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Abstract Osteosarcoma is the most common nonhema-

tologic malignancy of bone in children and adults. The

peak incidence occurs in the second decade of life, with a

smaller peak after age 50. Osteosarcoma typically arises

around the growth plate of long bones. Most osteosarcoma

tumors are of high grade and tend to develop pulmonary

metastases. Despite clinical improvements, patients with

metastatic or recurrent diseases have a poor prognosis.

Here, we reviewed the current understanding of human

osteosarcoma, with an emphasis on potential links between

defective osteogenic differentiation and bone tumorigene-

sis. Existing data indicate osteosarcoma tumors display a

broad range of genetic and molecular alterations, including

the gains, losses, or arrangements of chromosomal regions,

inactivation of tumor suppressor genes, and the deregula-

tion of major signaling pathways. However, except for p53

and/or RB mutations, most alterations are not constantly

detected in the majority of osteosarcoma tumors. With a

rapid expansion of our knowledge about stem cell biology,

emerging evidence suggests osteosarcoma should be

regarded as a differentiation disease caused by genetic and

epigenetic changes that interrupt osteoblast differentiation

from mesenchymal stem cells. Understanding the molec-

ular pathogenesis of human osteosarcoma could ultimately

lead to the development of diagnostic and prognostic

markers, as well as targeted therapeutics for osteosarcoma

patients.

Introduction

Osteosarcoma (OS) is the most frequent primary bone

sarcoma, comprising approximately 20% of all bone

tumors and about 5% of pediatric tumors overall [34, 67,

73, 75, 77, 94, 127, 136, 146, 210, 252, 259]. In fact, OS is

the fifth most common malignancy among individuals aged

15 to 19 years, and the second most common in adoles-

cence after lymphoma. OS has a bimodal age distribution,

with the first peak in the second decade of life and a second

peak in elderly adults [146, 210]. Higher incidences in boys

and in African-American children have been reported [146,

210]. The most common locations in young adults are areas

with rapid bone growth, including distal femur, proximal

tibia, and proximal humerus. Nevertheless, OS is relatively

rare, and less than 1000 new cases are diagnosed each year

in the United States, accounting for less than 2% of all new

cancer cases in the U.S. [146, 210].

Although OS development is associated with several

genetic predisposition conditions, most OS tumors are

sporadic without familial patterns [67, 73, 77, 94, 146, 210,

252, 259]. Our current understanding of OS etiology is

rather limited. Exposure to chemical beryllium oxide [51],

orthopaedic prostheses [101], and the FBJ virus [51] causes

OS in animal models, but their role in human OS is

unknown. SV40 viral DNA has been detected in up to 50%

of OS tumors [24, 125, 161], while it is unclear whether
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SV40 plays any role in OS tumorigenesis [51, 62]. Radi-

ation exposure is a well-documented risk factor for OS

[51, 88, 147, 239, 256], but the interval between radiation

exposure and tumor appearance is long, and hence it is

likely irrelevant to the development of most conventional

OS tumors. Nevertheless, radiation could be responsible for

the development of secondary OS postradiation therapy of

certain primary tumors.

Despite the relative low incidence of OS, more than

20,000 articles describing the pathogenic and clinical

aspects of OS have been published thus far. As summarized

in this survey, OS displays a broad range of genetic and

epigenetic alterations, and yet no consensus changes have

been identified in all OS tumors [34, 67, 73, 75, 77, 94,

127, 136, 146, 210, 252, 259]. With the rapid expansion of

our knowledge about stem cell biology and cancer stem

cells [204, 217, 260, 278], increasing evidence suggests

OS may be considered a differentiation disease [75, 231].

Terminal differentiation of osteoblasts, which are derived

from multipotent mesenchymal stem cells, is a well-

orchestrated process and controlled by a cascade of regu-

latory signaling [36, 38, 39, 75, 82, 96, 114, 129, 136, 171,

173, 187, 270]. Pathologic and molecular features of most

if not all OS tumors strongly suggest OS may be caused by

genetic and epigenetic disruptions of osteoblast differenti-

ation pathway [75, 231]. Promoting differentiation and/or

circumventing differentiation defects may be exploited as

an efficacious adjuvant therapy for OS since current

chemotherapies mostly target the proliferative aspects of

OS tumors [75, 76, 188].

In this survey, we briefly review currently identified

genetic alterations that may be associated with osteosar-

coma pathogenesis, and then focus on recent findings that

suggest potential links between defective osteogenic dif-

ferentiation of mesenchymal stem cells and osteosarcoma

development. We believe this line of investigation will

provide insight into the pathogenesis of osteosarcoma.

Search Strategies and Criteria

We performed PubMed searches of the literature relevant to

the subject with the following keywords utilized individu-

ally or in combination: osteosarcoma (20,168 references),

osteosarcoma pathogenesis (8232 references), osteosar-

coma genetics (3587 references), osteosarcoma mutation

(1232 references), osteosarcoma biology (238 references),

osteosarcoma stem cell (669 references), osteosarcoma

stem cell differentiation (99 references), and osteosarcoma

lung metastasis (894 references), as of March 2008. Publi-

cations in languages other than English, pertinent review

articles, and book chapters were not excluded in our sear-

ches. However, we mostly reviewed the English abstracts of

the articles published in other languages and only utilized

the articles that added any information to this review.

Whenever information overlapped, we referenced the most

recent articles built on conclusions or reports of previous

articles. Our searches of articles published in the English

language revealed considerable overlap in articles identified

under the different search terms, and we carefully reviewed

the articles for pertinence to our review article. In this

review, we primarily focused on relevant publications

within the past 10 years, while not excluding older but

commonly referenced and highly regarded prior publica-

tions. We suspect many of the osteosarcoma cases described

in the literature represent high-grade osteosarcomas.

Clinical Aspects of Human OS

Most OS patients present with pain and swelling in the

affected regions after trauma or vigorous physical activities

[146]. The diagnosis of OS is usually made by radiographic

appearance and location of tumor lesions and a biopsy

for pathologic confirmation [146]. OS can present radio-

graphically as a lytic, sclerotic, or mixed lytic-sclerotic

lesion [146]. Up to 20% of OS patients present with

radiographically detectable lung metastases, whereas 80%

of patients with localized OS develop metastases after

surgical resection alone [146]. Death from OS is usually

the result of progressive pulmonary metastasis with respi-

ratory failure [146].

OS has a broad spectrum of histologic appearances with

common characteristics containing highly proliferative

malignant mesenchymal stem cells and the production of

osteoid and/or bone by tumor cells [62, 146]. Histologically,

OS can be divided into several subtypes. Conventional

osteoblastic OS makes up about 70%, whereas chondrob-

lastic and fibroblastic OS tumors are the next most common

at 10% each [62, 73, 102, 231]. Other OS types include

anaplastic, telangiectatic, giant cell-rich, and small cell OS

[102]. Conventional OS is a primary intramedullary high-

grade sarcoma. Current clinical management of OS includes

pre- and postoperative chemotherapy and surgical resection

[62]. Only about 20% of OS patients can be cured without

chemotherapy [62, 102, 146]. Chemotherapy agents include

doxorubicin, cisplatin, ifosfamide, and methotrexate

[62, 102, 127, 146]. Surgical removal of the primary tumor

requires a wide-margin resection, followed by limb salvage

reconstruction [62, 102, 127, 146].

OS prognostic indicators include extent of disease at

diagnosis, size and location of the tumor, response to

chemotherapy, and surgical remission [62, 102, 127, 146].

For those OS patients who present without detectable

metastases, approximately 70% of them can achieve long-

term survival [62, 102, 127, 146]. The remaining 30% will
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relapse, mostly within 5 years [62, 102, 127, 146]. Pul-

monary metastasis is the most common form of distant

spread. The average survival after a recurrence is less than

1 year [62, 102, 127, 146]. Removal of a surgically

resectable recurrence or pulmonary metastasis improves

survival [62, 102, 127, 146]. Thus, a major challenge in

clinical management of OS is to identify poor responders to

chemotherapy and/or to detect early metastatic lesions.

Chromosomal Abnormalities in Human OS

Unlike other sarcomas, such as synovial sarcoma, alveolar

rhabdomyosarcoma, and Ewing’s sarcoma, no specific

translocations or genetic abnormalities have been identified

in OS [34, 67, 73, 75, 77, 94, 127, 136, 146, 210, 252, 259].

Nevertheless, nearly 70% of OS tumors display a multitude

of cytogenetic abnormalities [146, 210]. The ploidy num-

ber in OS has ranged from haploidy to near-hexaploidy.

Chromosomal regions of 1p11–p13, 1q11–q12, 1q21–q22,

11p14–p15, 14p11–p13, 15p11–p13, 17p, and 19q13 are

most commonly involved in structural abnormalities [146,

210]. Gain of chromosome 1 and loss of chromosomes 9,

10, 13, and 17 are most common overall. Less frequently

involved chromosomal regions were 13q14 (locus of RB1),

12p12–pter (locus of KRAS), 6q11–q4, and 8p23 [146,

210].

A combination of several detection modalities has pro-

vided a more accurate assessment of the complex

cytogenetic aberrations in OS [146, 210]. The most fre-

quently detected amplifications include chromosomal

regions 6p12–p21 (28%), 17p11.2 (32%), and 12q13–q14

(8%) [210]. Several other recurrent chromosomal losses

(2q, 3p, 9, 10p, 12q, 13q, 14q, 15q, 16, 17p, and 18q) and

chromosomal gains (Xp, Xq, 5q, 6p, 8q, 17p, and 20q)

were also identified, as well as several recurrent breakpoint

clusters and nonrecurrent reciprocal translocations [210].

These findings further highlight the complexity and the

instability of the genetic makeup of OS tumors.

Genetic Alterations of Tumor Suppression Genes

in Human OS

Retinoblastoma Tumor Suppressor

Individuals affected by hereditary retinoblastoma (RB)

heterozygous for a germline inactivation of RB1 have an

approximately 1000 times higher incidence of OS. RB1

maps to 13q14 [1, 111]. Genetic alterations of RB1 have

been found in up to 70% of sporadic OS cases [2, 4, 12, 13,

164, 215, 235, 248, 267]. Loss of heterozygosity (LOH) of

RB1 locus is present in 60% to 70% of OS tumors [12, 48,

271], whereas structural rearrangements and point muta-

tions occur less commonly (30% and 10%, respectively) [2,

4, 12, 13, 164, 215, 235, 248, 267]. Furthermore, LOH at

the RB1 locus has been proposed as a poor prognostic

factor in OS [146, 210].

RB is an important regulator of G1/S cell cycle pro-

gression [178]. During G1/S transition, RB becomes

phosphorylated, resulting in the activation of E2F factors

that bind to the dephosphorylated RB protein and promote

DNA synthesis and G1 to S transition [178]. CDK4 in

complex with cyclin D1 phosphorylates RB. Thus, ampli-

fication or overexpression of these genes results in

functional inactivation of the RB pathway. The CDKs

are regulated by a series of inhibitory proteins, including

p16INK4a, as a negative regulator of cell cycle progression

(see below). Loss of p16INK4a expression occurs in osteo-

genic sarcomas lacking RB1 alterations [179].

p53 Tumor Suppressor

The tumor suppressor gene TP53 is located at 17p13, a

region frequently identified as abnormal in OS [29, 210].

TP53 encodes a transcription factor and regulates genes

involved in cell cycle, DNA damage response, and apop-

tosis [40, 69, 87, 126]. Alterations in TP53 observed in OS

tumors consisted of point mutations (20%–30%, mostly

missense mutations), gross gene rearrangements (10%–

20%), and allelic loss (75%–80%) [3, 20, 28, 119, 152, 162,

163, 169, 170, 184, 186, 199, 206, 214, 221, 227, 236, 237,

241, 249, 271]. The association of TP53 with OS is further

supported by the high risk of OS in patients with the

Li-Fraumeni syndrome, an autosomal dominant disorder

characterized by a germline mutation of TP53 [128, 144,

145, 194, 223]. Germline mutations of TP53 have been

identified in a small percentage (3%) of sporadic OS cases

[112, 156, 236, 237]. However, TP53 mutation status is

seemingly not associated with the stages of OS tumor and/or

metastasis [60]. Nevertheless, the mutation status of TP53,

and to a lesser extent of RB1, could serve as a valuable

indicator for predicting chemoresistance of OS [64].

p16INK4a and p14ARF CDK Inhibitors

INK4A (also known as CDKN2A), localized to 9p21,

encodes p16INK4a, a tumor suppressor that functions in part

through the inhibition of CDK4 (see below) [198]. The

p16INK4a protein can impose a sustained G1 arrest [123,

198]. In 87 OS specimens from 79 patients, INK4A

changes were observed in five of 55 cases examined (four

deletions and one rearrangement), whereas no INK4A exon

2-point mutations or methylation were detected [94, 140,
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162, 210, 257]. CDK4 gene amplification occurred in six of

67 tumors, but none of those with INK4A alterations [94,

210]. The absence of expression of p16INK4a correlated

with decreased survival in pediatric OS patients [94, 210].

INK4A also encodes p14ARF through bicistronic tran-

scription involving the use of an alternative reading frame

[198]. The p14 protein is structurally and functionally

unrelated to p16INK4a [66, 123]. Whereas p16INK4a indi-

rectly regulates RB1 function, p14 regulates TP53 function

by binding MDM2 (see below) and sequestering it in the

nucleolus, thereby preventing it from shuttling p53 to the

cytoplasm for degradation [192, 279]. INK4A is deleted in

approximately 10% of OS, and almost all deletions would

be expected to knock out expression of p14ARF as well

[133]. Because loss of p14ARF should release MDM2 from

this negative regulatory mechanism, deletion of INK4A

represents another mechanism of functional TP53 inacti-

vation. As the alternative products of INK4A, p14ARF and

p16INK4a, interact negatively with MDM2 and CDK4,

deletions of the INK4A gene would be functionally

equivalent to 12q13 amplification of both MDM2 and

CDK4 [94, 146, 210, 252]. As a result, either of two sin-

gular genetic events (ie, INK4A deletion or 12q13

amplification) can inactivate two separate critical pathways

of cell cycle control [94, 146, 210, 252].

Activation of Oncogenes in Human OS

The c-MYC product is involved in regulating cell growth

and DNA replication [32, 177]. Seven to 12 percent of OS

tumors have MYC amplification [9, 10, 120, 193]. This

genetic alteration may be more common in Pagetic OS (see

below) [210]. At the expression level, MYC expression in

OS was elevated in nine of 21 (42%) patients who relapsed

and in four of 17 (23%) patients who remained disease-free

[53].

FOS forms heterodimeric transcription complexes with

specific JUN proteins that regulate target genes involved in

cell growth, differentiation, transformation, and bone

metabolism [208, 255]. When the viral homolog v-FOS is

injected into rodents, OS formation is induced [208, 255].

Transgenic mice overexpressing FOS in bone develop OS

[208, 255]. In one report [266], 61% of OS tumors

expressed high levels of FOS. The highest levels of FOS

(and of JUN) expression have been reported in conven-

tional OS [50]. FOS was expressed in nine of 21 (42%)

patients who subsequently developed metastases [50, 53,

193]. Further, FOS was more frequently expressed in high-

grade than in low-grade lesions [210].

MDM2, located at 12q13, encodes a protein that nega-

tively modulates TP53 function by binding the p53 protein

and physically blocking the region of p53 responsible for

transcriptional activation of specific genes and targets p53

for degradation [29, 69, 87, 126, 247]. Amplification leading

to MDM2 overexpression functionally suppresses p53 even

in the presence of wild-type p53 protein [30, 124, 184, 185].

The 12q13 region, containing MDM2 and CDK4, is

amplified in 5% to 10% of OS [132, 167, 184, 185]. How-

ever, some amplicons in this region (12q13–q14) do not

include MDM2 [49]. Although MDM2 amplification has

been related to progression and metastases in OS [119, 174],

MDM2 amplification and TP53 mutations have not corre-

lated with response to chemotherapy or survival [274].

Although CDK4 gene amplification has been detected in

a low percentage of OS cases [93, 141], CDK4 proteins are

highly expressed in 65% of low-grade OS [200]. CDK4

forms a complex with cyclin D1 and phosphorylates RB,

thus releasing the E2F transcription factor from its inter-

action with RB [33, 179]. It has been suggested higher

CDK4 levels secondary to amplification may stoichiomet-

rically favor RB phosphorylation, thereby impairing cell

cycle control [43, 107, 140, 213]. High levels of CDK4

may also drive 12q13–q15 amplification independently of

MDM2 because discontinuity of the 12q13 amplicons has

been identified [15, 43, 93, 257].

High levels of cyclin D1 (CCND1) have been detected

in 22% of OS, and CCND1 amplification has been reported

in 4% of OS [140, 257]. Furthermore, the absence of cyclin

D1 expression is a powerful prognostic factor because it is

associated with a metastatic phenotype [166].

ERBB2 (also known as HER2/neu and c-erbB-2)

encodes a protein structurally homologous to the EGF

receptor without a known ligand. At the time of initial

biopsy, 20 of 47 OS (42.6%) displayed high levels of

ERBB2 expression, relative to adjacent normal tissues

[63]. However, the actual role of ERBB2 expression in OS

development remains unclear. One study [281] found, in

patients with high-grade OS without metastatic disease at

presentation, increased expression of ERBB2 in tumor cells

was associated with an increased probability of event-free

and overall survival [281], while other studies demon-

strated cytoplasmic staining of ERBB2 in pretreatment OS

correlated with an increased risk of pulmonary metastases

and OS cells positive for ERBB2 may represent a

chemoresistant aggressive subpopulation of OS [281].

Deregulation of Major Signaling Pathways

in Human OS

Wnts are a family of highly conserved, secreted proteins

that play an important role in development and tumori-

genesis [8, 22, 56, 58, 61, 110, 131, 134, 176, 182, 183,

197, 203, 246, 262, 264]. Many Wnts and their receptors

are expressed in early bone progenitors [58, 61, 110, 134,
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183]. Aberrant activation of Wnt signaling is associated

with many common human cancers [8, 56, 134, 137, 203,

246]. Elevated cytoplasmic and/or nuclear localization of

b-catenin, a critical mediator of the canonical Wnt path-

way, has been detected in the majority of OS tumors and

may correlate with OS metastasis [74, 90]. Sporadic

mutations of b-catenin have also been identified [89]. OS

expressing high levels of Wnt coreceptor LRP5 is less

differentiated and is associated with decreased patient

survival [80]. In addition, ectopic expression of the Wnt

agonist DKK3 suppressed invasion and motility of OS line

SAOS2 [81].

TGFb/BMP family members play important roles in

regulating cell growth and development [135, 149–151,

282]. In OS tumors, expression of TGFb1 and TGFb3 is

higher than that of TGFb2 [113]. TGFb3 expression

strongly related to disease progression [113]. Also,

although increased expression of TGFb2 and b3 and VEGF

was correlated with OS grade, only VEGF expression was

correlated with survival [92]. BMPs and their receptors

(BMPRs) regulate bone and skeletal development [135,

282]. Mutations in BMPs or BMPRs lead to skeletal

defects, familial primary pulmonary hypertension, and

neoplasias [280]. Numerous BMPs and/or BMPRs are

highly expressed in OS tumors [91, 143, 258]. Overex-

pression of the BMPR-II may be related to poor prognosis

in malignant and metastatic OS tumors [59, 275].

MET encodes the receptor for hepatocyte growth factor

(HGF/scatter factor), a cytokine that stimulates cell pro-

liferation and motility [46, 172, 207, 216]. MET/HGF is

therefore believed to play a role in stromal-epithelial

interaction. Approximately 60% of OS tumors expressed

MET receptor at high levels [46, 216], while some OS

samples demonstrated both HGF and MET expression [46].

Thus, the activation of MET/HGF pathway may contribute

to the aggressive behavior of OS tumors [14, 21, 46, 207].

GLI, originally identified as an oncogene amplified in

malignant glioma, plays a role in transducing the sonic

hedgehog (Shh) signal [168]. Shh is involved in anterior-

posterior patterning of the limbs, and alterations in GLI1

expression may play a role in OS development [94]. GLI1

is located at 12q13.3–q14.1 and is a zinc finger transcrip-

tion factor. GLI was coamplified with CDK4 in two of six

OS samples [257]. An increased expression of GLI was

detected in many sarcomas including seven of eight OS

tumors, especially in undifferentiated tumors [205, 224].

FGFR2 plays an important role in bone and skeletal

development, and inherited mutations of FGFR2 underlie

skeletal dysplasias [261]. LOH of FGFR2 at 10q26 has

been detected in high-grade OS, while mutations were not

found in FGFR2 [160]. IGFs are produced by osteoblasts

and act through their receptors to activate proliferation

and differentiation. OS cells overexpress IGF1R. Additional

investigations are needed to determine whether these path-

ways contribute to the malignant phenotype of OS [139].

Other Genetic and/or Molecular Changes in Human OS

Paget Disease of Bone

Paget disease of bone is a heritable bone disorder charac-

terized by rapid bone remodeling leading to abnormal bone

formation. Approximately 1% of patients with Paget dis-

ease of bone develop OS [157]. Patients with Paget disease

of bone account for a substantial fraction of OS occurring

after the age of 60 years. Genetic linkage of Paget disease

has been demonstrated to involve 18q21.1–q22 [86, 269].

Of interest is the demonstration of a possible role of the

FOS gene in the pathogenesis of Paget disease [11], as well

as RANK (also known as TNFRSF11A) and OPG (also

known as TNFRSF11B) [68, 157, 222], although the bona

fide Paget disease gene(s) remain to be identified.

Mutations of RECQ Helicases

RECQ helicases are conserved proteins that share a highly

homologous DNA helicase domain, and mutations in three

of the five RECQ helicases are associated with cancer

predisposition syndromes, namely Rothmund-Thomson

syndrome, Bloom syndrome, and Werner syndrome [252].

Rothmund-Thomson syndrome is an autosomal recessive

disorder with an increased risk for OS. In one cohort of 41

patients with Rothmund-Thomson syndrome, 13 (32%)

developed OS, tending to develop at a younger age (median

age, 9 years) [254]. The presence of RECQL4 mutations is

correlated with the risk for developing OS [253].

Bloom syndrome and Werner syndrome have some

overlapping clinical features, and both exhibit predisposi-

tions to developing cancers [78]. Patients with Bloom

syndrome have mutations in the BLM gene and are pre-

disposed to all the types of cancers at a much younger age

and at a higher frequency [54]. Patients with Werner syn-

drome have mutations in the WRN gene and are

predisposed to developing OS and other tumors [65]. Of

the three OS predisposition syndromes, Rothmund-Thom-

son syndrome appears to have the highest and most specific

risk for OS tumor [252]. Thus, inactivation of the helicase

pathways may contribute to OS development.

Telomerase and Telomeres in OS

Telomerase (TERT) activity is undetectable in normal

cells, benign lesions, and low-grade sarcomas [272] and is
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present in only a portion of OS [5, 212, 242]. TERT

activity in OS tumors exhibited an inverse correlation with

occurrence of pulmonary metastases in patients treated

with chemotherapy [211]. Alternative lengthening of telo-

meres in OS may be equivalent to TERT activity [5]. Of 62

OS patients, a subset of cases lacked both TERT activity

and evidence of alternative lengthening of telomeres,

which was associated with a favorable prognosis [242].

Activation of Matrix Metalloproteinases (MMPs)

MMPs are zinc-dependent endopeptidases that degrade

extracellular matrix proteins. MMPs are controlled by both

proenzymes and inhibition of tissue inhibitor of MMPs

(TIMPs). MMP2 and MMP9 were overexpressed in OS

cells and associated with the ability of the cells to metas-

tasize [18]. Increased expression of membrane-type MMP1

has been correlated with poor prognosis in OS patients

[240]. Upregulation of TIMP1 is associated with poor

clinical outcome for OS. Binding of TIMP-1 to an

unknown receptor system reportedly triggers Ras/Raf1/

FAK signaling in OS. Thus, TIMP1 may have a dual effect

on tumor progression [47, 84].

Neurofibromatosis-2 (NF2)/Merlin

NF2 encodes Merlin, an ezrin-radixin-moesin (ERM)-

related protein that functions as a tumor suppressor [153,

154]. NF2 null mice die in early embryogenesis, whereas

NF2 heterozygous mice are viable but develop a variety of

highly metastatic tumors, including OS and hepatocellular

carcinoma, with long latencies [155]. Merlin mediates

contact inhibition of growth through signals from the

extracellular matrix. At high cell density, Merlin becomes

hypophosphorylated and inhibits cell growth in response to

hyaluronate through specific interaction with the cyto-

plasmic tail of CD44 [55, 109, 118, 218]. Well-

dedifferentiated OS tumors have a higher level of CD44

[94]. Merlin may control the stability of the adherens

junction by its interaction with the actin cytoskeleton. Loss

of this function may lead to tumorigenesis and metastasis

[106, 121]. The N-terminal region of Merlin increases p53

stability by inhibiting the MDM2-mediated p53 degrada-

tion. Thus, loss of Merlin may also destabilize p53 [108].

Additional Genetic Changes

The budding uninhibited by benzimidazole 3 (BUB3) was

identified in a region of LOH at 10q26 in 20 high-grade OS

tumors, although no mutations of BUB3 were observed in

OS. BUB3 plays a role in chromosome homeostasis and is

a component of the spindle assembly checkpoint complex

[23], alterations of which could underlie the aneuploidy

that is characteristic of OS [160]. Interestingly, BUB3 is a

target of E2F [6]. Primase polypeptide 1 (PRIM1), located

at 12q13, is amplified in nine of 22 OS tumors [276].

MDM2 and CDK4 are considered the most important

amplification targets in 12q13–q15 [202], but the region

also contains numerous genes, including CHOP (ie,

DDIT3), SAS (sarcoma amplified sequence) [159], OS-4

[226], OS-9 [225], PRIM1 [276], and other as yet poorly

characterized genes [44]. Amplification of SAS was

reported in 36% of OS [180] and was linked with increased

CDK4 expression [268]. Other suspected oncogenes

include MAPK7 and peripheral myelin protein (PMP22/

GAS3), both located at 17p11.2. MAPK7 was amplified in

10 of 19 OS samples [243]. Frequent amplification of

PMP22 is observed in high-grade OS [244]. HMGIC gene

(also known as HMGA2, localized to 12q14–q15) was

rearranged by fusing with the keratin sulfate proteoglycan

lumican gene LUM in an OS line [115]. HMGIC gene was

also amplified and rearranged in two primary OS [16].

Allelic loss at 4q32–q34 was identified in 63% of OS

[220]. High frequencies of allelic loss have been detected

at 3q26 [79, 117], 13q, 17p, and 18q, suggesting other

tumor suppressor genes may exist at 3q and 18q [271].

Expression of DCC (deleted in colon cancer), located on

18q21, decreases in OS [85]. Two potential OS suppressor

gene loci were demonstrated at 6q14 (imbalance in 77% of

cases) and 15q21 (58% of cases) [175].

Genome-wide Approaches to Identifications

of OS-associated Genes

Microarray-based expression profiling analysis has become

an increasingly common practice to identify genes associ-

ated with OS pathogenesis [103]. One such study has shown,

among the 100 most up- and downregulated genes, 35 are

affected in all three OS lines, with eight genes showing an

increase and 27 genes a reduction in the expression level

compared with normal human osteoblasts [265]. These

findings have provided a proof-of-principle of genome-wide

approaches to unraveling the pathogenesis of OS.

OS Metastasis-associated Genes

Ezrin, a member of the ERM proteins, has been identified

as a metastasis-related gene that is differentially expressed

in murine OS lines with differential metastatic potential

[104–106]. Ezrin is involved in intracellular signal trans-

duction regulating cell migration and metastasis [251] and
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is expressed in a variety of cancers, some of which are

associated with poor outcome [142, 148]. In a study of 19

patients with OS, the disease-free interval of OS patients

with high ezrin expression was substantially shorter than

that in patients with low ezrin expression, and the risk of

metastatic relapse was 80% greater in the former group

[106].

Expression of S100A6 was reported in 84% of analyzed

OS specimens [138]. There is a trend toward decreased

clinically evident metastasis with increased S100A6

staining. Overexpression of S100A6 in OS cells decreases

cell motility and anchorage-independent growth [138].

These findings suggest, while S100A6 is commonly over-

expressed in OS, loss of its expression may correlate with a

metastatic phenotype. A cluster of 16 types of S100 genes

is located on 1q21, which is frequently amplified or rear-

ranged [25, 35, 37, 71, 158, 190, 209]. S100 proteins

constitute a group of nearly 20 proteins that contain well-

conserved EF-hand calcium-binding domains [209]. Sev-

eral S100 proteins have been associated with human

cancers [25, 35, 37, 71, 158, 190, 209].

Annexin 2 (AnxA2) was downregulated in metastatic

samples [57]. AnxA2 belongs to a large family of diverse

proteins characterized by conserved annexin repeat

domains and the ability to bind negatively charged phos-

pholipids in a calcium-dependent manner [7]. AnxA2 was

downregulated in a subset of human OS metastases and

metastatic lines [45, 165]. The actual role of AnxA2 in

suppressing OS metastasis remains to be elucidated.

Chemokine stromal cell-derived factor 1 (SDF-1)

belongs to cytokinelike proteins that, through binding to

their CXCR receptors, play a role in cytoskeleton rear-

rangement, adhesion to endothelial cells, and directional

migration [19]. CXCR4/SDF-1 is important in tumor pro-

gression [130, 228]. Migration and adhesion of OS cells

were promoted by SDF-1 treatment, whereas the develop-

ment of pulmonary metastasis after injection of OS cells in

a mouse model could be prevented by the administration of

T134 peptide, an inhibitor of CXCR4 [191].

Possible Links Between Defective Osteogenic

Differentiation and Bone Tumorigenesis

Human OS tumors exhibit osteoblast-like features,

although the differentiation status of OS tumors can be

observed within a broad range, from highly differentiated

to poorly differentiated or undifferentiated phenotypes

[75]. However, potential cancer stem cells responsible for

OS development have yet to be identified. Understanding

the molecular mechanism underlying osteogenic differen-

tiation would help to unravel the molecular pathogenesis of

human OS. Osteogenesis results from a well-coordinated

sequence of events involving epithelial mesenchymal

interaction, condensation, and differentiation (Fig. 1A).

Several major signaling pathways, such Wnt, BMP, FGF,

and hedgehog signaling, play an important role in regu-

lating osteogenic differentiation [58, 134–136, 203, 204].

At the transcription level, several transcriptional factors

have been identified as important regulators of osteogenic

lineage commitment and terminal differentiation. These

transcriptional factors include Runx2, Osterix, ATF4, and

TAZ [17, 31, 36, 41, 95, 97–100, 189, 229, 230, 250, 263,

273]. Among these factors, Runx2 plays an important role

and serves as a hub to direct progenitors to osteogenic

lineage [38, 39, 82, 96, 114, 129, 171, 173, 187, 270].

Runx2 is a member of the Runx class of transcription

factors that contain a highly conserved 128 amino acid

motif conferring DNA binding, protein-protein interactions,

and ATP binding activities [38, 39, 82, 96, 114, 129, 171,

173, 187, 270]. Runx2-/- die shortly after birth and dem-

onstrated a cartilaginous skeleton with complete absence of

ossification. Despite the cartilaginous phenotype in the

Runx2-null mice, histologic analysis demonstrated delayed

chondrocyte maturation suggesting the importance of

Runx2 in chondrogenesis and osteogenesis. Additionally,

when Runx2 is overexpressed in chondrocytes via the

chondrocyte-specific type II collagen promoter, it results in

ectopic chondrocyte hypertrophy and endochondral ossifi-

cation, thereby demonstrating the importance of Runx2

in controlling differentiation of both chondrocytes and

osteoblasts [38, 39, 82, 96, 114, 129, 171, 173, 187, 270].

Runx2 transcriptional activity is regulated by numerous

transcriptional co-activators and corepressors, including its

interaction with Rb protein (see below).

OS can be regarded as a differentiation disease that is

caused by genetic and epigenetic disruptions of osteoblast

terminal differentiation (Fig. 1B). This model is supported

by the following facts: First, OS tumors exhibit the char-

acteristics of undifferentiated osteoblasts [26, 75, 83, 181,

195, 196, 219, 233, 277]. Second, differentiation-promoting

agents (eg, PPARc agonists and 9-cis-retinoic acid) induce

osteoblast differentiation [75, 76]. Third, RB coactivates

Runx2 through direct physical interactions at sites of active

transcription, and loss of function of RB attenuates terminal

osteoblast differentiation in vitro [232]. RB plays essential

roles in many cellular processes including mesenchymal

differentiation [70, 72, 116, 245]. Fourth, Runx2 coordi-

nates terminal cell cycle exit through induction of p27KIP

[1], which in turn is required for normal bone development

and is lost in dedifferentiated human OS [233]. Lastly,

osteogenic stimuli, such as osteogenic BMPs, failed to

promote the terminal differentiation of most OS cells and

rather enhanced OS tumor growth, further highlighting the

existence of possible differentiation defects in OS cells

[75]. Furthermore, in Ewing’s sarcoma (ESW), EWS/ETS
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fusion proteins block differentiation along osteogenic and

adipogenic lineages of marrow stromal cells [238]. In fact,

expression of the EWS/FLI-1 oncogene in murine primary

bone-derived cells results in EWS/FLI-1-dependent,

Ewing’s sarcoma-like tumors [27]. Conversely, upon EWS-

FLI1 silencing, some of the ESW cell lines can differentiate

along the adipogenic or osteogenic lineages when stimu-

lated with appropriate differentiation cocktails [234]. Taken

together, these emerging data strongly suggest osteosar-

comogenesis may be resulted from defects in osteoblast

differentiation pathway.

Discussion

Osteosarcomas are a clinically and molecularly heteroge-

neous group of malignancies characterized by varying

degrees of mesenchymal differentiation. The genetic and

epigenetic alterations described above may represent a

cross-sectional endpoint view of OS. However, defining

their roles in OS development has been hampered by the

complexity of the genetic changes and the rarity of OS

samples. Although osteosarcoma tumors display a broad

range of genetic and molecular alterations, most alterations

Fig. 1A–B (A) Osteogenic dif-

ferentiation is a well-coordinated

process. Mesenchymal stem cells

(MSCs) can give rise to several

lineages, such as myocytes, adi-

pocytes, chondrocytes, and

osteocytes, with appropriate

stimuli, presumably by activat-

ing proper lineage-specific

regulators, eg, MyoD, PPARc,

Sox9, or Runx2/Osterix. Osteo-

genic differentiation is a tightly

controlled process, which can be

monitored by using alkaline

phosphatase as an early marker

and osteocalcin and osteopontin

as late markers. (B) Disruption of

osteogenic differentiation may

lead to OS development. The

defects caused by genetic (eg,

activation of oncogenes or inac-

tivation of p53 and RB tumor

suppressor genes) and epigenetic

alterations may occur at different

stages of osteogenic differentia-

tion. It is conceivable defects at

the early stages may lead to the

development of more aggressive

and undifferentiated OS, or vice

versa. The cells filled with black

color indicate cancer-initiating

cells.
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are not frequently detected in the majority of osteosarcoma

tumors. With a rapid expansion of our knowledge about

stem cell biology, emerging evidence suggests osteosar-

coma may be regarded as a differentiation disease caused

by genetic and epigenetic changes that interrupt osteoblast

differentiation from mesenchymal stem cells.

In this survey, we first reviewed the current genetic

alterations and molecular biology of OS, and then focused

on the possible relationship between osteogenic differen-

tiation and bone tumorigenesis. By searching PubMed with

various keywords, we found over 20,000 publications rel-

evant to the topic. Although we only conducted the search

using a single database, PubMed represents one of the most

extensive databases for biomedical sciences. We believe

most of the relevant and important findings related to OS

have been included in this single database but cannot

exclude other information that might be found in other

databases (e.g., EMBASE).

It is conceivable that, at least for a subset of osteosar-

comas, cancer-initiating cells may share features of a

committed osteoprogenitor. Tumorigenesis may involve

disruption of mechanisms, appropriately constrain the ini-

tiation of proliferation by tumor stem cells, or allow

persistent expression of stem cell-like features in apparently

partially committed cells. The similarities between stem

cell properties and those of transformed cells are striking as

both cell types possess unlimited self-renewal, express tel-

omerase, and are undifferentiated as defined by the absence

of lineage-restricted markers. In fact, a small subpopulation

of self-renewing OS cells are capable of forming suspended

spherical cells and colonies [55]. These OS cells as well as

tissue specimens express activated STAT3 and the marker

genes of pluripotent embryonic stem (ES) cells, Oct 3/4

and Nanog [55]. In support of this notion, OS is frequently

observed in adolescence, a stage of intensive skeletal

growth entailing increased osteoblast activity. Stem cells

are more resistant to mutagenic events than somatic cells, in

part due to enhanced apoptotic responses to genotoxic stress

and DNA damage. The efficiency of such processes appears

inversely related to the degree of terminal differentiation

[231]. Thus, future investigations should be devoted to

identifying the key defects in the osteoblast differentiation

pathway, which is also responsible for the development of

primary bone tumors.

As one of the most important factors regulate osteoblast

lineage commitment and expansion, Runx2 may be de-

regulated and plays an important role in OS development.

Runx2 levels and function are biologically linked to a cell

growth-related G(1) transition in osteoblastic cells [52].

Runx2 and histone deacetylase 3-mediated repression is

believed to allow high expression of bone sialoprotein-a

bone matrix glycoprotein whose expression coincides

with terminal osteoblastic differentiation and the onset

of mineralization-in differentiating human osteoblast

cells [122]. Runx2 is hyperphosphorylated by CDK1/

cyclin B during mitosis, and dynamically converted into

a hypophosphorylated form by PP1/PP2A-dependent

dephosphorylation after mitosis to support the postmitotic

regulation of Runx2 target genes [201]. A more recent

study indicates Runx2-mediated activation of the Bax gene

increases osteosarcoma cell sensitivity to apoptosis and

Bax as a direct target of Runx2, suggesting Runx2 may act

as a proapoptotic factor in osteosarcoma cells [42].

Another important factor that may play an important

role in osteogenic differentiation and bone tumorigenesis is

pRb. The cell cycle regulatory pathway regulated by pRb is

inactivated in almost all human cancers, but individual

tumor types seem to target specific components to achieve

this effect. As described in Results, pRb itself is frequently

inactivated in OS, and inherited heterozygous loss of the

RB gene confers approximately a 1000-fold greater inci-

dence of OS than the general population. Several lines of

evidence implicate pRb in osteogenesis as pRb coactivates

Runx2 through direct physical interactions at sites of active

transcription, and loss of function of pRb attenuates ter-

minal osteoblast differentiation in vitro [231]. Runx2

coordinates terminal cell cycle exit through induction of

the CDK2 inhibitor p27KIP1, which in turn is required for

normal bone development in vitro and in vivo, and is lost

in dedifferentiated human osteosarcomas [231]. It is also

possible pRb influences osteoblast differentiation through

other mechanisms involving chromatin structure. Thus, it

would be important to investigate how the deregulation of

pRb and/or Runx2 functions may lead to the development

of bone sarcomas.

Understanding the molecular pathogenesis of human

osteosarcoma could ultimately lead to the development of

diagnostic and prognostic markers, as well as targeted

therapeutics for osteosarcoma patients. Dissecting the

molecular mechanisms that control osteoblast differentia-

tion is important not only to understand normal

skeletogenesis and to pinpoint potential defects responsible

for OS development but also to improve the clinical

management of human OS. Although pre- and postopera-

tive chemotherapies have improved the 5-year survival rate

of OS patients, recurrent and/or metastatic OS tumors

are more aggressive and usually resistant to conventional

cancer therapies. In a broader sense, most current chemo-

therapies and/or radiation therapies target the rapidly

proliferative tumor cells, with little consideration of

promoting tumor cell differentiation. It is conceivable a

combined therapeutic approach targeting both proliferation

and differentiation phases of tumor cells would be more

efficacious and less prone to inducing chemoresistance

[75, 76, 217, 278]. Thus, identification of the critical dif-

ferentiation defects in OS tumors may lead to a rational
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design of therapeutic strategies that induce terminal dif-

ferentiation of OS cells through alternative differentiation

pathways and/or bypassing the differentiation defects.

The potentially important role of genetic and epigenetic

events in both osteogenesis and bone tumorigenesis is now

recognized. Our current knowledge of transcriptional reg-

ulation of osteoblast differentiation will provide important

insights into the potential defects in osteogenic differenti-

ation of OS cells. Future research should be directed

towards identifying these differentiation defects in OS

cells. This knowledge may help us develop efficacious

differentiation therapies for OS by exploiting noncell

autonomous signals to promote differentiation state.
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