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Abstract. An OT-combiner implements a secure oblivious transfer (OT)
protocol using oracle access to n OT-candidates of which at most t may
be faulty. We introduce a new general approach for combining OTs by
making a simple and modular use of protocols for secure computation.
Specifically, we obtain an OT-combiner from any instantiation of the
following two ingredients: (1) a t-secure n-party protocol for the OT
functionality, in a network consisting of secure point-to-point channels
and a broadcast primitive; and (2) a secure two-party protocol for a
functionality determined by the former multiparty protocol, in a net-
work consisting of a single OT-channel. Our approach applies both to
the “semi-honest” and the “malicious” models of secure computation,
yielding the corresponding types of OT-combiners.

Instantiating our general approach with secure computation protocols
from the literature, we conceptually simplify, strengthen the security, and
improve the efficiency of previous OT-combiners. In particular, we obtain
the first constant-rate OT-combiners in which the number of secure OTs
being produced is a constant fraction of the total number of calls to
the OT-candidates, while still tolerating a constant fraction of faulty
candidates (t = Ω(n)). Previous OT-combiners required either ω(n) or
poly(k) calls to the n candidates, where k is a security parameter, and
produced only a single secure OT.

We demonstrate the usefulness of the latter result by presenting several
applications that are of independent interest. These include:

Constant-rate OTs from a noisy channel. We implement n in-
stances of a standard

`
2
1

´
-OT by communicating just O(n) bits over a

noisy channel (binary symmetric channel). Our reduction provides un-
conditional security in the semi-honest model. Previous reductions of this
type required the use of Ω(kn) noisy bits.

Better amortized generation of OTs. We show that, following an
initial “seed” of O(k) OTs, each additional OT can be generated by
only computing and communicating a constant number of outputs of a

? Research conducted while at the Technion. Supported by grant 1310/06 from the
Israel Science Foundation and a fellowship from the Lady Davis Foundation.

?? Supported by ISF grant 1310/06, BSF grant 2004361, and NSF grants 0205594,
0430254, 0456717, 0627781, 0716835, 0716389.

? ? ? Supported by ISF grant 1310/06 and BSF grant 2002354.
† Funded by the Danish Agency for Science, Technology and Innovation.



2 D. Harnik, Y. Ishai, E. Kushilevitz and J.B. Nielsen

cryptographic hash function. This improves over a protocol of Ishai et
al. (Crypto 2003), which obtained similar efficiency in the semi-honest
model but required Ω(k) applications of the hash function for generating
each OT in the malicious model.

1 Introduction

Secure Multiparty Computation (MPC) protocols allow a number of mutually
distrusting parties to jointly evaluate functions over their local inputs without
compromising the privacy of these inputs or the correctness of the output. (In the
following we will also refer to functions over distributed inputs as “functionali-
ties”, capturing the general case where different parties may obtain distinct, and
possibly randomized, outputs.) If a majority of the parties involved are honest,
then there are “information-theoretic” solutions for this general task, requiring
no computational assumptions [3, 7]. On the other hand, if an honest majority
is not guaranteed then, by [10, 32], secure computation protocols for most func-
tionalities imply the existence of oblivious transfer (OT) [37, 19, 39] — a secure
two-party protocol for a simple functionality which allows a receiver to select
one of two strings held by a sender. In an OT protocol the receiver learns the
chosen string but no information about the other string, while the sender learns
nothing about the receiver’s selection. (By default, we use the term OT to refer
to the basic bit OT primitive, where each string held by the sender consists of
a single bit. OT of `-bit strings can be implemented by making O(`) calls to
the basic OT primitive [4, 5].) OT has proved to be a very useful building block
in cryptographic protocols. Most notably, OT can serve as a building block for
general secure two-party and multi-party protocols that tolerate an arbitrary
number of corrupted parties [41, 23, 22, 31, 21, 33].

1.1 Combiners and OT-Combiners

Often in cryptography there is uncertainty regarding the security of a construc-
tion (e.g., because of the reliance on unproven assumptions or placing too much
trust in third parties). In such cases, it is handy to use a combiner for the un-
derlying cryptographic task. An (m,n)-combiner (sometimes called a robust or
tolerant combiner) is a method of taking n candidates for a cryptographic prim-
itive and combining them into a single primitive that is secure as long as at least
m of the n candidates were indeed secure. Combiners have been used implicitly
in many cryptographic constructions as means of enhancing security and have
recently been studied explicitly (initially in [26, 25]).

In this paper, we focus on OT-combiners and their applications. The possibil-
ity of realizing combiners for OT or equivalent primitives has been investigated
in [25, 35, 36, 40]. Constructions of OT-combiners were given for the case that a
majority of the OT-candidates are good [25, 40]. These combiners are based on
a technique of Damg̊ard et al. [18] for reducing errors in weak versions of OT.
On the other hand, there is a strong indication that there are no (black-box)
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OT-combiners if half of the candidates may be faulty [25]. We refer to n−m
n as

the tolerance ratio of the combiner. Thus, the results indicate that the tolerance
ratio of an OT-combiner should be smaller than 1

2 .
A problem with OT-combiners as above is that, by definition, they are quite

wasteful. One needs to invoke n OT-candidates (at least m > n
2 of which are

good) in order to produce just a single instance of secure OT. Even worse, the
known OT-combiners make a large number of calls to each candidate in order to
produce this single secure OT. Thus, a desirable goal is to reduce the number of
candidate calls made in order to produce each good OT. We refer to the latter
quantity as the production rate of a combiner (or simply its rate).

The OT-combiners based on the technique of [18] have a production rate of
Θ(k2n4) (where k is a security parameter) for a majority of good candidates
(see [40]). This rate can be improved to Θ(k2) when assuming a constant tol-
erance ratio; i.e. m > ( 1

2 + δ)n, for a constant δ > 0. Another downside of this
construction is that it does not provide security when the identity of the faulty
OTs can be determined adaptively.1 A different approach to OT-combiners was
taken by [36] (see also [2]) and requires Ω(n log n) calls to the OT-candidates.

1.2 Our Results

We introduce a new general approach for constructing OT-combiners by making
use of protocols for secure multiparty computation. Our approach follows a recent
paradigm suggested by Ishai et al. [30] of employing secure multiparty protocols
for the construction of secure two-party protocols. This allows us to benefit from
the wide range of techniques that have been developed in the study of secure
multiparty computation, obtaining conceptually simpler and more efficient OT-
combiners.

More concretely, we show how to obtain an OT-combiner from any instanti-
ation of the following two ingredients:

1. A t-secure n-party protocol for the OT functionality, in a network consisting
of secure point-to-point channels and a broadcast primitive.2 For instance,
one could use here the (unconditionally secure) general-purpose protocols
of [3, 7, 38, 12].

2. A secure two-party protocol for a functionality determined by the former
multiparty protocol, in a network consisting of a single OT-channel. For in-
stance, one can use here the general-purpose unconditionally secure protocols
of [23, 31, 22, 21] or the computationally secure protocols of [41, 33].

1 Adaptive security is not always required for combiners, however, at times it is crucial.
For example, consider a setting where the OT-candidates are carried out simply
by using third parties. A candidate is insecure if the corresponding third party is
corrupted. In such a setting, an adversary can potentially corrupt a third party
adaptively, during the execution of the combiner.

2 This refers to a model in which the sender and the receiver are not considered to
be among the n parties, but may each be corrupted by the adversary. Alternatively,
one can use any (t + 1)-secure (n + 2)-party protocol in the standard MPC model.
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Our approach applies both to the “semi-honest” and to the “malicious” mod-
els of secure computation, yielding the corresponding types of OT-combiners. (In
the semi-honest model the sender and the receiver follow the protocol as pre-
scribed, while in the malicious model they may deviate from it.) In contrast
to previous OT-combiners in the malicious model, the OT instances produced
by our combiners are provably secure (in the malicious model) under standard
simulation-based definitions, and can resist adaptive corruptions of candidates
and parties.

By instantiating our general approach with efficient MPC protocols from the
literature and by giving up just a constant fraction in the tolerance threshold,
we get combiners with a constant production rate. In particular:

– There exists an OT-combiner in the semi-honest model with constant pro-
duction rate and constant tolerance ratio. The combiner makes O(1) calls to
each of the n OT-candidates.

– There exists an OT-combiner in the malicious model with constant produc-
tion rate and constant tolerance ratio. The combiner makes s ≤ poly(k) calls
to each of the n OT-candidates (and generates Ω(ns) good OT calls). This
combiner applies to string OT (rather than bit-OT) and requires additional
calls to a one-way function.

Both results hold even if the bad candidates are chosen adaptively. Recall that
previous OT-combiners required either ω(n) (with adaptive security) or poly(k)
(without adaptive security) calls to the OT-candidates in order to produce just
a single instance of secure OT.
Techniques. The high-level idea behind our approach is to let the sender S and
receiver R invoke the given MPC protocol between themselves and n additional
“imaginary” parties called servers, where each server is jointly simulated by S
and R using the given two-party protocol applied on top of a corresponding OT-
candidate. Different instantiations of the underlying multiparty and two-party
protocols yield different OT-combiners.

Our constant-rate combiners rely on MPC protocols in which the (amortized)
communication complexity per gate of the circuit being evaluated is bounded by
a constant, independently of the number of parties. For the type of function-
alities we consider in this work, such protocols can be obtained by combining
a protocol from [16] with secret-sharing schemes based on algebraic geometric
codes or random linear codes [8, 9] (see [30]). The protocol from [16], in turn,
uses techniques from [3, 20, 27]. We also rely on OT-based secure two-party com-
putation protocols in which the number of OT calls is a constant multiple of
the input length. Such a protocol with a simulation-based proof of security was
recently given in [33].

1.3 Applications

We demonstrate the usefulness of our constant-rate combiners by presenting
several applications that are of independent interest.
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Constant-rate OTs from a noisy channel. Crépeau and Kilian [14] demon-
strated that two parties can implement an unconditionally secure OT by commu-
nicating over a binary symmetric channel (BSC) with some constant crossover
probability 0 < p < 1

2 . One can view such a channel as a secure implementa-
tion of a randomized functionality in which the receiver gets the sender’s input
bit with probability 1 − p and its negation with probability p. Thus, the re-
sult from [14] shows that this functionality is equivalent to OT. Unfortunately,
the reduction from [14] is quite inefficient; its efficiency was later improved by
Crépeau [13], but even this reduction requires Ω(k) noisy bits for producing a
single OT, even in the semi-honest model.

Using our constant-rate combiners in the semi-honest model, we get n in-
stances of

(
2
1

)
-OT by communicating just O(n) bits over the noisy channel.

Thus, the amortized cost of generating each OT call is just a constant number of
calls to the noisy channel. Our reduction provides unconditional security in the
semi-honest model and has error probability that vanishes exponentially with
n. Combined with the OT-based secure computation protocol of [23, 22, 21], it
implies that two parties can securely evaluate an arbitrary circuit of size s (with
statistical security in the semi-honest model) by communicating only O(s) bits
over a noisy channel. It seems likely that our approach can be extended to yield
similar results for the malicious model as well as for more general noise models
and other probabilistic functionalities. We leave such extensions to future work.

Extending OTs efficiently in the malicious model. Current implementa-
tions of OT are quite expensive in practice, and thus form the efficiency bottle-
neck in protocols that make a heavy use of OTs. This state of affairs is backed
up by the result of Impagliazzo and Rudich [28], which implies that there is no
black-box construction of OT from one-way functions. As a next to best solution,
Beaver [1] demonstrated how one can use just k OT calls (k being the security
parameter) and extend them to polynomially many OT calls solely by adding
calls to a one-way function. Beaver’s protocol makes a non-black-box use of the
underlying one-way function and is therefore considered inefficient in practice.
Ishai et al. [29] gave an alternative construction that extends k OT calls to an
essentially unbounded number of OT calls by making an additional black-box
use of a cryptographic hash function. This protocol is highly efficient and has
an amortized cost of computing and communicating just two outputs of the
hash function for each produced OT. This approach can be viewed as the OT
analogue of hybrid encryption, where an expensive asymmetric cryptosystem is
used to encrypt a short secret key, allowing the bulk of the data to be encrypted
efficiently using a symmetric encryption scheme.

Unfortunately, the efficient protocol of [29] applies only in the semi-honest
model. In order to achieve security in the malicious model, a modified protocol
is proposed based on a “cut-and-choose” approach. However, this approach in-
creases the complexity of OT generation by a multiplicative factor of at least
Ω(k). In this paper, we utilize our constant-rate combiners to get OT extension
in the malicious model that requires only a constant number of outputs of the
hash function to be computed and communicated for each generated OT.
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A first solution to this is by using a cut-and-choose approach similar to the
one used in [29]. Namely, the semi-honest protocol of [29] is invoked O(k) inde-
pendent times on random inputs, and half of these invocations are “opened” to
allow each party to verify that the other party followed the protocol’s instruc-
tions. The unopened invocations have the guarantee that with overwhelming
probability, a big majority of them generated secure OTs. This is exactly the
setting required to apply our combiners. However, in this solution the seed of
OT calls used grows substantially, which is undesirable.

Next, we develop a new solution that is not based on cut-and-choose. Instead,
just a single instance of the semi-honest protocol is run, and a simple test is added
communicating a constant number of hash values per produced OT. This test
guarantees that with overwhelming probability, all but k of the produced OTs
were secure. This allows to generate (1 + δ)k OT-candidates of which at most
k are insecure, which again gives a big majority of secure OTs. As in [29], the
reduction only makes a black-box use of the cryptographic hash function.
Reducing the number of OT channels in MPC. Consider an MPC pro-
tocol with security against a dishonest majority in a network of n parties. How
many OT channels are required to allow such a non-trivial computation? An OT
channel is a line over which two parties can carry out an unbounded number of
OT calls. Do all pairs of parties require their own separate OT-channel? Harnik
et al. [24] show that the answer is negative – if the number of corrupted parties
is bounded by t < (1− δ)n (for a constant δ) then O(n) channels are sufficient.
Namely, OT calls can be executed between every two parties using just OT calls
on the existing O(n) channels. However, in order to generate one OT call be-
tween a pair with no channel, the construction of [24] makes many OT calls over
the existing channels: it first generates n candidates for OT (using just O(1)
OT calls to generate each candidate) and then it runs an OT-combiner on the n
candidates. Using our new constant-rate combiners, we get the following result:
the amortized cost of generating an OT call between two parties with no OT
channel is O(1) OT calls over the existing O(n) channels.
Organization. In Section 2, we define OT-combiners. Section 3 describes our
general approach for obtaining OT-combiners via secure computation and its
instantiation for obtaining constant-rate combiners in the semi-honest model.
Section 4 deals with the malicious model. The applications are described in
Sections 5 (OT from noisy channels) and 6 (extending OTs efficiently). Due to
space limitations, some of the details are deferred to the full version.

2 Definition of OT-Combiners

A combiner (see [26, 25]) is given n implementation candidates for a crypto-
graphic primitive and combines them into a single implementation that is secure
if at least m of the original n candidates were indeed secure. Our study of com-
biners for OT follows this goal with an additional feature: we want the combiner
to output many secure instances of OT rather than just one. This is desirable
for efficiency reasons; indeed, invoking n OT-candidates and receiving just a
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single OT call in return seems quite wasteful. To accommodate this, we define
the multi-OT functionality OT ` in a straightforward manner (the sender holds `
pairs of secrets, the receiver holds ` choice bits and the receiver learns the secrets
of his choice).

Our OT-combiners thus take several candidates for a secure OT protocol
and produce a protocol for the OT ` functionality. In general, the OT-candidates
can be given in any representation, such as a code, or via a black-box access
to a next message oracle. Our combiners work using such black-box access to
the candidates. Accordingly, the definition we provide is that of a black-box
combiner. For more comprehensive definitions of combiners, see [25].

We assume that the candidates are efficient (polynomial-time) algorithms.
This guarantees that an efficient black-box combiner (counting each oracle call
to a candidate as a single running step) remains efficient for any instantiation
of the candidate.

When considering the functionality of the OT-candidates being combined,
one should distinguish between two cases: (1) bad OT-candidates can compro-
mise the privacy of the inputs but are guaranteed to have the correct functional-
ity when executed honestly (namely, the receiver always ends up with the correct
output); and (2) bad OT-candidates may produce arbitrary outputs. Combiners
for the latter case are called error-tolerant combiners [36]. In the semi-honest
model, we assume by default that bad candidates have the correct functionality,
but our solutions can be easily extended to achieve error-tolerance with almost
no loss of efficiency. In the malicious model, error-tolerance is always required;
moreover, the functionality of each call to a bad candidate can be adaptively
determined by the adversary during the execution of the combiner.

Definition 1 (OT-Combiner) Let OT1, . . . , OTn be candidates for implement-
ing OT. An (m,n; `, s)-OT-Combiner is an efficient two-party protocol with or-
acle access to the candidates such that: (1) If at least m of the n candidates
securely compute the OT 1 functionality then the combiner securely computes the
OT ` functionality (where security is defined using a simulation-based definition,
as in [6, 21]); and (2) The combiner runs in polynomial time and makes a total
of s calls to the candidates.

The tolerance ratio of the combiner is defined as µ = m−n
n . The production

rate (or simply the rate) of the combiner is defined as ρ = `
s . At times we omit

the parameters s and ` and write “(m, n)-OT-combiner”.

The above definition views the number of candidates n as a constant. However, it
is often useful to view the parameters of a combiner as functions of the security
parameter k. (This is the case for the applications described in Sections 5,6.)
The above definition can be naturally extended to this more general case.

We will sometimes refer to combiners that have unconditional (perfect or
statistical) security. In such cases the above definition needs to be modified, since
the candidates cannot be unconditionally secure. To this end, it is convenient to
use the stronger notion of third party black-box combiners [25]. Such combiners
are defined by viewing each candidate as a distinct external party that receives
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OT inputs from the sender and the receiver and sends the OT output to the
receiver. A bad candidate is modelled by an external party that reveals both
inputs to the adversary and (in the error-tolerant case) allows the adversary
to control its output. All of our combiners satisfy this stronger definition with
either perfect, statistical, or computational security.

3 OT-Combiners in the Semi-Honest Model

In this section, we introduce our basic technique for obtaining combiners from
protocols for secure computation. We begin by considering the semi-honest model
and later (in Section 4) extend our results to the malicious model.

In the course of describing the OT-combiner, we define two intermediate
models. The first is a tweak on the standard multiparty model which divides the
parties into clients and servers, where the clients are the only parties to hold
inputs and to receive outputs and the servers just assist in the computation.
Such a variant of secure MPC setting was considered, e.g. in [11, 16]. In our
setting, there are only two clients, sender S and receiver R. In addition, there
are n servers Pi that may aid the clients in the computation. However, up to t
of the servers may be corrupted. Formally:

Definition 2 (Clients-Servers Model) The network consists of n+2 parties:
two clients, S and R, and n servers P1, . . . , Pn. There are secure channels between
every two parties in the network. In the malicious model, we will also allow
broadcast as an atomic primitive.
Functionality: f takes inputs from S and R and gives output to R.3

Adversarial corruptions: The adversary may corrupt at most one of the
clients S and R and at most t of the n servers. We refer to a protocol that is se-
cure against such an adversary as a t-secure protocol in the clients-servers model.
We consider adaptive adversaries by default; namely, we allow the adversary to
decide which parties to corrupt during the execution of the protocol.

The above model can be viewed as a refinement of the standard model for
secure computation: every (t + 1)-secure (n + 2)-party protocol for f in the
standard model is also a t-secure protocol for f in the clients-servers model.

In the second intermediate model we use, each server Pi is replaced by a pair
of parties (Si, Ri) that are connected by an OT channel. We call this the split-
servers model. The intuition is that, at the end, we will have a two-party protocol
where one party controls all R parties and the other controls all S parties.

Definition 3 (Split-Servers Model) The network consists of 2n + 2 parties:
two clients, S and R, and n pairs of parties (S1, R1), . . . , (Sn, Rn). There is a
secure channel between every two parties in the network (as well as a broadcast
3 Our approach can be easily generalized to the case where f gives outputs to both

S and R. However, in the malicious model it is impossible to guarantee fairness in
this case.
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channel in the malicious model). In addition, there is a distinct OT channel
between each pair (Si, Ri).
Functionality: f takes inputs from S and R and gives output to R.
Adversarial corruptions: The adversary has two possible corruption pat-
terns: either (i) it corrupts the parties S, S1, ..., Sn and at most t of the Ri’s; or
(ii) it corrupts the parties R,R1, ..., Rn and at most t of the Si’s. We refer to
a protocol that is secure against such an adversary as a t-secure protocol in the
split-servers model. Again, we allow for adaptive adversaries.

Our general construction employs two types of secure computation protocols:
(1) ΠMPC is a t-secure multiparty protocol in the clients-servers model. For
t < n/2, every f admits such a protocol with perfect (resp., statistical) security
against semi-honest (resp., malicious) adversaries [3, 38]. (2) Π2party is a secure
2-party protocol in the OT-hybrid model (i.e., using an ideal OT channel). Every
f admits such a protocol with perfect (resp., statistical) security against semi-
honest (resp., malicious) adversaries [22, 31].

In our combiners, ΠMPC will always compute the functionality OT `.4 On
the other hand, we will need to employ protocols of type Π2party for different
functionalities. To simplify notation, we always use the notation Π2party and
make the actual functionality clear from the context.

Lemma 1. Let f be a functionality taking inputs from S and R and returning
output to R. There is a compiler that transforms any t-secure protocol ΠMPC for
f in the semi-honest clients-servers model into a t-secure protocol Πsplit for f
in the semi-honest split-servers model. As a building block, the compiler requires
a secure two-party protocol Π2party for general functionalities in the semi-honest
OT-hybrid model. If both ΠMPC and Π2party are perfectly or statistically secure
then so is Πsplit.

Proof: The idea is to distribute the local view of each server Pi in ΠMPC between
the corresponding pair of parties Si, Ri in Πsplit using additive secret sharing.
Thus, only an adversary corrupting both Si and Ri can learn the view of Pi.

In the initialization stage of ΠMPC, the view of each client (S or R) contains
its private input and its local randomness, while the view of each server Pi

contains only its local randomness. To initialize the corresponding state in Πsplit,
let S and R remain as before and split the view of each Pi between Si and Ri,
by having each hold local random bits which together form an additive sharing
of the randomness of Pi.

A typical intermediate step in the protocol ΠMPC is of the following form:
Server Pi with local view vPi computes a function m = πi,j(vPi) and sends the
message m to server Pj . This step is simulated in Πsplit by an interactive two-
party protocol between Si and Ri. Using the OT channel between them, Si and
Ri execute protocol Π2party on the randomized functionality whose inputs are

4 One can also consider cross-primitive combiners (see [34]), where the combiner im-
plements a different functionality than the candidates. In such a case, the combiner’s
functionality will be computed by ΠMPC.
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shares vSi
and vRi

of a view vPi
, and whose outputs are random values mSi

and
mRi under the restriction that mSi ⊕ mRi = πi,j(vSi ⊕ vRi). After the secure
two-party protocol is executed, Si sends mSi

to Sj and Ri sends mRi
to Rj . The

recipients Sj and Rj append the new message to their share of the view vPj .
Another possible step in ΠMPC involves one or two of the clients, either as

the party generating a new message m or as the receiving party. In case the
recipient is one of the clients S or R, then both mSi

and mRi
are sent to this

party. If a client (S or R) is generating the message m, then it computes m as in
ΠMPC (no two-party protocol is needed in this case) and sends a random sharing
of m to Sj and Rj , respectively. If both the sender and receiver of m are the
clients then m is sent unchanged.

The new protocol produces a correct output since at each step the sum of
the shares held by Si and Ri is exactly the view of Pi, and thus the execution
follows the protocol ΠMPC accurately. The proof of security hinges on the fact
that if the ith pair is not corrupted (i.e., either Si or Ri is uncorrupted), then the
view of the simulated server Pi remains hidden from the adversary. Therefore,
this view may be simulated in the same manner as in the original clients-servers
model protocol ΠMPC (in the case that server Pi was not corrupted). On the
other hand, if the ith pair is corrupted, then this corresponds to a corruption of
Pi by the adversary. Further details are deferred to the full version.

Lemma 2. Given any protocol Πsplit for the functionality OT` which is t-secure
in the semi-honest split-servers model, one can construct (in a black-box way)
an (n− t, n)-OT-combiner in the semi-honest model.

Proof: We describe a two-party combiner with sender S′ and receiver R′ based
on the split-server protocol Πsplit with clients S and R and parties S1, . . . , Sn,
R1, . . . , Rn. The combiner protocol is a straightforward simulation of Πsplit where
S′ simulates the S-parties (i.e., S, S1, . . . , Sn) and R′ simulates the R-parties
(R, R1, . . . , Rn). The simulation follows the protocol Πsplit with the exception
that, for every i ∈ [n], all OT-calls between Si and Ri are implemented using
the candidate OTi. Naturally, messages between the S-parties do not have to
actually be sent as they are all simulated by S′ (and similarly for the R-parties).
Clearly, in a semi-honest environment, the combiner described is an execution
of protocol Πsplit and therefore it indeed implements the OT ` functionality.
Intuitively, security follows from the fact that for every bad candidate, the worst-
case scenario is that the full view of the opposite party is revealed. But, as long
as the adversary sees no more than t such views, security follows from the t-
security of Πsplit. A formal proof, deferred to the full version, uses a simulator
for Πsplit to obtain a simulator for the combiner.

A first corollary of the above strategy is the existence of OT-combiners with
a majority of good candidates. Such a result was already known (see [25, 35, 40]),
based on a different approach stemming from the techniques of [18].
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Corollary 4 For any m and n such that m > n/2, there exists an (m,n)-
OT-combiner in the semi-honest model. Furthermore, such a combiner can be
perfectly secure.

Proof: Use, for example, the protocol of [3] to implement ΠMPC with t = n−m
and the protocol of [23, 21] to implement Π2party in the semi-honest model. By
Lemmas 1 and 2, this implies the desired OT-combiner.

3.1 Constant-Rate OT-Combiners in the Semi-Honest Model

We turn to optimizing the efficiency of the combiner described above. Its effi-
ciency is inherited from the underlying protocols ΠMPC and Π2party. For different
purposes, one may choose different protocols ΠMPC and Π2party with suitable
properties. The key parameter that we investigate is the total number of calls
to the OT-candidates. In our framework, calls to the candidates happen as part
of executions of the protocol Π2party, where each step of a server in the pro-
tocol ΠMPC requires an invocation of Π2party. Therefore, the total number of
calls is a function of the number of steps in ΠMPC, the complexity of the local
computation in each such step, and the OT complexity of Π2party.

A natural implementation of our combiner, using [3, 23], has a polynomial
rate and threshold m = dn+1

2 e. More precisely, in order to compute ` OTs, the
clients should compute a simple constant-size circuit on ` independent pairs of
inputs. Using the BGW technique [3], the local computation required by each
server for each OT is dominated by multiplying two elements from a field of
size at least n. Simulating this action by a split server, requires a secure 2-party
computation of such a functionality in the OT-hybrid model, which involves
Ω(log n) OT-calls. The overall OT complexity is therefore s = Ω(n` log n).

In the following we show that, by a careful instantiation of ΠMPC, we can
obtain a constant rate at the price of a slightly sub-optimal (yet still constant)
tolerance ratio. The following two techniques allow this improvement:

– Using a generalization of Shamir’s secret sharing scheme [20], which packs
` secrets into a single polynomial, one can run a joint computation for all `
inputs by sending just a constant number of field elements to each server. As
a result of packing ` secrets into a single polynomial, the security threshold
decreases from t = bn−1

2 c to t′ = t − ` + 1. Thus, letting ` be a sufficiently
small constant fraction of n, the tolerance ratio remains constant.

– Using the techniques of [8, 9], one can run all operations over a constant
size field. This technique further deteriorates the security threshold to t′′ =
t′ − δn, for some constant δ > 0 that tends to 0 as the field size grows.

Combining the above two techniques, one gets a protocol ΠMPC in which
each server performs a constant amount of work and `, the number of OTs being
computed, is a constant fraction of the number of servers. When compiling such
a protocol to the split-servers model (and subsequently to the combiner) we
get a constant number of OT-calls per split server. An appropriate choice of
parameters (say, ` = 0.2n and δ = 0.2) thus yields the following:
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Theorem 5. There is an OT-combiner with constant production rate and con-
stant tolerance ratio in the semi-honest model. The combiner makes a constant
number of calls to each OT-candidate.

We end this section by noting that one can get an error-tolerant version of
Theorem 5 by letting the clients in ΠMPC apply error-correction to the final n-
tuple of field elements received from the n servers. This requires the underlying
secret sharing scheme to be based on efficiently decodable codes (such as AG
codes [8]). Furthermore, the (constant) fractional security threshold of ΠMPC

should be further decreased in order to provide the redundancy required for
error-correction. This yields the following:

Theorem 6. There is an error-tolerant OT-combiner with constant production
rate and constant tolerance ratio in the semi-honest model. The combiner makes
a constant number of calls to each OT-candidate.

4 OT-Combiners in the Malicious Model

Our constructions of combiners in the malicious model follow the same outline
as in the semi-honest model. Namely, the combiner is a composition of two types
of secure protocols, one in the two-party setting (with an OT channel) and one
in the multiparty setting. Naturally, this time the components must be secure
against malicious adversaries (and thus are inherently more complex). In addi-
tion, we must incorporate a mechanism to assure authenticity of intermediate
shares supplied by the split servers.

Lemma 3. Let f be a functionality taking inputs from S and R and returning
output to R. There is a compiler that transforms any t-secure protocol ΠMPC

for f in the malicious clients-servers model into a t-secure protocol Πsplit for f
in the malicious split-servers model. As a building block, the compiler requires a
two-party protocol Π2party for general functionalities in the malicious OT-hybrid
model. If both ΠMPC and Π2party are statistically secure then so is Πsplit.

The same general idea as in the semi-honest model applies here as well with
one notable addition. Recall that in the general framework each server Pi in the
protocol ΠMPC is simulated by two parties Si, Ri that hold an additive secret
sharing of Pi’s view. The problem is that, in the split-servers model, the adver-
sary may corrupt all of the parties on one side (either all of the Ri’s or all of
the Si’s). While the adversary has no information about the view of a server
Pi unless both Si and Ri are corrupted, it can still change the outgoing mes-
sages from this server. Namely, the adversary needs only to change the outgoing
message of one side (say Si) in order to change the effective outgoing message
of server Pi in ΠMPC (recall that two messages in Πsplit correspond to a single
message in ΠMPC). To overcome this problem, we replace the use of standard
additive secret sharing by authenticated secret sharing. Namely, each Si gets,
in addition to its additive share vSi , a signature on this share using a private
key known to Ri (and vice versa). For the signature primitive it suffices to use
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a one-time MAC, which can be implemented with unconditional security using
pairwise independent hash functions.

The two-party functionality realized by Π2party takes the additive shares of
the view together with the signatures and the keys as inputs. It then verifies that
the signatures are valid; if this verification fails it sends an “abort” message to
both parties. (Any party receiving an abort message broadcasts it to all parties
and aborts; this cannot violate the fairness of Πsplit, since there is only one
party receiving an output.) The functionality returns a similar authenticated
secret sharing of the next message sent from Pi to Pj in ΠMPC.

Note that, in the malicious model, Π2party cannot achieve fairness. As before,
if some honest party aborts it causes all honest parties to abort. Finally, if
ΠMPC employs a broadcast primitive, then each message broadcasted by Pi

can be naturally emulated in Πsplit as follows. First, Si and Ri broadcast their
authenticated shares of the message. Then, each of them uses its secret key
to verify the shares broadcasted by the other party, and broadcasts an abort
message if the verification fails.

Lemma 4. Given any protocol Πsplit for the functionality OT` which is t-secure
in the malicious split-servers model, one can construct (in a black-box way) an
(n− t, n)-OT-combiner in the malicious model.

The construction is essentially the same as in the semi-honest model. The only
changes that need to be made involve broadcast messages and handling aborting
parties. A broadcast message by S or Si is emulated by simply having the sender
S′ of the combiner send this message to R′ (and vice versa). In case some party
S or Si (resp., R or Ri) in Πsplit aborts, then S′ (resp., R′) in the combiner
aborts as well. A simulation-based security proof is deferred to the full version.

Corollary 7 For any m and n such that m > n/2, there exists an (m,n)-OT-
combiner in the malicious model. Furthermore, such a combiner can be statisti-
cally secure.

Proof: For ΠMPC, we rely on the protocol of [38], which is statistically t-secure if
t < n/2 (and employs a broadcast channel). For Π2party, we can use the protocol
of [31], which provides statistical security in the malicious OT-hybrid model.

4.1 Constant-Rate OT-Combiners in the Malicious Model

The OT complexity of the combiner in the malicious model is higher than in the
semi-honest model. This is because of the inherent complexity of the underlying
protocols ΠMPC and Π2party and because of the employment of authentication,
which requires secure two-party computation of functionalities involving MACs.
The underlying principles that allow for constant-rate combiners in the malicious
model are the following:

– Use a (constant-round) protocol ΠMPC in which the overall communication
of the servers is O(`). This, in turn, translates to the size of inputs that the
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split-servers can run Π2party on. Such a protocol for arbitrary NC0 function-
alities (including OT ` as a special case) is described in [30], building on [16].
In contrast to the semi-honest model, where each server can receive just a
constant number of field elements, here we need ` to be sufficiently larger
than n, say ` = nk for a security parameter k. In such a case, each server
will receive O(k) field elements. This, in turn, will translate into a larger
(non-constant) number of invocations of each candidate.

– Use Π2party whose (amortized) OT complexity is a constant multiple of the
input length I. Such a protocol was recently given in [33]. This protocol
provides computational security and invokes O(I +k) instances of string-OT
with strings of length k (rather than bit-OT) along with a one-way function.

The above properties assure that the total number of calls to the (string-)OT-
candidates is O(`), provided that the MAC does not add a substantial overhead.
The latter is guaranteed by the fact that the messages sent in the underlying
protocol ΠMPC are long enough. Thus, the use of MACs does not increase the
asymptotic length of the inputs.

A remaining caveat is that even though each of our candidates is a string-
OT, the O(`) calls to the candidates produce ` instances of bit-OT. Indeed, in
the protocol Πsplit obtained by our general compiler the length of the views of
both Si and Ri will be proportional to the total length of all strings (rather
than the number of OTs). Thus, implementing ` good string-OTs would require
O(k`) calls to the candidates. To reduce the number of calls to O(`), we observe
that it is possible to modify our generic implementation of Πsplit so that in all
invocations of Π2party the inputs of the Ri’s are short, namely of total size O(`)
(assuming ` = kn), whereas the inputs of the Si’s are of total size O(k`). Since
the number of string OTs required by [33] is determined only by the length of
the receiver’s input, we will end up using O(`) calls to string-OT candidates to
produce ` good string-OTs. Overall we get:

Theorem 8. There is a computationally secure combiner for string-OT with
constant production rate and constant tolerance ratio in the malicious model.
The combiner makes O(k) calls to each OT-candidate, as well as black-box use
of a one-way function.

5 Application: Constant-Rate OTs from a Noisy Channel

In this section, we apply our constant-rate combiners for the semi-honest model
in order to efficiently produce a reliable stream of bit-OTs from a noisy channel,
namely a binary symmetric channel which flips each bit with probability p. (We
will refer to the latter channel as a BSC with crossover probability p.) Known
constructions for this task [14, 13, 17] require sending Ω(k) bits over the channel
in order to generate just a single OT call, even in the semi-honest model. We
show that, using our constant-rate combiners, one can achieve a number of OT
calls that is a constant multiple of the number of bits sent over the channel.
Formally:
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Theorem 9 (Constant-rate OTs from a noisy channel). For any constant
0 < p < 1/2, there exists a two-party protocol that securely implements the OT`

functionality in the semi-honest model by having the parties communicate O(`)
bits over a BSC with crossover probability p. The protocol has perfect privacy
and statistical correctness, where the error probability is 2−Ω(`).

Proof: The idea is that, instead of using a constant number of noisy bits to
produce a single secure OT, we produce an instance of OT that has perfect
privacy but a small constant error probability. Each such OT can in turn be
viewed as an OT-candidate. These candidates are then combined, using our
constant-rate error-tolerant combiner, to give a linear number of good OT calls
(this time with exponentially small error). We use the combiner from Theorem 6,
that has constant rate and constant tolerance ratio and makes just O(1) calls
to each candidate. Note that we can view each call to a candidate as a distinct
candidate, at the cost of further reducing the tolerance ratio to some small
constant ε > 0.

We now present a variant of a protocol from [14] that can implement OT with
perfect privacy and an arbitrarily small constant error ε > 0 by communicating
a constant number of bits over the BSC. By known reductions, it suffices to
implement such OT on random inputs. Let w, z be sufficiently large constants.
The sender, S, picks z random bits r1, . . . , rz and sends each one 2w times to R
(we call each corresponding sequence of 2w bits received by R a “block”). A block
is of “type I” if it has an equal number of 0’s and 1’s and is of “type II” if it has
only 0’s or only 1’s. Since w is a constant, we expect a constant fraction of blocks
of each type (this fraction is a function of w and the noise level p) and hence
by increasing z we can guarantee that both types exist with high probability.
Now the receiver assigns a block of type I to the sender’s bit it should not learn
and a block of type II to the sender’s bit it should learn. As required, this gives
perfect privacy (namely, R does not learn any information on the bit it should
not learn), but has a small (2−Ω(w)) probability of error in the bits R should
learn. We finally note that all the additional (reliable) communication required
by the combiner can be implemented via standard error-correcting codes by
communicating O(`) bits over the noisy channel.

6 Application: Extending OTs Efficiently

In this section, we present efficient black-box reductions of OTp(k) to OTq(k)

in the malicious model, where q(k) is a fixed polynomial and p(k) is any poly-
nomial. (Throughout this section, OT refers to string-OT of k-bit strings.) The
reductions make an additional black-box use of a cryptographic hash function
and build on a protocol from [29] for the semi-honest model.

We give two distinct reductions, each making just a constant number of calls
to the hash function per each OT call generated. The first follows by applying
our combiners after running a cut-and-choose procedure over the protocol of
[29]. As in [29], the protocol uses a so-called correlation-robust hash function
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(CorRH): an explicit function h such that for random strings s, t1, . . . , tm the
distribution (h(s ⊕ t1), . . . , h(s ⊕ tm), t1, . . . , tm) is pseudorandom (see [29] for
further discussion). Alternatively, a non-programmable, non-extractable random
oracle suffices to instantiate the CorRH. This solution requires a seed of k3 OTs
(more precisely, O(kσ2) OTs, where σ is a statistical security parameter) rather
than the k OTs required in the semi-honest model.

Theorem 10 (Informal). Let k be a security parameter. For any polynomial
p(k), there exists a black-box reduction of OTp(k) to OTk3

in the malicious model,
under the CorRH assumption. The construction requires only a constant number
of calls to the hash function per each OT produced.

Proof sketch: Consider the following ideal functionality, denoted IKNP` (as it
captures a core idea of [29]): the sender S has input a = (a1, . . . , ak) ∈ {0, 1}k.
For each j ∈ [`], the receiver R has inputs bj = (bj

1, . . . , b
j
k) ∈ {0, 1}k and

mj = (mj
1, . . . ,m

j
k) ∈ {0, 1}k. For j ∈ [`], the sender has output dj = a∧bj⊕mj ,

where ∧ and ⊕ denote bitwise operations. We also consider a committed version,
called CIKNP`, where parties are also committed to their inputs (if a party
inputs a special symbol reveal!, its inputs will be leaked to the other party).
Another stepping stone is a special version of OT`, called SOT`. It works as
OT`, except that a malicious R may give a special input cheat! before inputs
are provided by S. In response to this, R will receive all inputs of S. Later, R
can give another special input open! in response to which S is told whether R
at some point input cheat!. As a side effect, open! leaks the choice bits of R.

The proof follows a series of reductions. First, CIKNP` is constructed from
OTk2

(using just a single call to OTk2
). This step follows the reduction from [29]

of IKPN` to OTk while the commitment property is achieved in the natural way
by using k committed OTs [15] as the underlying primitive. As shown in [15], a
committed OT can be implemented, in a black-box way, using O(k) OTs and
thus the overall O(k2) OTs. The second step, which is detailed below, builds
SOT` from CIKNP`. Finally, one constructs OTp(k) by making k calls to an
instance of SOT`. The last step calls k instances of SOT` and, using a simple
cut-and-choose technique, one can produce O(k) instances of SOT` of which a
sufficiently small constant fraction is insecure. Then, one applies our constant-
rate combiner to get an implementation of OTO(k`).

It remains to reduce SOT` to CIKNP` with an amortized constant number of
hash function applications per produced OT. The protocol uses hash functions
Hj : {0, 1}k → {0, 1}k, for j ∈ [`], where we let Hj(x) = H(j‖x), for some fixed
hash function H. Recall that SOT` takes as inputs secrets (s1

0, s
1
1), . . . , (s

`
0, s

`
1)

from the sender, and ` choice bits c1, . . . , c` from the receiver.

1. First, CIKNP` is called with S inputting a random a and R inputting a
random mj and bj = (bj , . . . , bj), where bj = cj is the choice bit of R.

2. For j ∈ [`], the sender S computes dj
0 ← dj , dj

1 ← dj ⊕ a, rj
0 = Hj(dj

0) and
rj
1 = Hj(dj

1), and R computes dj
bj ← mj and rj

bj = Hj(dj
bj ).

3. For j ∈ [`], the sender S sends ej
0 = rj

0 ⊕ sj
0 and ej

1 = rj
1 ⊕ sj

1 to R, and R

outputs sj
bj = ej

bj ⊕ rj
bj .
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To implement the open! command, the receiver will input reveal! to CIKNP`

to show the values mj and bj to S. Sender S considers it a cheat if any bj is
not one of the monochromatic vectors 0k or 1k.

Correctness and security against a malicious sender are straightforward. The
security against a malicious R is shown by a simulator with access to SOT`. At a
high level, if any of the bj input by R is polychromatic, then the simulator inputs
cheat! to SOT`, learns the inputs of S and uses these to run the rest of the
simulation as in the protocol. If, on the other hand, all bj are monochromatic,
then the simulator is reminiscent of that of [29] (including the use of the CorRH
assumption). A complete proof appears in the full version.

The second result manages to work with a seed of just k OTs (rather than
the k3 OTs used in Theorem 10). For this result, we use a natural generalization
of the CorRH assumption, called the generalized correlation-robust hash func-
tion (GCorRH) assumption and a more specialized variant called the special xor
correlation-robust hash function (S⊕CorRH) assumption. As with the CorRH
assumption, it holds that a random function satisfies the new assumption with
overwhelming probability. This, in particular, implies the security of our proto-
col in the non-programmable, non-extractable random oracle model. We stress,
however, that all assumptions are concrete computational assumptions, and our
proofs are in the standard model.

Theorem 11. Let k be a computational security parameter. For any polynomial
p(k), there exists a black-box reduction of OTp(k) to OTk in the malicious model
under the GCorRH and S⊕CorRH assumptions. The construction requires only
a constant number of calls to the hash function per each OT produced.

At a high level, we notice from the proof of the previous theorem that in order
to gain an advantage, a cheating R must pick some bj to be polychromatic. Note
that dj

0 = a ∧ bj ⊕mj and dj
1 = a ∧ b̄j ⊕mj , where b̄j = 1k ⊕ bj . This means

that, when bj is polychromatic, both dj
0 and dj

1 depend on some bits of a. The
honest R will always know dj

bj = mj . We exploit this difference by introducing a
test where R, for each j, shows that it knows dj

0 or dj
1 without revealing which.

Essentially, we let S send the first k bits of each Hj(dj
0)⊕Hj(dj

1) to R (suppose
Hj has 2k-bit outputs). R must then return the first k bits of Hj(dj

0). This is
easy for an honest R, which knows Hj(dj

bj ), but will catch a cheating R with
some probability related to how many bits of a the receiver needs to guess one
of dj

0 and dj
1. This test, however, introduces an opening for S to cheat, which

requires an extra fix. After these tests, we have (with overwhelming probability)
at most k bad OTs out of the ` OTs being produced, and we remove the bad
OTs by using our combiner. The details and proof appear in the full version.
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