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OTDM-to-WDM Conversion Based on
Time-to-Frequency Mapping by Time-Domain
Optical Fourier Transformation

Evarist Palushani, Hans Christian Hansen Mulvad, Michael Galili, Hao Hu, Leif Katsuo Oxenlgwe,
Anders T. Clausen, and Palle Jeppesen, Member, IEEE

Abstract—This paper reports on the utilization of the time-
domain optical Fourier transformation (OFT) technique for
serial-to-parallel conversion of optical time division multiplexed
(OTDM) data tributaries into dense wavelength division multi-
plexed (DWDM) channels. The OFT is implemented by using a
dispersive medium followed by phase modulation; the latter be-
ing achieved by a four-wave mixing process with linearly chirped
pump pulses. Both numerical and experimental investigations of
the OTDM-to-WDM conversion technique are carried out. Exper-
imental validations are performed on 320- and 640-Gbit/s OTDM
data with error-free performance.

Index Terms—All-optical demultiplexing, four-wave mixing
(FWM), optical time division multiplexing (OTDM), serial-to-
parallel conversion, spectral compression, wavelength division
multiplexing (WDM).

I. INTRODUCTION

HE OPTICAL time division multiplexing (OTDM) tech-
T nique is a simple method for high-speed data generation
beyond the bandwidth limitation of electronics. Here, differ-
ent optical pulse streams, called tributaries, originated from the
same laser (same central wavelength), are separately encoded by
electrically generated data signals. Due to the low duty cycle of
their pulses, the tributaries are serially bit interleaved in order to
form the OTDM signal. By employing this technique, the gen-
eration of serial data signals with a symbol rate up to 1.28 Ter-
abaud has been reported [1]. In the case of wavelength division
multiplexing (WDM), each electrical data stream is allocated
to an optical channel with its own central wavelength and each
generated from a different laser. In contrast to OTDM, WDM
channels can overlap in the time domain (parallel to each other)
and at the receiver they can be selected by optical filtering. On
the other hand, at the receiver side in OTDM systems each of the
tributaries is traditionally demultiplexed in separate high-speed
switches. Hence, the receiver complexity and power consump-
tion essentially scale with the number of OTDM tributaries. To
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overcome this problem, a number of schemes for demultiplexing
all or several tributaries in a single switch by serial-to-parallel
conversion have been proposed [2]-[4]. Among such schemes,
a true OTDM-to-WDM conversion is particularly challenging
since it requires the converted tributary spectra to conform to
the channel spacing of a WDM grid. The reason is that such a
conversion necessitates a compression of the broad spectrum of
the low duty-cycle tributaries.

In this paper, we describe how to use the time-domain op-
tical Fourier transform (OFT) technique to convert, in a single
step, several 10-Gbit/s tributaries of a 64 x 10 Gbit/s OTDM
signal onto a WDM grid. The OFT is implemented by dispers-
ing the data signal followed by phase modulation based on a
four-wave mixing (FWM) process between the data pulses and
linearly chirped pump pulses [5]. In this way, the time informa-
tion of the OTDM signal is mapped onto the power spectrum of
the idler generated in the FWM process, hence converting the
time-interleaved OTDM tributaries to different wavelengths. At
the same time, the spectra of the converted tributaries are com-
pressed as part of the OFT process, enabling their wavelength
spacing to conform with a WDM grid. The principle is investi-
gated through numerical simulations followed by experimental
demonstrations. In particular, the OTDM-to-WDM conversion
is demonstrated for a 640-Gbit/s OTDM signal, from which
eight consecutive 10-Gbit/s tributaries are mapped to a 0.8-nm
(100 GHz) channel spaced grid. A full system evaluation with bit
error rate (BER) characterization is performed. Investigation of
different spectral compression rates is carried out, and numerical
simulations show very good agreement with the experimental
results.

II. BASIC PRINCIPLE

The time-to-frequency conversion process is well described
by the similarities between a temporal optical system manip-
ulating pulses of light and a spatial optical system manipulat-
ing beams of light. An equivalent temporal optical system is
found for a spatial optical one by exchanging spatial variables
with temporal variables and spatial frequencies with spectral
ones [6]. The effects of diffraction and spatial lenses on a beam
of light are equivalent to the effects of dispersion and quadratic
phase modulators on a pulse of light [7]. In spatial optics, if
the object is placed at the front focal plane of a lens, then the
field distribution at this point and at the output plane of such
lens are related by a Fourier transform [8]. But, also the output
field distribution and its spatial spectral frequency distribution
are related by a Fourier transform as well. Therefore, the output

1077-260X/$26.00 © 2011 IEEE
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Fig. 1. Schematic of the basic principle of the time-domain OFT technique
for time-to-frequency conversion.
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spectrum and input field are related by two successive Fourier
transforms, implying that measuring the output power spectrum
gives the spatial shape of the input object.

The same idea in temporal optics (time-to-frequency con-
version) would require the waveform to be converted to travel
through a dispersive material followed by a quadratic phase
modulation [9] as shown in Fig. 1. In the following section,
we will derive the equations describing this time-to-frequency
mapping process or time-domain OFT technique.

The transfer function Hpg, (z,w) describing propagation
through a dispersive medium with second-order chromatic dis-
persion 35 and length z is given by

139 2w*
5 > . @)

Hp, (2,w) = exp <

A quadratic phase modulation, imposing a linear chirp C, is
described in the frequency domain by [10]

271 —iw?
— . 2
= exp ( o ) @
Let Ay(0,%) be the electric field envelope of a waveform at
the input of the OFT system, propagated through a dispersive
medium of length L with accumulated dispersion D,.. = (B2 L.

The Fourier transform of the waveform at the output of the
dispersive medium is

Hy(w) =

Ay(L,w) = Ay(0,w)Hp, (L, w) 3)

where Ay (0,w) is the Fourier transform at the input. The
dispersed waveform is then quadratically phase modulated
(-mod) and its Fourier transform becomes

- 1 -
A (w) = gAO(L,w) * Hy(w)
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If the condition C' = 1/ D, is fulfilled, then (4) can be writ-
ten as

A (w)=b

+oo /
Ay (0,0 )exp <zwg ) do'.  (6)
By using the transformation ¢ = w/C, the output from the OFT
system (6) can be written as

Ac(w) = 2mbAg(0,0)i—u/c ()
and the power spectrum at the output of the OFT (6) becomes

27
= ——1A0(0,t)i=up,.. *
‘C|| 0( ; )t— Dace

Equation (8) shows that the power spectrum of the output
waveform is proportional to the intensity of the input signal.
The dispersion D,_., or equivalently C, determines the scaling
factor between the time and frequency domains expressed as
t = w/C and is used for deriving (7). Higher D, leads to
higher spectral compression. For example, consider an OTDM
data signal as initial waveform, consisting of tributary pulses
spaced by a time interval At. As a result of the OFT, these
tributaries will be mapped to different wavelength allocations
spaced by Aw = AtC'. The chirp factor C', or equivalently D,..,
can be used to control the size of the wavelength spacing, e.g.,
to match a particular WDM grid.

In order to achieve high chirp rates C', the quadratic phase
modulation can be implemented via parametric processes, such
as FWM [5]. In this case, the dispersed waveform to be trans-
formed acts as signal F(t) and the phase modulation is ap-
plied using linearly chirped pump E,(t) pulses, generated
by propagation of transform limited pulses in a dispersive
medium. In the FWM process, the signal is converted to an
idler E; (t), which combines the phases of both pump and signal
(E;(t) o< E7(t)E%(t)). In our case, the signal is Ag(L, t), and
the idler is A.(t). As a result of the FWM process, the time
information contained in the signal is mapped onto the power
spectrum of the generated idler.

To achieve an OTDM-to-WDM conversion by the aforemen-
tioned technique, the pump pulses must run at the repetition
rate of the OTDM tributaries in order to map each tributary bit
to the same wavelength. After the time-domain OFT, the idler
spectrum will resemble a wavelength grid where each channel is
an OTDM converted tributary. This grid can be made to comply
with recommendation ITU-T G.694.1 [11], which determines
the optical frequencies to be used to identify dense wavelength
division multiplexing (DWDM) channels for different frequency
grids in the range of 25-200 GHz.

Ao (w)?

®)

III. NUMERICAL ANALYSIS

In this section, we numerically investigate [12] the OTDM-
to-WDM conversion based on the OFT technique. Numerical
simulations will examine the idler’s shape and channel spacing
based on shape and chirp of pump pulses, and signal dispersion.
This analysis will help understand the limitations of the OFT
technique for OTDM-to-WDM conversion, and clarify which
are the system requirements in order for the resulting idler to
comply with a certain DWDM grid [11].



PALUSHANI et al.: OTDM-TO-WDM CONVERSION BASED ON TIME-TO-FREQUENCY MAPPING BY TIME-DOMAIN OFT 683

The OTDM signal is a 640-GHz unmodulated pulse train
(64 tributaries at 10 GHz) having Gaussian-shaped pulses with
0.6 ps' full-width at half maximum (FWHM). Pump and trib-
utaries have the same repetition rate of 10 GHz. The highly
nonlinear fiber (HNLF) used for the FWM process is 100 m
long and has nonlinear coefficient ¥ = 10 (W-km)~!. The FWM
conversion efficiency is assumed to be uniform across the entire
bandwidth of the signals (data, pump, and idler) involved in the
FWM process, and the phase mismatch is assumed to be zero.
Under these conditions, the utilization of linearly chirped flat-
top pump pulses would equalize the WDM channels resulting
from OTDM-to-WDM conversion. Such pulses can be obtained
by dispersing narrow sinc-like pulses having a broad flat-top
spectrum. In this case, the dispersion process maps the spectral
profile into the time domain [13] (frequency-to-time mapping).
The medium used to disperse the signal, and to linearly chirp
the pump is dispersion compensating fiber (DCF) with 3, =
148 ps?/km.

Fig. 2(a) shows the data, pump, and idler spectra at the out-
put of the HNLF when the pump spectrum is a sixth-order
super-Gaussian with 10 nm FWHM. The probe is dispersed in
L = 32 m DCF in order to achieve at the idler a channel fre-
quency spacing Af = T/(D,..2m) of 50 GHz (T = 1.56 ps:
OTDM tributary spacing). This corresponds to a linear chirp
C = 0.21 ps~2, which can be achieved by dispersing the pump
in 64 m DCF. Because of the flat intensity profile of the pump
pulse, which broadens up to 74 ps FWHM, it is possible to have
half of the tributaries (32 channels) mapped in the frequency
domain, well equalized, and having <1.5 dB difference. With
two of such OTDM-to-WDM converters, it is possible to extract
all 64 OTDM channels.

The simultaneous mapping and well equalization of all the
WDM channels is hardly possible, as this would require that
the pump pulse should have a proper linear chirp, be perfectly
square, have the width of the tributary bit slot, and should not
interfere with the neighboring pump pulses. This means that
the OTDM channels further from the pump center will not be
converted with the same intensity as the central ones. Higher
compression ratios require higher pump and signal dispersion.
This can be seen in Fig. 2(b), where pump and signal are dis-
persed in 128 and 64 m DCF in order to achieve a 25-GHz grid.
As the required dispersion is twice as much compared to Fig.
2(a), the spectral FWHM of the pump should be almost half of
the previous case (5.2 nm), in order for the pump pulses to be
flat, not interfere with each other, and be 75 ps wide. A spectrally
broader pump cannot be used for such a high compression ratio
as the broadened pump pulses would overlap with each other,
resulting in distorted time-to-frequency mapping. Fig. 2(b) also
shows an open eye diagram of one of the converted tributaries.
In order to get the eye diagram, the OTDM tributaries were
ON-OFF keying (OOK) modulated and the desired channel
was selected with a 0.16-nm 3-dB bandwidth optical bandpass
filter (OBPF).

The utilization of Gaussian pump pulses would result in un-
equal power levels for the WDM channels at the idler. This is
related to different pump intensities that various OTDM chan-
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Fig. 2. Simulated spectra at the output of the HNLF when flat-top, linearly
chirped pump pulses are used for OTDM-to-WDM conversion: (a) 50-GHz grid
and (b) 25-GHz grid with eye diagram (inset) of one of the converted tributaries.

nels experience. This can be seen in Fig. 3, where pump (10 GHz,
0.5-ps FWHM Gaussian pulses) and signal are dispersed in, re-
spectively, 32 and 16 m DCEF, resulting in 0.8-nm (100 GHz)
channel spacing. Fig. 4 shows the idler for both 100-GHz and
50-GHz (0.4 nm) spacing. In the latter case, pump and signal
are dispersed, respectively, in 64 and 32 m DCF. Because of
the pump’s spectral extension and in order to avoid overlap
between pump and idler spectra, the wavelength separation be-
tween pump and signal is made sufficiently larger compared to
the previous cases.

The deviation of both signal and pump chirp from the opti-
mum value for a certain spectral compression would result in
spectral distortions of the idler and consequently as well for
the selected WDM channels. Fig. 5 shows the eye diagrams
for one of the OTDM tributaries when the dispersion of data
and pump is separately increased by 10% compared to the rel-
ative optimum case for 100-GHz grid shown in Fig. 4. Since
the condition C' = 1/D,.. is not fulfilled, the pulses will have a
residual phase component which induces some temporal shifts.
The chosen WDM channel corresponds to the OTDM tribu-
tary overlapping® in the time domain with the center of the

2This OTDM tributary is always mapped to the same WDM channel, inde-
pendently on the spectral compression factor.
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Fig. 3. Simulated spectra at the output of the HNLF when Gaussian, linearly
chirped pump pulses are used for OTDM-to-WDM conversion, resulting in a
100-GHz grid.
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Fig. 4. Simulated spectra at the output of the HNLF when Gaussian pump
pulses are used for OTDM-to-WDM conversion, in the case of a 100-GHz
(0.8 nm) and a 50-GHz (0.4 nm) grid.
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Fig. 5. Distorted eye diagram when the dispersion of data (a) and pump (b)

is independently increased by 10% compared to the relative optimum case for
100-GHz frequency spacing of Fig. 4.

pump pulse and it was selected with a 0.3-nm 3-dB bandwidth
OBPEF. As can be seen, the deviation from the optimum of one
of the signals’ dispersion is enough to deteriorate the system’s
performance.

In some cases, the effect of higher order dispersion terms can-
not be neglected and should be taken into consideration when
studying pulse evolution. The higher order terms of the Taylor

Power [dBm]
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|' |—8,=10 pstkm |
RETIr 1516 1518
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50 3 0 =0 £

10
Tirnet [pa]

Fig. 6. Simulated idler spectrum showing the effect of 83 = 1 ps?/km and
10 ps/km. To be compared with B3 = 0 in Fig. 4. Eye diagrams for 33 =
10 ps®/km only for (top) pump dispersion and (bottom) data dispersion.

expansion of the propagation constant 5 come mainly into play
for ultrashort pulses, having a broad spectral content, and when
the central wavelength is near to the zero dispersion wavelength
of the fiber A(. For wide spectra, the effect of third-order disper-
sion (TOD) has to be taken into consideration. TOD is expressed
by the term 335 = df2/dw, which stems from the variation of
the GVD () with frequency, and represents an aberration fac-
tor, introducing distortions in the time-to-frequency mapping.
Fig. 6 shows the effect of TOD for the 100-GHz spacing sce-
nario of Fig. 4 but with 33 = 1 ps®/km and 33 = 10 ps®/km for
both signal and data fibers. 33 = 1 ps®/km is a typical value for
commercially available DCF [14] and it does not introduce any
distortion in the time-to-frequency mapping. Fig. 6 also shows
the eye diagrams when 33 = 10 ps®/km only for the pump (top)
or only for the signal (bottom). Considerable abberations in the
idler spectrum become visible when (3 reaches or passes this
value, for either one of the dispersion media.

Time-to-frequency mapping can also be achieved for higher
bit rates, such as 1.28 Tbits/s [1] (see Fig. 7). In this case, the
pulses for both probe and pump (at 10 GHz) are Gaussian with
0.3-ps FWHM. Because of the closer tributary position in the
time domain, half of the dispersion fiber is required in order
to achieve the same 100-GHz grid seen in Fig. 4. The resulting
spectral compression can be seen in Fig. 7. Because of the closer
spacing of the original OTDM tributaries, the extinction ratio
between the WDM channels is not as good as in the 640-GHz
case (see Fig. 7), generated from the terabaud signal when every
second pulse is suppressed. Despite this fact, it is possible to get
an open eye (see the inset in Fig. 7) by filtering with a narrower
filter (0.2-nm 3-dB bandwidth).

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

Fig. 8 shows the schematic of the experimental setup used
to perform the OTDM-to-WDM conversion. The same setup is
used to test the principle on both 320- and 640-Gbit/s OTDM
systems, except for some small details concerning optical band-
pass filtering and power levels. The pulse source is an erbium
glass oscillating pulse-generating laser (ERGO-PGL) emitting
~1.5-ps FWHM pulses with 10-GHz repetition rate and cen-
tered at 1542 nm. The ERGO-PGL output is amplified and its
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Fig. 7. Simulated idler spectrum: 100-GHz (0.8 nm) spacing and 200-GHz
(1.6 nm) spacing for, respectively, 1.28-THz and 640-GHz OTDM-to-WDM
converters when pump and data are dispersed in 16- and 8-m fiber with 3 =
148 ps?/km. Inset: eye diagram of one of the 10-Gbit/s converted tributaries of
the 1.28-Tbit/s OTDM signal.

spectrum is broadened through self-phase modulation, gener-
ating a supercontinuum in a 400-m dispersion-flattened HNLF
(DF-HNLF), from which both data and pump spectra are carved
out. The pump pulses for the FWM process are filtered at
1545 nm by using a 5-nm OBPF for the 320-Gbit/s case or
a 13-nm OBPF for the 640-Gbit/s case. The 10-GHz pulse train
for the data signal is obtained by filtering the supercontinuum
at 1557 nm with a 13-nm OBPF for both cases. The data pulses
are OOK encoded with a 10-Gbit/s 27 —1 PRBS pattern in a
Mach-Zehnder modulator (MZM), and then multiplexed up to
320 or 640 Gbits/s by using a passive fiber-based delay line
multiplexer. Both data and pump signals are dispersed in dif-
ferent lengths of DCF in order to achieve the desired spectral
compression at the idler. Subsequently, the dispersed data and
chirped pump are amplified and injected into a polarisation-
maintaining HNLF (PM-HNLF). The PM-HNLF is 100 m long
with zero dispersion wavelength X at 1545 nm, dispersion slope
0.025 ps/(nm?km), and nonlinear coefficient v ~10 (W-km)~'.
At the PM-HNLF output, a narrow 0.3-nm tuneable OBPF ex-
tracts the converted 10-Gbit/s tributaries centered at different
wavelengths in the idler signal. The time delay Az (see Fig. 8)
is used to change the position between the center of the pump
pulse and the OTDM channels, hence shifting their position in
the frequency domain. The filtered tributaries are sent into a 10-
Gbit/s preamplified receiver for BER evaluation. The receiver
and the PRBS generator are synchronized to the same clock
signal extracted from the ERGO-PGL.

B. 320-Gbit/s Case

First, the OTDM-to-WDM (serial-to-parallel) conversion
scheme was applied to a 320-Gbit/s OTDM signal [15]. This
was done in order to see the bell-shaped spectrum envelope
of the idler resulting from Gaussian pump pulses, as previously
seen in Section III. Before dispersion, both data and pump pulses
were Gaussian like with 1.3 ps FWHM. The dispersive fiber used
was 20 m DCEF for the data and 48 m DCF for the pump. The
pump pulses at the input of the PM-HNLF were, thus, broad-
ened up to 17.5 ps FWHM. The average powers at the input of
the PM-HNLF were 20.3 dBm for the pump and 2.6 dBm for the

OTDM-TO-WDM CONVERSION BASED ON TIME-TO-FREQUENCY MAPPING BY TIME-DOMAIN OFT 685

320-Gbit/s data. Fig. 9(a) shows the resulting spectrum at the
output of the PM-HNLF. As can be seen, the tributaries are
successfully mapped to different wavelengths with ~1.1 nm
spacing. Nine different 10-Gbit/s tributaries from 1528.6 to
1537.7 nm were extracted using a 0.3 nm OBPF (see Fig. 9(b),
top), and the corresponding BER curves are shown in Fig. 9(b),
bottom. The performance is error free for all channels, with
a penalty of <1.6 dB compared to the 10-Gbit/s back-to-back
(B2B) reference, extracted at the MZM output with the 0.3 nm
OBPE. Only the 1528.6-nm tributary exhibits a larger penalty
of 3.0 dB, attributed to a 10-dB lower conversion efficiency
compared to the central tributaries.

C. 640-Gbit/s Case

The OTDM-to-WDM conversion scheme was successfully
performed also on a 640-Gbit/s OTDM system. The average
input powers into the PM-HNLF were 24 dBm for the pump
and 15.5 dBm for the 640-Gbit/s data. Before being dispersed,
the transform-limited FWHM were 600 fs for the 640-Gbit/s
data signal and 490 fs for the 10-GHz pump. Fig. 10 shows the
output spectrum of the PM-HNLF, where a tributary channel
spacing of 100 GHz is achieved. The idler signal contains 19
tributaries mapped to different wavelengths in the range 1520-
1535 nm. In this case, the 640-Gbit/s OTDM data and 10-GHz
pump were dispersed in 15 and 36 m DCF [see Fig. 11(a)]. As
can be noticed, the simulated result shown in Fig. 4 is similar to
the measured one in Fig. 11(a), where in both cases the resulting
WDM channel spacing is 100 GHz. The only difference is the
DCEF lengths used to disperse the data and linearly chirp the
pump. This is related to the different pieces of DCF fibers, with
presumably different characteristics, used in the experiment. By
increasing the DCF lengths, it is possible to increase the spectral
compression rate as well. This was seen in Section III and it
is confirmed in Fig. 11(b). In this case, data and pump were
dispersed in 23 and 48 m DCEF, resulting in 0.55-nm (69 GHz)
channel spacing of the tributaries.

By changing the time delay between pump and data, it is
possible to adjust the idler shown in Fig. 11(b) to the wavelength
grid for 100-GHz DWDM as specified in [11]. Smaller channel
spacing is possible, e.g., for 50-GHz systems, but in this case a
narrower OBPF is required in order to select the desired tributary
channel. The eight tributaries from 1527.8 to 1533.6 nm are
extracted by tuning the 0.3 nm OBPF, whose transfer function is
shown in Fig. 11(a). The resulting spectra are shown in Fig. 12
and the corresponding BER curves in Fig. 13. For the best
tributary, the performance is error free with penalty <2.5 dB
compared to the 10-Gbit/s B2B reference at 1557 nm. As can
be seen, the tributaries centered at the longer wavelengths have
a worse sensitivity. This is attributed to the closer presence of
the pump signal spectrum. To verify the integrity of the entire
640-Gbit/s OTDM signal, each tributary is extracted by keeping
the 0.3-nm OBPF fixed at 1529.5 nm and by tuning the time
delay (A1) to extract each tributary. All 64 tributaries have error-
free performance with a sensitivity variation of 3.2 dB as shown
in Fig. 13 (top).

Finally, it can be noticed that due to the narrow channel
spacing and optical window used, DWDM systems require
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Fig. 9. System performance of 320-Gbit/s OTDM-to-WDM conversion. (a)
Output spectrum of PM-HNLF. (b) fop: 10-Gbit/s tributaries extracted at dif-
ferent wavelengths (resolution 0.01 nm); bottom: BER curves of nine of the
10-Gbit/s tributaries from 1528.6 nm to 1537.7 nm and the reference back-to-
back (B2B) case.

well-controlled, cooled lasers to prohibit drift outside of a given
DWDM optical channel. A reliable grid at 25 GHz would require
the network lasers to maintain accuracy over time and environ-
ment of at least £0.02 nm or even better. Such lasers are not
easily available. But with the time-domain OFT technique im-
plementation of serial-to-parallel conversion, what is required
is the right compression, and to a certain extent the stability
of the OTDM signal against time drifts. Once these require-
ments are achieved, then the right wavelength allocation at the

Experimental setup for OTDM-to-WDM conversion for 320- and 640-Gbit/s OTDM systems. In the OBPF nomenclature, the *“/”” character conceptually

'10 T T T T T
20k I =
10 GHz
- pump
& 30+ ! - X
= 640 Gbit/s'
g i OTDM
& -0 -l —hohe .
0SO trace ———————
a;“n (O —
|d1er I'|||| (I ||I ||| ||“|| _
-60 x I — " Y o Y ¥ |
1520 1530 1540 1550 1560 1570

Wavelength [nm]

Fig. 10. Spectrum at the output of the PM-HNLEF, for 100-GHz spacing of
the idler channels. Inset: Optical sampling oscilloscope (OSO) trace of the
640-Gbit/s original data signal.

demultiplexer can be obtained by just changing the relative time
delay between pump and OTDM signal, possibly controlled by
a feedback mechanism.

D. System Performance in Nonoptimum Data Dispersion

In case the data accumulated dispersion and pump linear chirp
are not optimized, then the condition C' = 1/ D, does not hold
any longer, resulting in a distorted time-to-frequency mapping.
In order to investigate the sensitivity of the system in the case
of nonoptimal conditions, the pump dispersion is kept at 36 m
DCEF and the data dispersion is changed by adding some extra
lengths of single-mode fiber (SMF) or DCF to the optimal value
of 15 m DCE. This was done by adding, respectively, 5, 10,
or 12 m SMF, or 1- or 2 m DCF. This would correspond to
lowering the data dispersion by 4.7, 9.5, or 11.4% in the case of
additional SMF® or increasing it by 6.6 or 13.3% in the case of
additional DCF. The deterioration of the system’s performance
can be seen in Fig. 14. Here are shown the BER curves of the
extracted 10-Gbit/s tributaries using the 0.3 nm OBPF centered
at 1529.5 nm. As can be seen, the tolerance of the system to
extra dispersion is in the order of £1 m DCF (~ £7%). As
the dispersion imbalance increases, the BER curve starts having
an error floor (10 m SMF trace) resulting from intersymbol
interference between neighboring channels.

37 m SMF are supposed to compensate for 1 m DCF.
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Fig. 11. Idler spectra (at the output of the PM-HNLF) when the 640-Gbit/s
OTDM data and the 10-GHz pump are dispersed, respectively, in (a) 15 and
36 m DCF, and (b) 23 and 48 m DCF (resolution 0.05 nm). (a) Transfer function
of the 0.3 nm OBPE.
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Fig. 12.  Spectra of the 10-Gbit/s tributaries extracted at different wavelengths

by using the 0.3-nm OBPF, whose transfer function is shown in Fig. 11(a).

V. CONCLUSION

This paper has reported on the utilization of the time-domain
OFT for serial (OTDM) to parallel (WDM) conversion. The
technique is based on time-to-frequency mapping implemented
by an FWM process between the dispersed OTDM data and
linearly chirped pump pulses. This technique was successfully
demonstrated for a 640-Gbit/s OTDM signal, where eight trib-
utaries were simultaneously converted to 0.8-nm (100 GHz)-

OTOM channel number
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Fig. 13.  Bottom: BER measurement for the 10-Gbit/s tributaries extracted at
different wavelengths. Top: sensitivity of all the 64 OTDM channels, measured

by scanning the OTDM signal in the time domain and keeping the 0.3-nm OBPF
fixed at 1529.5 nm.
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Fig. 14.  BER in case the 640-Gbit/s signal dispersion is changed from the
optimal (reference curve) value of 15 m DCF. The deviation is expressed both
in terms of dispersion percentage variation and amount and type of fiber added.
The pump dispersion was kept at 36 m DCF.

spaced 10-Gbit/s WDM channels showing error-free perfor-
mance with low penalty. The process should be independent of
tributary data modulation and channel spacing can be controlled
by manipulating the amount of data dispersion and pump linear
chirp. Numerical simulations show scalability to even higher bit
rates, and indicate the possibility of converting up to half of all
OTDM tributaries into well-equalized WDM channels by using
linearly chirped flat-top pump pulses. This OTDM-to-WDM
conversion technique can enable a significant reduction in the
complexity of an OTDM receiver.
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