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Abstract

A great achievement of modern medicine is the increased lifespan of the human 
population. Unfortunately, the comorbidities of aging have created a large eco-
nomic and health burden on society. Osteoporosis is the most prevalent age-related 
disease. It is characterized by uncoupled bone resorption that leads to low bone 
mass, compromised microarchitecture and structural deterioration that increases 
the likelihood of fracture with minimal trauma, known as fragility fractures. These 
fractures lead to disproportionally high mortality rate and a drastic decline in qual-
ity of life for those affected. While estrogen loss is one known trigger of osteopo-
rosis, a number of recent studies have shown that osteoporosis is a multifactorial 
condition in both humans and rodent models. The presence or absence of certain 
factors are likely to determine which subset of the population develop osteoporo-
sis. In this chapter, we review the factors that contribute to osteoporosis with an 
emphasis on its multifactorial nature and the therapeutic consequences.

Keywords: osteoporosis, postmenopausal osteoporosis, aging, mineral homeostasis, 
gut microbiome, metabolism, osteoimmunology, therapy, T-cells

1. Introduction

Osteoporosis (OP) is the most prevalent metabolic bone disease that affects 
half the women and one third of men, typically, in the sixth and seventh decade of 
life [1, 2]. OP is characterized by uncoupled bone resorption that leads to low bone 
mass, compromised microarchitecture and structural deterioration that increases 
the likelihood of fractures with minimal trauma, known as fragility fractures. 
These fractures lead to disproportionally high mortality rate and a drastic decline in 
 quality of life for those affected.

OP is diagnosed by an X-ray (typically by dual energy X-ray absorptiometry or 
DEXA) scan to measure bone mineral density (BMD) [3]. Two scores are returned: 
a Z-score and a T-score [4]. The T-score is normalized BMD by sex and age, whereas 
the Z-score also accounts for weight and ethnicity. Both scores report standard 
deviations (σ) of BMD from mean. A T-score of −1 is normal (within 1 σ of mean), 
whereas less than −1 to −2.5 indicates osteopenia. A patient with T-scores less than 
−2.5 is considered osteoporotic. Additional factors to BMD such as smoking, family 
history of fractures, the diagnosis of rheumatoid arthritis, alcohol consumption 
and glucocorticoid use many be considered to predict the probability of fracture 
using a fracture risk assessment tool score or FRAX score [5, 6].
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The skeletal system has several physiological functions. First, it provides 
mechanical support that allows for locomotion. Bone is weight bearing and serves as 
an anchor for muscle. Osteocytes are bone matrix embedded mechanosensory cells, 
that promote bone loss or gain (adaptation) to loads placed on the bone (i.e., Wolff ’s 
law). The marrow space within long bones serves as the primary site of hemato-
poiesis in an adult. When hematopoietic-derived cells are depleted in the periphery 
(due to inflammation, for instance) there is demand on the bone marrow [7, 8] to 
release both progenitors and differentiated cells into circulation [9, 10]. Bone also 
serves as the primary store for calcium and phosphate, and thus is under control of 
hormones produced by the parathyroid gland (parathyroid hormone or PTH and 
calcitonin) and kidneys (fibroblast growth factor 23 or FGF23). Vitamin D facilitate 
calcium absorption from the diet while PTH, calcitonin and FGF23 regulate serum 
calcium levels and responds to different physiological needs. In recent years, there 
is growing appreciation of the diverse roles the skeletal system plays in a person’s 
health, including whole body metabolism, immune regulation and neurocognitive 
functions [11], in addition to the previously recognized roles of mechanical support 
and mineral homeostasis. Based on the function of the skeleton, OP can result from 
dysregulation in one or more factors that we will discuss in detail below (Figure 1).

2. Bone biology

Bone remodeling is a coordinated process where bone resorption and bone forma-
tion occur at the same location throughout life to repair microfractures and maintain 
bone homeostasis. Imbalances in bone remodeling underscore the pathophysiology 

Figure 1. 
The multifactorial nature of osteoporosis (OP). Osteoporosis is most commonly associated both aging and 
estrogen loss. This figure summarizes factors that affect bone health.
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of OP. There are three major cell types involved in bone remodeling: bone resorbing 
osteoclasts, bone forming osteoblasts, and osteocytes. Osteoclasts (OC) are multi-
nucleated, bone-specialized macrophages, whose differentiation depends on recep-
tor activator of nuclear factor kappa B (NF-κB) (RANK) and its ligand (RANKL). 
Osteoblasts (OB) differentiate from mesenchymal stem cells (MSC) and are 
responsible for bone formation. Many signaling pathways have been discovered that 
are critical for osteogenic differentiation, including Wingless and Int-1 (WNT)/β-
catenin, bone morphogenic protein (BMP) and mechanistic target of rapamycin 
(mTOR). During bone remodeling, OC are recruited to the site of repair, where they 
will initiate bone resorption through two major mechanisms: 1) acidification of the 
microenvironment and 2) secretion of matrix metalloproteases. Towards the end of 
the resorption phase, OC will recruit MSC and osteoprogenitors and promote the dif-
ferentiation and maturation of OB. At the same time, OB will secrete osteoprotegerin 
(OPG), a decoy receptor of RANKL, which will inhibit osteoclastogenesis and shut 
down bone resorption. OB will then begin producing extracellular matrix that will 
eventually calcify and become newly mineralized bone. As such, bone resorption and 
bone formation are tightly coupled and highly regulated. Together, OC and OB form 
the basic multicellular unit (BMU), the smallest functional unit during bone forma-
tion. During remodeling the OC and OB form the bone remodeling unit (BRU). 
Mature OB have three different fates when bone formation is complete. The majority 
will undergo apoptosis, a small fraction will become senescent bone lining cells, 
and an even smaller number become osteocytes. Osteocytes (Ocy) are stellate like 
cells embedded within mineralized bone that are mechanosensors within the bone. 
Ocy have a pivotal regulatory role in bone homeostasis, directing and coordinating 
fracture repair by regulating the BRU. Ocy they have recently been shown to have 
both osteolytic and anabolic functions and play a pivotal role during lactation [12].

3. Aging and osteoporosis

Both men and women develop OP [13]. The skeletal system grows rapidly post-
natally and through puberty. Peak bone mass is attained by mid-third decade (mid 
20s) of life [14]. Beginning at the end of the third decade, both sexes start to lose 
bone mass [14] that continues with aging. The rate (or slope = change in bone mass/
change in time) varies by anatomical site [15] and by additional factors discussed 
in this chapter. It follows that the range between normal bone mass, osteopenia and 
OP is determined by both the peak bone mass (baseline) and the rate of age-related 
bone loss. Aging leads to increased senescent stem cells that repopulate OC and 
OB leading to deficiency in repair of microfractures that develop with use [16–18]. 
A recent study has shown that ablating senescent osteoclast precursors did not 
improve age-related bone loss [19]. There is accelerated bone loss (called the acute 
phase) in menopausal women [20–22]. The sex differences in age-related bone 
loss in humans can be recapitulated in mice [23]. In addition to the senescence 
of progenitor cells, increased oxidative stress during aging have been reported to 
decreased osteoblastogenesis while simultaneously increase osteoclastogenesis, 
favoring bone resorption [24]. Further research is needed to understand the effects 
of aging on bone and crosstalk with other factors.

4. Calcium, vitamin D3 and mineral homeostasis

It is standard practice to advise supplementation of calcium and vitamin D to 
osteoporotic women. However, most studies have shown that subjects of European 
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ancestry are replete in calcium and vitamin D [25]. A number of studies and meta-
analyses prior to 2010 showed an efficacy in reducing fracture risk with vitamin 
D alone, calcium alone and the combination [26, 27]. The lack of efficacy in some 
studies was attributed to lack of compliance [28]. There is a historical precedence 
that links rickets/osteomalacia and OP from the 17th century. The softening of 
bones became rampant in industrialized countries during the 19th century but 
rickets/osteomalacia were not clearly distinguished from OP until 1885. It was 
shown that rickets was due to the lack of new bone formation whereas OP was due 
to increased bone resorption [29]. Nonetheless, the overlap between hyperparathy-
roidism, under nourishment, calcium malabsorption with vitamin D insufficiency 
has become a paradigm for OP leading to practice of advising supplementation [30]. 
However, recent studies that have indicated that high serum calcium is associ-
ated with cardiovascular events, specifically stroke and increase coronary artery 
calcification, have led to questioning this practice [31–33]. This increase was due 
to supplementary calcium and not observed with natural dietary calcium [31, 32]. 
More recent meta-analysis found a trend for increased risk of cardiovascular events 
with calcium supplementation, although it was not statistically significant [34]. 
Additional studies are needed to resolve this question.

5. Body mass index (BMI) and metabolism

Epidemiological studies have shown elderly men and postmenopausal women 
with low BMI have lower T-scores and are classified as osteopenic or osteoporotic. 
A positive correlation has been observed in postmenopausal women between high 
BMI and prevalence of osteoarthritis (OA) and a negative correlation with preva-
lence of OP [35–37]. Adipocytes produce hormones (adipokines) that have been 
shown to regulate bone mass [38, 39]. Adipose tissue, especially visceral adipose 
tissue, has also been shown to harbor proinflammatory T-cells [40, 41]. Recently, 
Zou et al. showed that ablation of bone marrow adipocytes in mice cause a dramatic 
increase in bone mass [42]. Therefore, adipose tissue and obesity forms a complex 
link to bone health. First, white adipose tissue directly influences OB via adipokines 
[43]. Second, adipose tissue activates T-cells to produce proinflammatory cytokines 
tumor necrosis factor alpha (TNFα), interleukin (IL)-1β and IL-6. Additionally, 
insulin resistance is associated with obesity, thus altered glucose metabolism also 
affects bone metabolism, which has been shown to impede OB differentiation [44]. 
Further studies are needed to understand the mechanism(s) connecting inflamma-
tion, lipid and glucose metabolism to OA and OP.

6. Prescribed medicines contribute to osteoporosis

Recent studies have shown that patients taking certain commonly prescribed 
medicines have higher incidence of OP [45]. The best understood drug-induced 
bone loss is with glucocorticoids [46, 47]. There are also data suggesting that 
anticoagulants such as warfarin and heparin, which effect Vitamin K levels, are det-
rimental to bone health [48, 49]. This class of drugs also alters the gut microbiome 
adding to the complexity of interpretation [50]. Other drugs, including antiepi-
leptics, proton pump inhibitors, opioid analgesics and aromatase inhibitors induce 
osteoporosis as well [51–54]. Further confounding the interpretation of data, these 
medications are often prescribed long-term in elderly populations who are already 
at risk due to age of osteoporosis. Even if the effect size of each medication is small, 
the combined drug–drug interactions can be more than additive [55, 56].
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7. Modulation by the gut microbiome

The human digestive tract harbors trillions of microorganisms collectively 
known as the gut microbiome (GMB), which contain magnitudes more genetic 
information than our own genome. It is well recognized that the GMB plays an 
important role in educating the immune system, as germfree (GF) mice have 
reduced T cell populations. A number of studies have shown an association between 
GMB and bone health in both animal models [57, 58] and in humans [50]. However, 
Sjögrne et.al were the first to present evidence of direct interaction between the 
GMB and the bone [59]. They showed that GF mice had increased bone mass com-
pared to conventionally raised (CONV-R) mice, and that transplantation of a GMB 
from CONV-R normalized bone mass. Since then, a number of studies have been 
conducted to investigate the regulation of bone homeostasis by the GMB. Estrogen 
(E2) loss increases gut permeability [60–62], which leads to increased priming and 
activation of inflammation in the gut mucosa, leading to the generation of type 17 
helper T-cells (Th17 cells). Segmented filamentous bacterium (SFB) have been 
shown to induce Th17 in the mice intestine and to promote decreased bone mass 
[63]. Th17 cells are potent inducers of osteoclastogenesis leading to increased bone 
resorption and bone loss. Li et al. demonstrated that bone loss in ovariectomized 
(OVX) mice is depended on the GMB and it can be prevented with supplementa-
tion of probiotics [64]. There is clear correlation between GMB and bone health, 
however the precise mechanisms remain elusive. Recent studies have suggested 
GMB produce microbial metabolites that have regulatory function on distal organs, 
including the bone. GMB derived butyrate, polyamines and short-chain fatty acids 
have been shown to induce regulatory T cell (TREG) generation in the colon [65–67] 
and to regulate bone health. Thus, GMB modulate bone mass through a number 
of mechanisms, viz. by negatively by increasing Th17 cells, positively by inducing 
regulatory T-cells, and positively by producing metabolites that promote bone 
formation or inhibit bone resorption.

8. Chronic inflammation and regulation by the immune system

The recognition that T-cell derived cytokines affect bone has given rise to the 
field of osteoimmunology. The word osteoimmunology was first coined in 2000 by 
Arron and Choi [68], describing the crosstalk between the skeletal system and 
the immune system. Takayanagi et al. first reported such cross talk, demonstrat-
ing that T-cell produced interferon gamma (IFN-γ) can inhibit RANKL signaling 
during OC differentiation [69]. Since then, many studies have shown that TNFα 
and IL-17A promote osteoclastogenesis. Both cytokines are also increase in chronic 
inflammatory diseases such as rheumatoid arthritis, Crohn’s, and some viral (i.e., 
human immunodeficiency virus or HIV) infections, which may explain why these 
patients have decreased bone mass [70–75]. TNFα has been shown to promote the 
production of RANKL from OB and osteocytes in addition to directly acting on OC 
precursors in synergy with RANKL [76–79]. PTH acts through T-cells to promote 
bone formation [80]. Th17 cells have been shown to increase osteoclastogenesis and 
resorption activity Th17 cells are the key pathogenic drive in immune-mediated 
bone destruction [81]. A number of studies have confirmed that IL-17A is a potent 
promoter of bone destruction, particularly in the context of autoimmune patholo-
gies [82–84]. The field of osteoimmunology have thus far focused on OC, and 
additional studies are needed to assess how Th17 cells and the cytokines TNFα and 
IL-17A affect OB to limit bone formation. Inflammation has two effects: first, a 
direct effect where cytokines produced by T-cells act on the BRU to modulate bone 
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homeostasis. Second, inflammation has an indirect effect that is due to increased 
demand on hematopoiesis. For instance, neutrophils and mast cells have short half-
lives when they participate in inflammatory response. As they die, the immune cells 
are replenished by increased hematopoiesis and efflux of precursors and mature 
cells from the bone is mediated via regulation of osteoclastic activity [85–87]. The 
prolonged demand may also lead to bone erosion.

9. Postmenopausal osteoporosis

In women, aging leads to menopause, the cessation of ovarian function that 
is one of the leading causes of secondary osteoporosis. Early studies suggested 
that E2 directly regulates OC [88–91] and OB [92, 93] and its loss at menopause 
results in long lived OC and impaired OB, and to uncoupled bone resorption 
[94]. Postmenopausal osteoporosis (PMOP) has been traditionally regarded as 
an endocrinal, E2 deficiency mediated disease. Over the last two decades, it has 
become apparent that E2-loss promotes persistent activation of T-cell that promotes 
acute phase of osteoporosis [80, 95, 96]. The mechanistic studies for linking E2 loss 
at menopause and activation of the T-cells has come from ovariectomy (OVX) of 
rodents and key outcomes have been validated in human studies. OVX of female 
rodents is a well-established and widely used model for menopause. E2 loss leads to 
both increased bone resorption and formation, however, this process is uncoupled 
where the former greatly exceeds the latter, resulting in net bone loss. Pacifici 
and colleagues first reported in 1990 that there is increased monocytic produc-
tion of IL-1 in osteoporotic patients, indicating that in the absence of sex steroids, 
cytokines promote bone loss [97]. OVX of sexually mature mice that were T-cell 

Figure 2. 
Novel pathway of E2 loss induced chronic inflammations leading to bone loss. Left panel: BMDC secrete IL-7, 
IL-15 or both to promote survival of TMEM. E2 induces FasL in the BMDC, resulting in shorter lifespans. In 
addition, IL-15 induces Fas in proliferating TMEM in response to IL-7 and IL-15 thus maintain a homeostatic 
pool of TMEM. Right panel: In absence of E2, BMDC have reduced FasL expression, resulting in their 
proliferation and high concentrations of IL-7 and IL-15. Under these conditions, all TMEM proliferate and a 
subset (~5 to 10%) become reactivated TEM which produce TNFα and IL-17A, promoting bone resorption 
and also limits bone formation. BMDC = bone marrow resident dendritic cells, TMEM = memory T-cells, 
TEM = effector memory T-cells. This figure was created in BioRender.com
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deficient showed decreased bone loss, which provided further evidence that T-cells 
play a key role in promoting bone resorption [98–102], as did blockade of TNFα 
[103] and IL-17A [104]. At the same time, Takayanagi et al. showed that IFN-γ regu-
lated osteoclastogenesis [69, 105]. In the past decade, there is mounting evidence 
suggesting that the immune system and inflammation play a critical pathogenic role 
in uncoupled bone loss [82, 106–110].

Recently, our lab has described a new pathway where E2 loss leads to chronic 
low-grade production of the proinflammatory cytokines TNFα and IL-17 by mem-
ory T-cells (TMEM) that was dependent on IL-7 and IL-15 in mice [111] (Figure 2). 
The increased production of IL-7 and IL-15 was mediated by bone marrow den-
dritic cells (BMDCs), which in the absence of E2 do not express FasL, leading to 
an antigen-independent activation of TMEM. These TMEM proliferate, and a subset 
become effector memory T-cells (TEM) to produce TNFα and IL-17A. TMEM encode 
a lifetime of exposures to antigens and only a subset of these could be converted to 
IL-17A and TNFα expressing. This notion would explain the variance at the popula-
tion level in the development of PMOP. We hypothesize that the difference in the 
bone marrow TMEM population based on the life-time antigen exposure would result 
in varying sensitivity of reactivation.

10. Therapeutics

The therapeutics prescribed most commonly for osteoporosis are anti-resorp-
tives like bisphosphonates or denosumab. One issue with this class of medications 
are the adverse effects, most notably osteonecrosis of the jaw (ONJ). Although ONJ 
is rare (1–3%), it has been observed with anti-resorptive therapies (both bisphos-
phonates and denosumab) in patients with certain predisposing factors (i.e., after 
tooth extraction or in people with type 2 diabetes).

The second class of therapies are bone anabolics. Two examples of this class are 
teriparatide [112] and more recently romosozumab that targets sclerostin [113]. The 
bone anabolic therapies are also limited in their use because of potential adverse 
effects with prolonged use [114–116] and in special populations as well [117]. 
Furthermore, there is a limited window for the efficacy of many bone anabolic 
therapies due to adaptations in the bone in response to therapy. Interestingly, it has 
been observed in randomized control trials that the sequence of medication has 
substantial impacts on the long-term outcome. Patients who received teriparatide 
for 2 years first, followed by anti-resorptives maintained bone mass significantly 
longer than patient who received antiresorptives first [118].

As we discussed in this chapter, OP can arise from a combination of multiple 
causes. It follows that the treatment of osteoporosis should target additional mecha-
nisms. All current therapies target the cells of the BRU, to suppress resorption of to 
promote bone formation. Furthermore, the current therapies have shortcomings 
and adverse effects with prolonged use necessitating drug holidays [119]. Therefore, 
additional therapies are needed, including a more precision medicine approach to 
treat osteoporosis. Immunomodulatory options such as anti-TNFα, anti-IL-17A and 
anti-RANKL have yielded inconsistent results in patients. Recently, Chong et al. 
[120] showed that neutralization of IL-17A induces compensatory increase of other 
Th17 cytokines, including IL-17F, IL-22 and GM-CSF. This has implication for the 
use of immunomodulatory therapies in PMOP.

Our laboratory discovered that OC are antigen presenting cells that induce 
Forkhead box protein 3 (FoxP3), cluster of differentiation (CD) 25, cytotoxic 
T-lymphocyte-associated protein (CTLA) 4 and expression of IFN-γ and IL-10 
in CD8+ T-cells in vitro (Figure 3). We have validated that these CD8+ regulatory 
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T-cell (TcREG) are induced by OC during bone resorption in vivo [121, 122]. Bone 
resorbing OC induce TcREG and TcREG suppress bone resorption by OC to form a 
negative feedback loop [123]. TcREG are also immunosuppressive like their CD4+ 
counter parts [124]. Both in vivo induction by low dose pulse RANKL (pRANKL) 
and adoptive transfer of ex vivo generated TcREG suppressed bone resorption, TNFα 
production and promoted bone formation to ameliorate osteoporosis in OVX mice 
[125]. In unpublished studies, OVX IL-10 deficient mice were unresponsive to the 
bone anabolic effects of pRANKL. However, TcREG retained its ability to inhibit 
TNFα production in TEM, suggesting that the immunosuppressive effects are IL-10 
independent. Further investigation showed that IL-10 directly regulates OB at the 
gene expression level. Taken together, our observations indicate that the immune 
system plays a fundamental role in modulating bone homeostasis, able to tip the 
balance either in favor of uncoupled bone resorption or bone formation.

11. Conclusions

In this chapter, we highlighted the multifactorial nature of osteoporosis. Bone 
loss occurs with age and slope associated with this decline may be enhanced with 
decreased vitamin D3, calcium deficiency in diet, medicines and polypharmacy, 
excess secretion of phosphate by kidneys, by hyperparathyroidism, chronic inflam-
mation by persistent infections and autoimmune disease. E2 loss also triggers a 
low-grade persistent inflammation in a subset of memory T-cells that promotes 
rapid bone erosion. Emerging evidence demonstrates significant interplay between 
these factors revealing the tradeoffs between organismal homeostasis and organ-
specific regulation. Research in current decade is likely to provide new insights 
and mechanisms into the crosstalk. Revealing the mechanistic details will provide 

Figure 3. 
Osteoclasts induce tolerogenic TcREG. OC use three signals to induce TcREG: Antigen-loaded MHC I, CD200  
(a costimulation molecule that activates NF-κB) and the notch ligand DLL4. Treatment with pRANKL 
leads to increased expression DLL4 and therefore increased induction of TcREG. TcREG secrete IFN-γ that 
suppress osteoclastogenesis by degrading TRAF6 and resorption by mature OC. TcREG also secrete IL-10, which 
is required for the bone anabolic activity but not resolution of inflammation. IL-10 may also target Ocy to 
improve cortical bone mass. Resolution of inflammation appears to be mediated by CTLA4 expressed on TcREG. 
This figure was created in BioRender.com.
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exciting new targets for therapies. Furthermore, determining the factors in each 
individual would allow for precision medicine approach to promoting bone health 
in the aging population.
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Appendices

Appendix 1: Abbreviations

DEXA dual energy X-ray absorptiometry
BMD bone mineral density
FRAX fracture risk assessment tool
PTH parathyroid hormone
FGF23 fibroblast growth factor 23
OC osteoclasts
NF-κB nuclear factor kappa B
RANK receptor activator of NF-κB
RANKL receptor activator of NF-κB ligand
OB osteoblasts
MSC mesenchymal stem cells
WNT wingless and Int-1
BMP bone morphogenic protein
mTOR mechanistic target of rapamycin
OPG osteoprotegerin
BMU basic multicellular unit
BRU bone remodeling unit
BIM body mass index
OA osteoarthritis
TNFα tumor necrosis factor alpha
IL interleukin
GMB gut microbiome
CONV-R conventionally raised
Th helper T cell
OVX ovariectomy (surgery) or ovariectomized
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TREG regulatory T cell
IFNγ interferon gamma
HIV human immunodeficiency virus
TMEM memory T cell
BMDC bone marrow dendritic cells
TEM effector memory T cell
ONJ osteonecrosis of the jaw
FoxP3 forkhead box P3
CD cluster of differentiation
CTLA4 cytotoxic T-lymphocyte-associated protein 4
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