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Abstract

We present in this paper our approach for

modeling inter-topic preferences of Twit-

ter users: for example, those who agree

with the Trans-Pacific Partnership (TPP)

also agree with free trade. This kind of

knowledge is useful not only for stance

detection across multiple topics but also

for various real-world applications includ-

ing public opinion surveys, electoral pre-

dictions, electoral campaigns, and online

debates. In order to extract users’ prefer-

ences on Twitter, we design linguistic pat-

terns in which people agree and disagree

about specific topics (e.g., “A is com-

pletely wrong”). By applying these lin-

guistic patterns to a collection of tweets,

we extract statements agreeing and dis-

agreeing with various topics. Inspired by

previous work on item recommendation,

we formalize the task of modeling inter-

topic preferences as matrix factorization:

representing users’ preferences as a user-

topic matrix and mapping both users and

topics onto a latent feature space that ab-

stracts the preferences. Our experimental

results demonstrate both that our proposed

approach is useful in predicting missing

preferences of users and that the latent

vector representations of topics success-

fully encode inter-topic preferences.

1 Introduction

Social media have changed the way people shape

public opinion. The latest survey by the Pew

Research Center reported that a majority of US

adults (62%) obtain news via social media, and

of those, 18% do so often (Gottfried and Shearer,

2016). Given that news and opinions are shared

and amplified by friend networks of individu-

als (Jamieson and Cappella, 2008), individuals are

thereby isolated from information that does not fit

well with their opinions (Pariser, 2011). Ironi-

cally, cutting-edge social media technologies pro-

mote ideological groups even with its potential to

deliver diverse information.

A large number of studies already analyzed

discussions, interactions, influences, and commu-

nities on social media along the political spec-

trum from liberal to conservative (Adamic and

Glance, 2005; Zhou et al., 2011; Cohen and Ruths,

2013; Bakshy et al., 2015; Wong et al., 2016).

Even though these studies provide intuitive vi-

sualizations and interpretations along the liberal-

conservative axis, political analysts argue that the

axis is flawed and insufficient for representing

public opinion and ideologies (Kerlinger, 1984;

Maddox and Lilie, 1984).

A potential solution for analyzing multiple axes

of the political spectrum on social media is stance

detection (Thomas et al., 2006; Somasundaran

and Wiebe, 2009; Murakami and Raymond, 2010;

Anand et al., 2011; Walker et al., 2012; Moham-

mad et al., 2016; Johnson and Goldwasser, 2016),

whose task is to determine whether the author of

a text is for, neutral, or against a topic (e.g., free

trade, immigration, abortion). However, stance

detection across different topics is extremely dif-

ficult. Anand et al. (2011) reported that a so-

phisticated method with topic-dependent features

substantially improved the performance of stance

detection within a topic, but such an approach

could not outperform a baseline method with sim-

ple n-gram features when evaluated across topics.

More recently, all participants of SemEval 2016

Task 6A (with five topics) could not outperform

the baseline supervised method using n-gram fea-

tures (Mohammad et al., 2016).

In addition, stance detection encounters dif-
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Figure 1: An overview of this study.

ficulties with different user types. Cohen and

Ruths (2013) observed that existing methods on

stance detection fail on “ordinary” users because

such methods primarily obtain training and test

data from politically vocal users (e.g., politicians);

for example, they found that a stance detector

trained on a dataset with politicians achieved 91%

accuracy on other politicians but only achieved

54% accuracy on “ordinary” users. Establishing

a bridge across different topics and users remains

a major challenge not only in stance detection, but

also in social media analytics.

An important component in establishing this

bridge is commonsense knowledge about topics.

For example, consider a topic a revision of Arti-

cle 96 of the Japanese Constitution. We infer that

the statement “we should maintain armed forces”

tends to favor this topic even without any lexical

overlap between the topic and the statement. This

inference is reasonable because: the writer of the

statement favors armed forces; those who favor

armed forces also favor a revision of Article 91;

and those who favor a revision of Article 9 also fa-

vor a revision of Article 962. In general, this kind

of commonsense knowledge can be expressed in

1Article 9 prohibits armed forces in Japan.
2Article 96 specifies high requirements for making

amendments to Constitution of Japan (including Article 9).

the format: those who agree/disagree with topic

A also agree/disagree with topic B. We call this

kind of knowledge inter-topic preference through-

out this paper.

We conjecture that previous work on stance

detection indirectly learns inter-topic preferences

within the same target through the use of n-gram

features on a supervision data. In contrast, in the

present paper, we directly acquire inter-topic pref-

erences from an unlabeled corpus of tweets. This

acquired knowledge regarding inter-topic prefer-

ences is useful not only for stance detection, but

also for various real-world applications including

public opinion survey, electoral campaigns, elec-

toral predictions, and online debates.

Figure 1 provides an overview of this work. In

our system, we extract linguistic patterns in which

people agree and disagree about specific topics

(e.g., “A is completely wrong”); to accomplish

this, as described in Section 2.1, we make use of

hashtags within a large collection of tweets. The

patterns are then used to extract instances of users’

preferences regarding various topics, as detailed in

Section 2.2. Inspired by previous work on item

recommendation, in Section 3, we formalize the

task of modeling inter-topic preferences as a ma-

trix factorization: representing a sparse user-topic

matrix (i.e., the extracted instances) with the prod-
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uct of low-rank user and topic matrices. These

low-rank matrices provide latent vector represen-

tations of both users and topics. This approach

is also useful for completing preferences of “or-

dinary” (i.e., less vocal) users, which fills the gap

between different types of users.

The contributions of this paper are threefold.

1. To the best of our knowledge, this is the first

study that models inter-topic preferences for

unlimited targets on real-world data.

2. Our experimental results show that this ap-

proach can accurately predict missing topic

preferences of users accurately (80–94%).

3. Our experimental results also demonstrate

that the latent vector representations of topics

successfully encode inter-topic preferences,

e.g., those who agree with nuclear power

plants also agree with nuclear fuel cycles.

This study uses a Japanese Twitter corpus because

of its availability from the authors, but the core

idea is applicable to any language.

2 Mining Topic Preferences of Users

In this section, we describe how we collect state-

ments in which users agree or disagree with vari-

ous topics on Twitter, which then serves as source

data for modeling inter-topic preferences. More

formally, we are interested in acquiring a collec-

tion of tuples (u, t, v), where: u ∈ U is a user; U

is the set of all users on Twitter; t ∈ T is a topic;

T is the set of all topics; and v ∈ {+1,−1} is +1
when the user u agrees with the topic t and −1
otherwise (i.e., disagreement).

Throughout this work, we use a corpus consist-

ing of 35,328,745,115 Japanese tweets (7,340,730

users) crawled from February 6, 2013 to Septem-

ber 30, 2016. We removed retweets from the cor-

pus.

2.1 Mining Linguistic Patterns of Agreement

and Disagreement

We use linguistic patterns to extract tuples (u, t, v)
from the aforementioned corpus. More specifi-

cally, when a tweet message matches to one of

linguistic patterns of agreement (e.g., “t is nec-

essary”), we regard that the author u of the tweet

agrees with topic t. Conversely, a statement of dis-

agreement is identified by linguistic patterns for

disagreement (e.g., “t is unacceptable”).

In order to design linguistic patterns, we fo-

cus on hashtags appearing in the corpus that

have been popular clues for locating subjective

statements such as sentiments (Davidov et al.,

2010), emotions (Qadir and Riloff, 2014), and

ironies (Van Hee et al., 2016). Hashtags are

also useful for finding strong supporters and crit-

ics, as well as their target topics; for example,

#immigrantsWelcome indicates that the au-

thor favors immigrants; and #StopAbortion is

against abortion.

Based on this intuition, we design reg-

ular expressions for both pro hashtags

“#(.+)sansei”3 and con hashtags

“#(.+)hantai”4, where (.+) matches a

target topic. These regular expressions can find

users who have strong preferences to topics.

Using this approach, we extracted 31,068 occur-

rences of pro/con hashtags used by 18,582 users

for 4,899 topics. We regard the set of topics found

using this procedure as set of target topics T in

this study.

Each time we encounter a tweet containing a

pro/con hashtag, we searched for corresponding

textual statements as follows. Suppose that a

tweet includes a hashtag (e.g., #TPPsansei) for

a topic t (e.g., TPP). Assuming that the author of

the given tweet does not change their attitude to-

ward a topic over time, we search for other tweets

posted by the same author that also have the topic

keyword t. This process retrieves tweets like “I

support TPP.” Then, we replace the topic keyword

into a variable A to extract patterns, e.g., “I sup-

port A.” Here, the definition of the pattern unit is

language specific. For Japanese tweets, we simply

recognize a pattern that starts with a variable (i.e.,

topic) and ends at the end of the sentence5.

Because this procedure also extracts useless

patterns such as “to A” and “this is A”, we man-

ually choose useful patterns in a systematic way:

sort patterns in descending order of the number of

users who use the pattern; and check the sorted list

of patterns manually; and remove useless patterns.

3Unlike English hashtags, we systematically attach a noun
sansei, which stands for pro (agreement) in Japanese, to a
topic, for example, #TPPsansei. This paper uses the al-
phabetical expression sansei only for explanation; the ac-
tual pattern uses Chinese characters corresponding to sansei.

4A Japanese noun hantai stands for con (disagreement),
for example, #TPPhantai. This paper uses the alphabetical
expression hantai only for explanation; the actual pattern
uses Chinese characters corresponding to hantai.

5In English, this treatment roughly corresponds to extract-
ing a verb phrase with the variable A.
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Using this approach, we obtained 100 pro patterns

(e.g., “welcome A” and “A is necessary”) and 100

con patterns (“do not let A” and “I don’t want A”).

2.2 Extracting Instances of Topic Preferences

By using the pro and con patterns acquired using

the approach described in Section 2.1, we extract

instances of (u, t, v) as follows. When a sentence

in a tweet whose author is user u matches one of

the pro patterns (e.g., “t is necessary”) and the

topic t is included in the set of target topics T , we

recognize this as an instance of (u, t,+1). Sim-

ilarly, when a sentence matches one of the con

patterns (e.g., “I don’t want t”) and the topic t

is included in the set of target topics T , we rec-

ognize this as an instance of (u, t,−1). Using

this approach, we collected 25,805,909 tuples cor-

responding to 3,302,613 users and 4,899 topics.

Because these collected tuples included compar-

atively infrequent users and topics, we removed

users and topics that appeared less than five times.

In addition, there were also meaningless frequent

topics such as “of” and “it”. Therefore, we sorted

topics in descending order of their co-occurrence

frequencies with each of the pro patterns and con

patterns, and then removed meaningless topics in

the top 100 topics. This resulted in 9,961,509 tu-

ples regarding 273,417 users and 2,323 topics.

3 Matrix Factorization

Using the methods described in Section 2, from

the corpus, we collected a number of instances of

users’ preferences regarding various topics. How-

ever, Twitter users do not necessarily express pref-

erences for all topics. In addition, it is by nature

impossible to predict whether a new (i.e., nonexis-

tent in the data) user agrees or disagrees with given

topics. Therefore, in this section, we apply matrix

factorization (Koren et al., 2009) in order to pre-

dict missing values, inspired by research regard-

ing item recommendation (Bell and Koren, 2007;

Dror et al., 2011). In essence, matrix factorization

maps both users and topics onto a latent feature

space that abstracts topic preferences of users.

Here, let R be a sparse matrix of |U |×|T |. Only

when a user u expresses a preference for topic t do

we compute an element of the sparse matrix ru,t,

ru,t =
#(u, t,+1)−#(u, t,−1)

#(u, t,+1) + #(u, t,−1)
(1)

Here, #(u, t,+1) and #(u, t,−1) represent the

numbers of occurrences of instances (u, t,+1)

and (u, t,−1), respectively. Thus, an element ru,t
approaches +1 as the user u favors the topic t,

and −1 otherwise. If the user u does not make

any statement regarding the topic t (i.e., neither

(u, t,+1) nor (u, t,−1) exists in the data), we do

not fill the corresponding element, leaving it as a

missing value.

Matrix factorization decomposes the sparse ma-

trix R into low-dimensional matrices P ∈ R
k×|U |

and Q ∈ R
k×|T |, where k is a parameter that spec-

ifies the number of dimensions of the latent space.

We minimize the following objective function to

find the matrices P and Q,

min
P,Q

∑

(u,t)∈R

(

(ru,t − pu
⊺
qt)

2

+λP ‖pu‖
2 + λQ ‖qt‖

2

)

. (2)

Here, (u, t) ∈ R is repeated for elements filled in

the sparse matrix R, pu ∈ R
k and qv ∈ R

k are

u column vectors of P and v column vectors of

Q, respectively, and λP ≥ 0 and λQ ≥ 0 repre-

sent coefficients of regularization terms. We call

pu and qt the user vector and topic vector, respec-

tively.

Using these user and topic vectors, we can pre-

dict an element r̂u,t that may be missing in the

original matrix R,

r̂u,t ≃ pu
⊺
qt. (3)

We use libmf6 (Chin et al., 2015) to solve the

optimization problem in Equation 2. We set reg-

ularization coefficients λP = 0.1 and λQ = 0.1
and use default values for the other parameters of

libmf.

4 Evaluation

4.1 Determining the Dimension Parameter k

How good is the low-rank approximation found by

matrix factorization? And can we find the “sweet

spot” for the number of dimensions k of the la-

tent space? We investigate the reconstruction er-

ror of matrix factorization using different values

of k to answer these questions. We use Root Mean

Squared Error (RMSE) to measure error,

RMSE =

√

∑

(u,t)∈R (pu
⊺qt − ru,t)2

N
. (4)

6https://github.com/cjlin1/libmf
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Figure 2: Reconstruction error (RMSE) of matrix

factorization with different k.

Here, N is the number of elements in the sparse

matrix R (i.e., the number of known values).

Figure 2 shows RMSE values over iterations

of libmf with the dimension parameter k ∈
{1, 2, 5, 10, 30, 50, 100, 300, 500}. We observed

that the reconstruction error decreased as the itera-

tive method of libmf progressed. The larger the

number of dimensions k was, the smaller the re-

construction error became; the lowest reconstruc-

tion error was 0.3256 with k = 500. We also ob-

served the error with k = 1, which corresponds to

mapping users and topics onto one dimension sim-

ilarly to the political spectrum of liberal and con-

servative. Judging from the relatively high RMSE

values with k = 1, we conclude that it may be

difficult to represent everything in the data using

a one-dimensional axis. Based on this result, we

concluded that matrix factorization with k = 100
is sufficient for reconstructing the original matrix

R and therefore used this parameter value for the

rest of our experiments.

4.2 Predicting Missing Topic Preferences

How accurately can the user and topic vectors pre-

dict missing topic preferences? To answer this

question, we evaluate the accuracy in predicting

hidden preferences in the matrix R as follows.

First, we randomly selected 5% of existing ele-

ments in R and let Y represent the collection of

the selected elements (test set). We then perform

matrix factorization on the sparse matrix without

the selected elements of Y , that is, only with the

remaining 95% elements of R (training set). We

define the accuracy of the prediction as

1

|Y |

∑

u,t∈Y

✶ (sign(r̂u,t) = sign(ru,t)) (5)

Matrix factorization

Majority baseline

Figure 3: Prediction accuracy when changing the

threshold for the number of known topic prefer-

ences of each user.

Here, ru,t denotes the actual (i.e., self-declared)

preference values, r̂u,t represents the preference

value predicted by Equation 3, sign(.) represents

the sign of the argument, and ✶(.) yields 1 only

when the condition described in the argument

holds and 0 otherwise. In other words, Equation 5

computes the proportion of correct predictions to

all predictions, assuming zero to be the decision

boundary between pro and con.

Figure 3 plots prediction accuracy values cal-

culated from different sets of users. Here the x-

axis represents a threshold θ, which filters out

users whose declarations of topic preferences are

no greater than θ topics. In other words, Figure

3 shows prediction accuracy when we know user

preferences for at least θ topics. For comparison,

we also include the majority baseline that predicts

pro and con based on the majority of preferences

regarding each topic in the training set.

Our proposed method was able to predict miss-

ing preferences with an 82.1% accuracy for users

stating preferences for at least five topics. This ac-

curacy increased as our method received more in-

formation regarding the users, reaching a 94.0%

accuracy when θ = 100. This result again in-

dicates that our proposed method reasonably uti-

lizes known preferences to complete missing pref-

erences.

In contrast, the performance of the majority

baseline decreased as it received more informa-

tion regarding the users. Because this result was

rather counter-intuitive, we examined the cause of

this phenomenon. Consequently, this result turned

out to be reasonable because preferences of vo-

cal users deviated from those of the average users.

Figure 4 illustrates this finding, showing the mean

of variances of preference values ru,t across self-
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Figure 4: Mean variance of preference values of

self-declared topics when changing the threshold

for the number of self-declared topics.

declared topics. In the figure, the x-axis repre-

sents a threshold θ, which filters out users whose

statements of topic preferences are no greater than

θ topics. We observe that the mean variance in-

creased as we focused on vocal users. Overall,

these results demonstrate the usefulness of user

and topic vectors in predicting missing prefer-

ences.

Table 1 shows examples in which missing pref-

erences of two users were predicted from known

statements of agreements and disagreements7. In

the table, predicted topics are accompanied by the

corresponding r̂u,t value in parentheses. As an

example, our proposed method predicted that the

user A, who is positive toward regime change but

negative toward Okinawa US military base, may

also be positive toward vote of non-confidence to

Cabinet but negative toward construction of a new

base.

4.3 Inter-topic Preferences

Do the topic vectors obtained by matrix fac-

torization capture inter-topic preferences, such as

“People who agree with A also agree with B”?

Because no dataset exists for this evaluation,

we created a dataset of pairwise inter-topic pref-

erences by using a crowdsourcing service8. Sam-

pling topic pairs randomly, we collected 150 topic

pairs whose cosine similarities of topic vectors

7We anonymized user names in these examples. In addi-
tion, we removed topics that are too discriminatory or aggres-
sive to other countries and races. Even though the experimen-
tal results of this paper do not necessarily reflect our idea, we
do not think it is a good idea to distribute politically incorrect
ideas through this paper.

8We used Yahoo! Crowdsourcing, a Japanese online ser-
vice for crowdsourcing.
http://crowdsourcing.yahoo.co.jp/

were below −0.6, 150 pairs whose cosine simi-

larities were between −0.6 and 0.6, and 150 pairs

whose cosine similarities were above 0.6. In this

way, we obtained 450 topic pairs for evaluation.

Given a pair of topics A and B, a crowd worker

was asked to choose a label from the following

three options: (a) those who agree/disagree with

topic A may also agree/disagree with topic B;

(b) those who agree/disagree with topic A may

conversely disagree/agree with topic B; (c) other-

wise (no association between A and B). Creating

twenty pairs of topics as gold data, we removed la-

beling results from workers whose accuracy is less

than 90%.

Consequently, we obtained 6–10 human judge-

ments for every topic pair. Regarding (a) as +1
point, (b) as −1 point, and (c) as 0 point, we com-

puted the mean of the points (i.e., average human

judgements) for each topic pair. Spearman’s rank

correlation coefficient (ρ) between cosine similar-

ity values of topic vectors and human judgements

was 0.2210. We could observe a moderate correla-

tion even though inter-topic preferences collected

in this manner were highly subjective.

In addition to the quantitative evaluation, as

summarized in Table 2, we also checked simi-

lar topics for three controversial topics, Liberal

Democratic Party (LDP), constitutional amend-

ment and right of foreigners to vote (Table 2).

Topics similar to LDP included synonymous ones

(e.g., Abe’s LDP and Abe administration) and

other topics promoted by the LDP (e.g., resuming

nuclear power plant operations, bus rapid tran-

sit (BRT) and hate speech countermeasure law).

Considering that people who support the LDP may

also tend to favor its policies, we found these re-

sults reasonable. As for the other example, consti-

tutional amendment had a feature vector that was

similar to that of amendment of Article 9, enforce-

ment of specific secret protection law and security

related law. From these results, we concluded that

topic vectors were able to capture inter-topic pref-

erences.

5 Related Work

In this section, we summarize the related work that

spreads across various research fields.

Social Science and Political Science A num-

ber of of studies analyze social phenomena re-

garding political activities, political thoughts, and

public opinions on social media. These studies
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User Type Topic

A Agreement (declared) regime change, capital relocation
Disagreement (declared) Okinawa US military base, nuclear weapons, TPP, Abe Cabinet, Abe government,

nuclear cycle, right to collective defense, nuclear power plant, Abenomics
Agreement (predicted) same-sex partnership ordinance (0.9697), vote of non-confidence to Cabinet (0.9248),

national people’s government (0.9157), abolition of tax (0.8978)
Disagreement (predicted) steamrollering war bill (-1.0522), worsening dispatch law (-1.0301), Sendai nuclear

power plant (-1.0269), war bill (-1.0190), construction of a new base (-1.0186), Abe
administration (-1.0173), landfill Henoko (-1.0158), unreasonable arrest (-1.0113)

B Agreement (declared) visit shrine, marriage
Disagreement(declared) tax increase, conscription, amend Article 9
Agreement (predicted) national people’s government (0.8467), abolition of tax (0.8300), same-sex partner-

ship ordinance (0.7700), security bills (0.6736)
Disagreement (predicted) corporate tax cuts (-1.0439), Liberal Democratic Party’s draft constitution (-1.0396),

radioactivity (-1.0276), rubble (-1.0159), nuclear cycle (-1.0143)

Table 1: Examples of agreement/disagreement topics predicted for two sample users A and B, with

predicted score r̂u,v shown in parenthesis.

Topic Topics with a high degree of cosine similarity

Liberal Democratic Party (LDP) Abe’s LDP (0.3937), resuming nuclear power plant operations (0.3765), bus rapid
transit (BRT) (0.3410), hate speech countermeasure law (0.3373), Henoko relocation
(0.3353), C-130 (0.3338), Abe administration (0.3248), LDP & Komeito (0.2898),
Prime Minister Abe (0.2835)

constitutional amendment amendment of Article 9 (0.4520), enforcement of specific secret protection law
(0.4399), security related law (0.4242), specific confidentiality protection law (0.4022),
security bill amendment (0.3977), defense forces (0.3962), my number law (0.3874),
collective self-defense rights (0.3687), militarist revival (0.3567)

right of foreigners to vote human rights law (0.5405), anti-discrimination law (0.5376), hate speech countermea-
sure law (0.5080), foreigner’s life protection (0.4553), immigration refugee (0.4520),
co-organized Olympics (0.4379)

Table 2: Topics identified as being similar to the three controversial topics shown in the left column.

model the political spectrum from liberal to con-

servative (Adamic and Glance, 2005; Zhou et al.,

2011; Cohen and Ruths, 2013; Bakshy et al., 2015;

Wong et al., 2016), political parties (Tumasjan

et al., 2010; Boutet et al., 2013; Makazhanov

and Rafiei, 2013), and elections (O’Connor et al.,

2010; Conover et al., 2011).

Employing a single axis (e.g., liberal to conser-

vative) or a few axes (e.g., political parties and

candidates of elections), these studies provide in-

tuitive visualizations and interpretations along the

respective axes. In contrast, this study is the first

attempt to recognize and organize various axes of

topics on social media with no prior assumptions

regarding the axes. Therefore, we think our study

provides a new tool for computational social sci-

ence and political science that enables researchers

to analyze and interpret phenomena on social me-

dia.

Next, we describe previous research focused

on acquiring lexical knowledge of politics. Sim

et al. (2013) measured ideological positions of

candidates in US presidential elections from their

speeches. The study first constructs “cue lexicons”

from political writings labeled with ideologies

by domain experts, using sparse additive genera-

tive models (Eisenstein et al., 2011). These con-

structed cue lexicons were associated with such

ideologies as left, center, and right. Representing

each speech of a candidate with cue lexicons, they

inferred the proportions of ideologies of the candi-

date. The study requires a predefined set of labels

and text data associated with the labels.

Bamman and Smith (2015) presented an

unsupervised method for assessing the politi-

cal stance of a proposition, such as “global

warming is a hoax,” along the political spec-

trum of liberal to conservative. In their

work, a proposition was represented by a tu-

ple in the form 〈subject, predicate〉, for example,

〈global warming, hoax〉. They presented a gen-

erative model for users, subjects, and predicates

to find a one-dimensional latent space that corre-

sponded to the political spectrum.

Similar to our present work, their work (Bam-

man and Smith, 2015) did not require labeled data
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to map users and topics (i.e., subjects) onto a la-

tent feature space. In their paper, they reported

that the generative model outperformed Principal

Component Analysis (PCA), which is a method

for matrix factorization. Empirical results here

probably reflected the underlying assumptions that

PCA treats missing elements as zero and not as

missing data. In contrast, in the present work,

we properly distinguish missing values from zero,

excluding missing elements of the original matrix

from the objective function of Equation 2. Further,

this work demonstrated the usefulness of the latent

space, that is, topic and user vectors, in predicting

missing topic preferences of users and inter-topic

preferences.

Fine-grained Opinion Analysis The method

presented in Section 2 is an instance of fine-

grained opinion analysis (Wiebe et al., 2005; Choi

et al., 2006; Johansson and Moschitti, 2010; Yang

and Cardie, 2013; Deng and Wiebe, 2015), which

extracts a tuple of a subjective opinion, a holder of

the opinion, and a target of the opinion from text.

Although these previous studies have the potential

to improve the quality of the user-topic matrix R,

unfortunately, no corpus or resource is available

for the Japanese language. We do not currently

have a large collection of English tweets, but com-

bining fine-grained opinion analysis with matrix

factorization is an immediate future work.

Causality Relation Some of inter-topic prefer-

ences in this work can be explained by causality

relation, for example, “TPP promotes free trade.”

A number of previous studies acquire instances of

causal relation (Girju, 2003; Do et al., 2011) and

promote/suppress relation (Hashimoto et al., 2012;

Fluck et al., 2015) from text. The causality knowl-

edge is useful for predicting (hypotheses of) future

events (Radinsky et al., 2012; Radinsky and Davi-

dovich, 2012; Hashimoto et al., 2015).

Inter-topic preferences, however, also include

pairs of topics in which causality relation hardly

holds. As an example, it is unreasonable to infer

that nuclear plant and railroading of bills have a

causal relation, but those who dislike nuclear plant

also oppose railroading of bills because presum-

ably they think the governing political parties rush

the bill for resuming a nuclear plant. In this study,

we model these inter-topic preferences based on

preferences of the public. That said, we have as a

promising future direction of our work plans to in-

corporate approaches to acquire causality knowl-

edge.

6 Conclusion

In this paper, we presented a novel approach for

modeling inter-topic preferences of users on Twit-

ter. Designing linguistic patterns for identifying

support and opposition statements, we extracted

users’ preferences regarding various topics from

a large collection of tweets. We formalized the

task of modeling inter-topic preferences as a ma-

trix factorization that maps both users and top-

ics onto a latent feature space that abstracts users’

preferences. Through our experimental results, we

demonstrated that our approach was able to accu-

rately predict missing topic preferences of users

(80–94%) and that our latent vector representa-

tions of topics properly encoded inter-topic pref-

erences.

For our immediate future work, we plan to em-

bed the topic and user vectors to create a cross-

topic stance detector. It is possible to generalize

our work to model heterogeneous signals, such

as interests and behaviors of people, for example,

“those who are interested in A also support B,”

and “those who favor A also vote for B”. There-

fore, we believe that our work will bring about new

applications in the field of NLP and other disci-

plines.
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