionic epithelium [11]. OPN/SPP1 has also

been localized within the porcine allantoic stroma [15], and Fig. 3C demonstrates OPN/SPP1 expression in the allantoic epithelium.

Multiple integrin subunits that could assemble into integrin receptors that bind OPN/SPP1 have been localized to the apical surface

of inter-areolar chorionic epithelium [14], and Fig. 3A demonstrates beta 3 integrin (ITGB3) subunit expression in areolar chorionic

epithelial cells. Transporters have been localized to key tissues within the chorion of pigs including SLC2A3 and SLC2AS8 [24,41], and

Fig. 3B demonstrates aquaporin 8 (AQP&) expression in the uterine GE, areolar chorionic epithelium and allantoic epithelium.

that OPN/SPP1 expression increased 60-fold between Day
0 of the estrous cycle and Day 20 of pregnancy [35], likely
within the decidua because OPN is expressed by uterine
natural killer cells of the mouse decidua [24]. In humans,
OPN/SPP1 is expressed by the cytotrophoblasts of chori-
onic villi, and its av/33 (ITGAV/ITGB3) receptor is present
on the syncytiotrophoblasts [36,37]. Secretions of uterine
GE in domestic animals, secretions of decidua in rodents
and primates, and the trophoblasts of humans are critical
to embryo/fetal growth and development [38—40]. We have
evidence that an OPN/SPP1-based nutrient transport system

is present in the pig chorioallantois, as illustrated in Fig. 5
(Ref. [11,14,15,24,26,41]).

Integrins are transmembrane proteins composed of «
and [ subunits that are non-covalently bound to each other.
Their name reflects roles to integrate signals directed from
the outside to the inside of cells and vice versa [42]. The
N-terminal domain of integrins is located outside the cell
and is involved in binding integrins to extracellular ma-
trix (ECM) proteins primarily via their Arginine-Glycine-
Aspartate (RGD) amino acid motif. The cytoplasmic tail of
the S subunit allows the integrin receptor to interact with
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the actin cytoskeleton and induce an abundance of different
signaling molecules, collectively termed integrin adhesion
complexes, which serve as signaling centers from which
numerous intracellular pathways can regulate cell growth,
proliferation, survival, adhesion, differentiation, migration,
and gene expression [43,44]. There are multiple integrin
receptors expressed on the conceptus trophectoderm and
uterine LE of pigs, humans and other species [23,45-49]
that serve as intermediaries between the placenta and uterus
by interacting with ECM molecules like OPN/SPP1 [13—
15,46,48,50].

Integrins mediate cell-cell and cell-ECM adhesion
to regulate cell motility, proliferation and differentiation
[42,47]. These events are often accompanied by changes
in ion flow. Integrins form macromolecular complexes
that localize ion channels to the plasma membrane [51,52].
Integrins regulate K™ channels in erythroleukemic, neu-
roblastoma, and immune cells [53-55], and Ca?t chan-
nels in endothelial, fibroblastic and vascular smooth mus-
cle cells [51,56—60]. However, ion transport across epithe-
lia in general, and chorion in particular, has not previously
been linked to integrin activation. Further, although other
integrin-binding ECM proteins, including fibronectin and
vitronectin [53,55], affect ion transport, this is the first re-
port of OPN/SPP1 in this role. Further studies are warranted
to determine whether L-arginine, which is known to en-
hance placental ion transport [61] and placental global gene
expression [62,63] in gestating gilts, may regulate the ex-
pression and function of OPN/SPP1 in the uterine GE and
LE and other tissues.

5. Conclusions

We identified a here-to-fore unknown role of
OPN/SPP1 and integrins at the uterine-placental interface
of pregnancy in enhancing placental ion transport. We
hypothesize that in pigs OPN/SPP1 is synthesized and
secreted from uterine GE and LE, binds to integrins on
the chorionic epithelium and activates ion transporters
that alter the magnitude of and/or cellular localization of
nutrient transporters and/or the activity of those trans-
porters to increase nutrient transport across the chorionic
and allantoic membranes to the placental vasculature and
allantoic cavity for transfer to the embryo/fetus (Fig. 5).
This novel finding of our current study may provide key
insight into why OPN/SPP1 is highly expressed at sites of
active nutrient transport in a variety of placentae including
the uterine-placental interface of species with epithelio-
chorial and synepitheliochorial placentae, uterine decidua
of rodents, and cytotrophoblasts of human chorionic villi.
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