
Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

10 "o

by William W. McCune

A! Oll- fluid Ldbodto ry. Ai gonine, ll ui 60439
operated by The University of Chicago
f(r the United States Department of Energy under C o w W i 109 VJ$J

_ _ _

MASTER

6e 04;

A~ L d-'44

OTTER 1tO Usersz' Guide

A iC ll c d i Oai I i-t tifit)ii'\. \\ it lil ' I it i's 111 lilt' (I I I I I '. lltid Il iti. I,

v\\ IIed b\ iiiQ I litel Stiats x-)'\ eiii .lclin, ind t)J)eritled h\ Ihe t 'ni \ eri td(iicngo

uncld'r t11' prm\ Iloll,' t I al Cl'llat \\ 1111 1|c' I h.plIfill tl I f :n r 0[[\.

li 11 tri Ii a, hCCfII iCjI hdt d hit i ll li e the I

i\li . a hiI ii the

>%dlito ii ' I iCtillilCl Iihot'tilatilt Str'\ iC

NIIS IIl tgt \ I)tltrlihloli ('enter

IP.O. HO \ I 3()
(ik Ridge. TN 3783 1

Iricc: I'i tiled C 'tp_\ :\0 3

\1tiCe IChe \() I

1i1 i Cll) l tr \\.1, i' ;t .ip si a i ll . iI t t O Iili t o \\lrk , Ihn orLd h\ all la ge (lc\
the I nlied ls ile, (i\o [e 1rilili . \eilleil 11e I nitled Stall'e (u)\0 ern1CII 1101

ain\ aeiinc\ tiert 1101 dil\ oh thei1 eiiiplo\ e5. rlikeN dil_\ \m dirdTil\ . \[.Liic

l I- Inlljhlle . orl lia lunlles anyl Icul |hahll||\ orl rcNprlli~ltih bw1 the0 ;ccul;tC\.

t (illl[3|C entleN . or Un~cllllnc'~ to anl\ lInll() 11I l~l .lp 3l l ltu . l)!-0dLIk t. OFl p l

cNN lhi' I med. or ruetreneiiN 1i1111 it, NLise \\ (Ilttid o1t iiflltrie pi|\ick (r\\ ted

Sigill. 'I CIhiereiL in toaiyi tCin_\ NjtcitIC coinnrercidi pioduit. Pl'rlCNN. or

Ner\ Ice b\ tide iHanile. tiadCiind . iniiuilactuiie., 01 o'11ei\\ Nc. doeN i1h nct

j ~ ili\ cui tlllilile otr illpl\ tIN elldtilNeilleill. Iecttillillei'dsiitllll, lor!\ Ol i ll K

ihe 1 united StiaIe% (W;\ erilineil orii\ genic\ thereo1lI. Tie \ re\ N ntid opilliNl

oh aiuththr e\rie~ed herein do iil iieceNill\ tIdle O> r eflect t1hoe 0! the

I nailed State, (I0\ clilrlililo any dii' it..lit\ CiteotL

.

IlSCL A IMER

ANL--88-44

DE89 008656

ANL-88-44

ARGONNE NA'U{)NAL LABORATORY
9700 South Cass Avenue

Argonne, Illinois 60439-4801

OTTER 1.0 Users' Guide

by

William W. McCune

Mathematics and Computer Science Division

January 1989

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

A major purpose of the Techni-
cai Information Center is to provide

the broadest dissemination possi-
ble of information contained in

DOE's Research and Development
Reports to business, industry, the
academic community, and federal,

state and local governments.

Although a small portion of this
report is not reproducible, it is

being made available to expedite

the availability of information on the

research discussed herein.

Contents

1 Introduction 1

2 Outline of OTTER's Inference Process 2

3 Using OTTER 3

3.1 Syntax....... 3

3.1.1 Names.......... 3

3.1.2 Terms and Atoms 4

3.1.3 Literals and Clauses 4

3.1.4 Formulas 4

3.2 Commands and the Input File. 5

3.2.1 Input of Options.. 5

3.2.2 Input of Lists of Clauses . 5

3.2.3 Input of Lists of Formulas 6

3.2.4 Input of Lists of Weight Templates 6

3.2.5 Input of the Lex Term 7

4 Options 7

4.1 Flags.. .. 7

4.1.1 Inference Rules . 7

4.1.2 Paramodulation Flags . 8

4.1.3 Flags for Handling Generated Clauses . 8

4.1.4 Demodulation and Equality Flags 9

4.1.5 Indexing Flags . 10

4.1.6 Miscellaneous Flags 10

4.2 Parameters 11

4.2.1 M onitoring Progress . 11

4.2.2 Placing Limits on the Search . 11

4.2.3 Limits on the Size of Generated Clauses . 12

4.2.4 Indexing Parameters . 12

4.2.5 Miscellaneous Parameters . 12

5 Ordering and Dynamic Demodulation 13

5.1 Lexical Order . 13

111

5.2 Lex-dependent Demodulation 13

5.3 Orienting Equalities 14

5.4 Determining Dynamic Demodulators 14

5.5 Completion and Termination 15

6 Evaluable Functions and Predicates ($SUM, $LT, ...) 15

7 Weighting 17

7.1 W eighinig Clauses and Literals . 18

7.2 Wei;hing Atoms and Terms 13

8 Answer Literals 18

9 Limits, Abnormal Ends (ABENDS), and Fixes 19

10 Summary of the Options and their Defaults 19

References 20

iv

OTTER 1.0 Users' Guide

by

William W. McCune

Abstract

OTTER (Other Techniques for Theorem-proving and Effective Research) is a resolution-

style theorem-proving program for first-order logic with equaliLy. OTTER includes the

inference rules binary resolution, hyperresolution, UR-resolution, and binary paramod-

ulation. Some of its other abilities are conversion from first-order formulas to clauses,

forward and back subsumption, factoring, weighting, answer literals, term ordering, for-

ward and back demodulation, and evaluable functions and predicates. OTTER is coded

in C, and it is portable to a wide variety of computers.

1 Introduction

OTTER (Other Techniques for Theorem-proving and Effective Research) is a resolution-style theorem

prover, similar in scope and purpose to the AURA [9] and LMA/ITP [6] theorem provers, which are also

associated with Argonne. The primary design considerations have been performance, portability,

and compactness and simplicity of the code. The programming language C is used.

OTTER features the inference rules binary resolution, hyperresolution, UR-resolution, and binary

paramodulation. These inference rules take a small set of clauses and infer a clause; if the inferred

clause is new, interesting, and useful, it is stored and may become available for subsequent inferences.

Other features of OTTER are the following:

" Statements of the problem may be input with either first-order formulas or with clauses (a

clause is a disjunction with implicit universal quantifiers and existential quantifiers). If

first-order formulas are input, OTTER translates them to clauses.

" Forward demodulation rewrites and simplifies newly inferred clauses with a set of equalities,

and back demodulation uses a newly inferred equality (which has been added to the set of

demodulators) to rewrite all existing clauses.

1

" Forward subsumptioii lete An infecred clause if it is subsumed by any existing clause, and
back subsumption deletes all clauses that are subsumed by an inferred clause.

" Factoring can help to overcome the complexity of non-Horn clauses.

" Weight functions and lexical ordering decide the "goodness" of clauses and terms.

" Answer literals give information about the proofs that are found.

" Evaluable functions and predicntes build in integer arithmetic, Boolean operations, and lexical

comparisons, and enable users to "program" aspects of deduction processes.

OTTER is not automatic. Even after the user has encoded a problem into first-order logic or

into clauses, the user must choose inferences rules, set options to control the processing of inferred

clauses, and decide which input formulas or clauses are to be in the initial set of support and which

(if any) equalities are to be demodulators. If OTTER fails to find a proof, the user may wish to try

again with different initial conditions.

Summaries of other theorem-proving systems can be found in the proceedings of recent CADE

meetings [8,7].

It is assumed that the reader knows the terminology of first-order logic and automated theorem

proving, including term (variable, constant, complex term), atom, literal, clause, propositional vari-
able, function symbol, predicate symbol, Skolem constant, Skolem function, formula, and conjunctive

normal form (CNF). See [10], [1], or [5] for an introduction to automated theorem proving, and see

[11] for an overview of the field.

2 Outline of OTTER's Inference Process

Like AURA and LMA/ITP, OTTER uses the given-clause algorithm, which can be viewed as a simple

implementation of the set of support strategy. OTTER maintains three lists of clauses: axioms, sos
(set of support), and demodulators. (AURA and LMA/ITP have a list called have-been-given; OTTER

appends clauses that have been given to axioms rather than keeping them in a separate list. The

name axioms is a bit misleading, because inferred clauses become members of axioms-the name

has been retained by evolution.)

The main loop for inferring and processing clauses and searching for a refutation is

While (sos is not empty and no refutation has been found)
1. Let given-clause be the 'lightest' (or optionally the first)

clause in sos;

2. Nove given-clause from sos to axioms;

3. Infer and process new clauses using the inferer.ce rules in

effect; each new clause must have the givenclause as

one of its parents and members of axioms as its other

parents; new clauses that pass the retention tests

are appended to sos;

End of while loop.

2

The procedure for processing a newly inferred clause new.cl is

1. (optional) Output newcl.

2. Demodulate newcl (including $ evaluation).

3. (optional) Orient equalities.

4. Merge identical literals (leftmost copy is kept).

S. (optional) Sort literals.

6. (optional) Discard newcl and exit if new..cl has too many literals.

7. Discard newcl and exit if newcl is a tautology.

8. (optional) Discard newcl and exit if newcl is too 'heavy'.

9. (optional) Discard newcl and exit if newcl is subsumed by any clause

in axioms or sos (forward subsumption).

10. (optional) Apply unit deletion.

11. Integrate newcl and append it to sos.

12. (optional) Output kept clause.

13. (optional) If newcl is an equality unit, try to introduce a

new function symbol.

14. (optional) Try to make newcl into a demodulator.

15. If newcl has 0 literals, a refutation has been found.

16. If newcl has 1 literal, then search axioms and sos for

unit conflict (refutation) with newcl.

17. (optional) Print the proof if a refutation has been found.

18. (optional) Back demodulate if Step 14 made newcl into a demodulator.

19. (optional) Discard each clause in axioms and each clause in sos that

is subsumed by newcl (back subsumption).

20. (optional) Factor new.cl and process factors.

Steps 15-20 are delayed until steps 1-14 have been applied to all clauses inferred from the current

given clause.

3 Using OTTER

OTTER is not interactive. On UNIX and on UNIX-like systems it reads from the standard input and
writes to the standard output:

otter < input-file > output-file

3.1 Syntax

Comments can be placed in the input file by using the symbol %. All characters from the first

%

on a line to the end of the line are ignored. Comments can occur within terms. Comments are not

echoed to the output file.

3.1.1 Names

Names are alphanumeric strings that may contain some other characters such as $ and -. A name

may contain up to 50 characters. Names are used as constant symbols, function symbols, predicate

symbols, propositional variables, and regular variables. In general, the type (predicate symbol,

function symbol, constant, variable) of a name is determined by its context. Since the variables in

3

clauses are not explicitly bound by universal quantifiers, a convention must be used to distinguish

constants from variables. The rule is that in clauses, variables start with (lower case) u, v, w, x, y,

or z. In formulas, any name can be used as a variable, because variables are explicitly quantified.

A name usually cannot be used for two different purposes. For example, an input error will be

flagged if a symbol has different occurrences with different numbers of arguments. (This protective

feature can be overridden by the command clear(check.arity), Section 4.1.6.)

Some names are special. Any binary predicate symbol that starts with EQ, Eq, or eq is understood

by demodulation and paramodulation as an equality predicate. The symbol = can be used to write

infix equality atoms. All symbols that start with * are reserved for special purposes. Any predicate

symbol that starts with $ANS, $Ans, or sans is understood as an answer predicate (answer literal,

Section 8). Other symbols that start with $ are evaluable functions or predicates (Section 6).

3.1.2 Terms and Atoms

Determining whether a simple term is a constant or a variable depends or 4"e context of the term.

If it occurs in a clause, then the name determines the type (see above). If it occurs in a formula,

it is a variable if it is bound by a quantifier. Most complex terms are written in prefix form, for

example f(a,b,c).

Prolog-style list notation can be used to write terms that represent lists: the symbol Q is

an abbreviation for $nil, [t1It2] abbreviates for $cons(t1, t), and [t1,t2,t3,t4] abbreviates

=cons(ti,$cons(t2, scenns(t3 ,$cons(t 4 , $nil)))). White space (spaces, tabs, newlines) can oc-
cur in complex terms anywhere except within names and between a function or predicate symbol

and the opening parenthesis.

Atoms are similar to complex terms, except that a name is also an atom (a propositional variable),

and equalities and negated equalities can be written in infix form as (t = t 2) and (t 1 != t 2). White

space is required around = and !=, and parentheses are required.

3.1.3 Literals and Clauses

If a is an atom, then a and -a are literals. There should be no white space between the negation sign

and the atom. A clause is a sequence of literals separated with I. White space is optional before

and after literals. A clause is always terminated with a period (but the period is not considered to

be part of the clause).

3.1.4 Formulas

1. Atoms are formulas.

2. If F and G are formulas, then (F <-> G) and (F -> G) are formulas.

3. If F1 , ... , F, are formulas, then (F 1 I -.. I F,) and (F1 & ... t F) are formulas.

4. The symbols all and exists are quantifiers. If Qi ... Q,, are quantifiers, x1 ... x~ are names,

and F is a formula, then (Qi xi --- Q, x,, F) is a formula.

5. If F is a nonnegated formula, then -F is a formula.

The symbols have their expected meanings: <-> means "if and only if", -> means "implies", I means

"or", and A means "and".

4

All parentheses are required, and white space is required arc mci <->, ->, I, and &, and after

quantifiers and their associated variable occurrences.

Note that the following are not formulas: -- p(a) (double negation), (p k q -> r) (not enough

parentheses), (all x p(x) k q(x)) (not enough parentheses), (pkq) (not enough white space).

Clauses are different from formulas, both in syntax and in treatment by OTTER. The string "p |

q I r" is a clause, and "(p I q I r)" is a formula. Formulas are translated into clauses (negation

normal form, Skolemization, then CNF) when input.

3.2 Commands and the Input File

Input to OTTER consists of a small set of commands, some of which indicate that a list of objects

(clauses, formulas, or weight templates) follows the command. All lists of objects are terminated

with end-of.list. The commands are given in Table 1.

set (flag.name)

.

clear (flag.name)

.

assign(parameter-name, integer).

lex(lex-list).

list (axioms).

list(sos).

list(demodulators).

formula-list(axioms)

.

formula.list(sos).

weight.list(weight-list-name).

set a flag

clear a flag

assign an integer to a parameter

assign an ordering on symbols

read axioms in clause form

read set of support in clause form

read demodulators in clause form

read axioms in formula form

read set of support in formula form

read weight templates

Table 1: Commands

There are a few constraints on the order of commands. All options that control the conversion

of formulas to clauses must occur before any formula-list command. The only constraints on

combinations and replications of commands concerns the lex command (Section 3.2.5) arnd the

weight..list commands (Section 7).

3.2.1 Input of Options

OTTER recognizes two kinds of options: flags and parameters. Flags are Boolean-valued options;

they are changed with the set and the clear commands, which take the name of the flag as

the argument. Parameters are integer-valued options; they are changed with the assign command,

which takes the name of the parameter as the first argument and an integer as the second. Examples

are

set (print _gen).
clear(backsub).

assign(maxseconds, 300).

% print all generated clauses
'. do not do back subsumpt ion

V. stop after about 300 seconds

The options are described and their default values are given in Section 4.

3.2.2 Input of Lists of Clauses

A list of clauses is specified with one of the following, and is terminated with end-of.list. Each

clause is terminated with a period.

5

list (axioms).

list(sos).

list (demodulators).

Example:

list(axioms).

(x = x).

(f(e,x) = x).

(f(g(x),x) = e).

(f(f(x,y),z) = f(x~f(y,z))).
(f(z,x) != f(z,y)) I (x = y).

(f(x,z) != f(y,z)) I (x = y).
end~of _list

.

X"

"/

X"

"/

X"

X"

reflexivity

left identity

left inverse

associativity

left cancellation

right cancellation

3.2.3 Input of Lists of Formulas

A list of formulas is specified with one of the following, and is terminated with end..oflist. Each

formula is terminated with a period.

formul.._list(axioms).
formulalist(sos).

Example (equivalent to above):

.ormulalist(axioms).

(all a (a = a)).

(all a (f(e,a) = a)).

(all a (f(g(a),a) = e)).

(all a all b all c (f (f (a, b) , c) = f (a, f (b, c))))

.

(all a all b all c ((f(c,a) = f(c,b)) -> (a = b))).

(all a all b all c ((f(a,c) = f(b,c)) -> (a = b))).

end-of -list.

reflexivity

left identity
left inverse

associativity

left cancellation

right cancellation

3.2.4 Input of Lists of Weight Templates

A list of weight templates is specified with one of the following, and is terminated with end.of..list.

Each weight template is terminated with a period.

weightlist (pick.given).

weightlist(purgegen).

weightlist(pickandpurge).

weightlist(terms).

vs

.'I

'!

y.

Example:

weightlist(pickandpurge).

weight(a, 0).

weight (g(2), -50).

weight(P(11,1) , 100).
weight(x, E).

X

Is
.,.

.,.

for picking given clauses

for discarding generated clauses

for both picking and purging

for ordering terms

weight of contant a is 0
twice weight of argument - 50
sum of weights of arguments + 100

all variables have weight 5

6

weight (f (g(-3) , 4), -300). X see Section 7

endof _list.

See Section 7 for 'he syntax and use of weight templates.

3.2.5 Input of the Lex Term

The lex term is used to specify an ordering on function and constant symbols, and thereby a lexical

ordering on terms. Lexical ordering on terms is used in three contexts: orienting equality literals

(Sections 4.1.4 and 5.3), deciding whether to apply a lex-dependent demodulator (Section 5.2), and

evaluating functions/predicates that perform lexical comparisons (Section 6).

There cannot be more than one lex command in the input file, and the lex term should contain

all appropriate symbols. The order for terms that do not occur in the lex term is the order in which

they occur in the input file (the order in which they are entered into the symbol table).

For example, if or is a binary function symbol, and a, b, c, d are constants, the lex command

lex([a, b, c, d, or(x,x)]).

specifies a -< b -< c - d < or. The arguments of or serve as place-holders only; they identify or

as a 2-place function symbol.

There are two ways of lexically ordering terms with variables-see Sections 4.1.4 and 5.1.

4 Options

Flags are Boolean-valued options, and parameters are integer-valued options. When the user changes

an option, OTTER sometimes automatically changes other options-the user will be informed when
such a change occurs.

4.1 Flags

4.1.1 Inference Rules

binary-res - default clear. If this flag is set, use the inference rule binary reso'ition (along with

any other inference rules that are set) to generate new clauses.

hyper-res - default clear. If this flag is set, use the inference rule (positive) hyperresolution (along

with any other inference rules that are set) to generate new clauses.

ur.res - default clear. If this flag is set, use the inference rule UR-resolution (unit-resulting

resolution) (along with any other inference rules that are set) to generate new clauses.

para-into -- default clear. If this flag is set, use the inference rule "paramodulation into the given

clause" (along with any other inference rules that are set) to generate new clauses.

para.from - default clear. If this flag is set, use the inference rule "paramodulation from the given

clause" (along with any other inference rules that are set) to generate new clauses.

demod...inf - default clear. If thjs flag is set, apply demodulation, s if it were an inference rule, to

the given clause. This is useful for debugging sets of demodulators. When this flag is set, the given

clause is copied, then processed just like any newly generated clause.

7

4.1.2 Paramodulation Flags

parafrom-left - default clear. If this flag is set, allow paramodulation from the left sides of

equality literals. (Applies to both "para..into" and "para.from" inference rules.)

parafrom-right - default clear. If this flag is set, allow paramodulation from the right sides of

equality literals. (Applies to both "para-into" and "para-frorn" inference rules.)

para-fromvars - default clear. If this flag is set, allow paramodulation from variables. (Applies

to both "para.into" and "para-from" inference rules.)

para-into-vars - default clear. If this flag is set, allow paramodulation into variables. (Applies

to both "para.into" and "para.from" inference rules.)

para-ones-rule - default clear. If this flag is set, paramodulation obeys the l's rule. (The l's

rule is a special-purpose strategy for problems in combinatory logic-its usefulness has not been

demonstrated eX2where.) (Applies to both "para..into" and "para...from" inference rules.)

para-all - default clear. If this flag is set, then replace all occurrences of the into term with the

replacement term. (Applies to both "para..into" and "para.from" inference rules.)

no.para-into.1eft - default clear. If this flag is set, then prohibit paramodulation into left argu-

ments of positive and negative equalities. (Applies to both "para.into" and "para..from" inference

rules.)

no.para-into.right - default clear. If this flag is set, then prohibit paramodulation into right

arguments of positive and negative equalities. Tnis flag is one of the options to be used when

searching for a complete set of reductions. (Applies to both "para.into" and "para.from" inference

rules.)

4.1.3 Flags for Handling Generated Clauses

(Section 4.1.4 gives additional, equality-related flags for handling generated clauses.)

print~gen - default clear. If this flag is set, output new clauses at the beginning of processing.

order..eq - default clear. If this flag is set, flip equalities if the right side is heavier than the left.

See Section 5 for the meaning of "heavier".

sort-literals - default clear. If this flag is set, literals of newly generated clauses are sorted:

negative literals, then positive literals, then answer literals. The main purpose of this flag is to make

clauses more readable. In some cases, this flag can speed up subsumption on non-unit clauses.

for.sub - default set. If this flag is set, apply forward subsumption during the processing of newly

generated clauses. (Delete the new clause if it is subsumed by any clause in axioms or sos.)

unit.deletion - default clear. If this flag is set, apply unit deletion to newly generated clauses.

Unit deletion removes a literal from a newly generated clause if the literal is the negation of an

instance of a unit clause that occurs in axioms or sos. For example, the second literal of p(ax) I

q(a,x) is removed by the unit -q(u,v); but it is not removed by the unit -q(u,b), because that

unification causes the instantiation of x. All such literals are removed from the newly generated

clause, even if the result is the empty clause. (Unit deletion is not useful if only units are being

generated.)

print-kept - default set. If this flag is set, output new clauses if they pass all retention tests.

back.sub - default set. If this flag is set, apply back subsumption during the processing of newly

kept clauses. (Delete all clauses in axioms or sos that are subsumed by the newly kept clause.)

8

printback-sub - default set. If this flag is set, output clauses when they are back subsumed.

factor - default clear. If this flag is set, factor newly kept clauses. Note that unlike other inference

rules, factoring is not applied to the given clause-it is applied to a new clause as soon as it is kept.

All factors are generated in an iterative manner. Factoring is attempted on answer literals. If

factoring is enabled, a clause with n literals will never subsume a clause with fewer than n literals.

4.1.4 Demodulation and Equality Flags

demod-history - default set. If this flag is set, then when a clause is demodulated, the numbers

of the demodulators are included in the derivation history of the clause.

demod.linear - default clear. If this flag is set, disable demodulation indexing and use a linear

search of demodulators when rewriting a term. With indexing disabled, if moe than one demod-

ulator can be applied to rewrite a term, then the one that occurs first in the input file is applied;

this is useful when demodulation is used to do "procedural" things. With indexing enabled (the

default), demodulation is much faster, but the order in which demodulators is applied is not under

the control of the user, and no two demodulators may have the same left side.

demod.out-in - default clear. if this flag is set, terms are demriodulated outside-in, left-to-right. In

other words, attempt to rewrite a term before rewriting (left-to-right) its subterms. The algorithm

is "repeat {rewrite the left-most outer-most rewritable term) until no more rewriting can be done or

the limit is reached". (The effect is like a standard reduction in lambda-calculus or in combinatory

logic.) If this flag is clear, terms are demodulated inside-out (all subterms are fully demodulated

before attempting to rewrite a term). The one exception when inside-out demodulation is in effect

is the evaluable conditional term $IF(condition,then-value, else-value) (Section 6).

dollar-eval -- The setting and clearing of this flag are handled by OTTER. If evaluable functions

or predicates are found in the input, this flag is set automatically.

dynamic.demod - default clear. If this flag is set, attempt to make some newly kept equalities into

demodulators (Section 5.4). Setting this flag automatically sets the flag order.eq.

dynamic-demod.all - default clear. If this flag is set, attempt to make all newly kept equalities

into demodulators (Section 5.4). Setting this flag automatically sets the flag dynamicdemod.

print-nevdemod - default set. If this flag is set, print demodulators that are adjoined during the

search (dynamic-demod).

back-demod - default clear. If this flag is set, back demodulate axioms, sos, and demodulators

whenever a new demodulator is added. Back demodulation is delayed until the inference rules are

finished generating clauses from the current given clause (delayed until post-process). Setting the

back.demod flag automatically sets the flags order..eq and dynamic-demod (Section 2). (Warning:

the order in which clauses are back demodulated is in effect nondleterministic-it may change from

run to run.)

print-back.demod - default set. If this flag is set, print clauses before they are back demodulated.

symbol-elim - default set. If this flag is set, then new demodulators will be oriented, if possible,

so that function symbols (excluding constants) are eliminated. A demodulator can eliminate all

occurrences of a function symbol if the arguments on the left side are all different variables, and

the function symbol of the left side does not occur in the right side. For example, the demnodula-

tors g(x) = f(x,x) and h(x,y) = f(x,f(y,f(g(x),g(y)))) eliminate all occurrences of g and h,

respectively.

knuth.bendix - default clear. If this flag is set, then OTTER will approximate a version of the
Knuth-Bendix completion procedure. It is not a correct implementation of the completion pro-

9

cedure, because term ordering is not correct-in particular, termination of demodulation is not

guaranteed. Setting the knuth.bendix flag automatically causes the following flags to be set:

para.from, para.into, para.from.left, no.para..into..right, dynamic.demod.all, back-demod,

and print-lists-at-end.

new-functions - default clear. If this flag is set, then positive equality units of a particular type

cause the introduction of new function symbols and equalities. If an equality has the property that

each side has at least one variable that does not occur in the other side, then a new function symbol

and two new equalities are introduced. For example, (d(x,d(y,d(d(x,x),x))) = d(d(z,z),y))

causes the introduction of (d(x,d(y,d(d(x,x),x))) = ki(y)) and (d(d(z,z),y) = kl(y)). The

new function symbol is ki; its argument list is the intersection of the variable sets of the two sides.

See [4] for more detail.

lex-order.vars - default clear. This flag affects lex-dependent demodulation and the evaluable
functions and predicates that perform lexical comparisons. If this flag is set, then lexical ordering is

a total order on terms; variables are lowest in the term order, with x -< y -< z -< u -< v -< -< v6 -< v7
-< v8 -< --. If this flag is clear, then a variable is comparable only to another occurrence of the same

variable; it is not comparable to other variables or to nonvariables. For example, $LLT((x),f (y))

evaluates to $T if and only if lex.order.vars is set. See Secticai 5.1 for more detail.

4.1.5 Indexing Flags

for-sub.fpa - default clear. If this flag is set, use FPA indexing for forward subsumption. If this

flag is clear, use discrimination tree indexing for forward subsumption. This flag can be set to

decrease the amount of memory required by OTTER. Discrimination tree indexing can require a lot

of memory, but it is much faster than FPA indexing.

no.fapl - default clear. If this flag is set, do not index positive literals for unit conflict or back

subsumption. This should)e used only when no negative units will be generated (as with hyperres-

olution), back subsumption is disabled, and discrimination tree indexing is being used for forward

subsumption. This option can save a little time and memory.

no.fanl - default clear. If this flag is set, do not index negative literals for unit conflict or back

subsumption. This should be used only when no positive units will be generated, back subsumption

is disabled, and discrimination tree indexing is being used for forward subsuniption. This option

can save a little time and memory.

4.1.6 Miscellaneous Flags

process-input - default clear. If this flag is set, input axioms and sos clauses (including clauses

from formula input) are processed as if they had been generated by an inference rule. The processing

includes subsumption, demodulation, back demodulation. (sce Section 2, "procedure for processing

newly inferred clause").

simplify.fc1 - default clear. If this flag is set, then attempt some simplification when converting

input first-order formulas into clauses. The simplification occurs after Skolemization, during the

CNF translation. (Future releases may attempt simplification of quantified formulas.)

print..given - default set. If this flag is set, output clauses when they become given clauses.

print.eight - default clear. If this flag is set, print the weight of each given clause. This is useful

for debugging sets of weight templates.

sos.queue - default clear. If this flag is set, the first clause in sos becomes the given clause (the

set of support is a queue). If this flag is clear, the lightest clause (Section 7) in sos becomes the

10

given clause.

free.alL.mem - default clear. If this flag is set, then at the end of the run, return all memory to

the memory managers. (This is used to ensure that no memory is being lost.) When this flag is

set, the "in use" colurmin of the memory statistics should be all 0's. This flag is used primarily for
system debugging.

check.arity - default set. If this flag is set, symbols must not have variable arities (different

numbers of arguments in different places in the input). For example, the term p(a,a(b)) would not

be allowed. (Constants have arity 0.) If this flag is clear, then variable arities are permitted; in the

preceding term, the two occurrence.' of a would be treated as different symbols.

bird..print - default clear. If this flag is set, terms constructed with the binary function a are

,utput in combinatory logic notation (without the function symbol a and left associated unless

-therwise indicated). For example, the clause (a(a(aCS,x),y),z) = a(a(x,z),a(y,z))) is output

as (S x y z = x z (y z)). At present, terms cannot be input in combinatory logic notation.

atomvt..max.args - default clear. If this flag is set, the default weight of an atom (the weight if

no template matches the atom) is 1 + the maximum of the weights of the arguments. If this flag is
clear, the default weight of an atom is 1 + the sum of the weights of the arguments.

termv..tmax-args - default clear. If this flag is set, the default weight of a term (the weight if no

template matches the atom) is 1 + the maximum of the weights of the arguments. If this flag is

clear, the default weight of a term is 1 + the sum of the weights of the arguments.

print-lists.at..end - default clear. If this flag is set, then axioms, sos, and demodulators are

printed at the end of the search.

print..proof1 - default set. If this flag is set, all proofs found are printed to the output file. If this

flag is clear, no proofs are printed to the output file.

4.2 Parameters

Parameters are integer-valued options. In the descriptions that follow, n is the value of the param-
eter, and MAX.INT is a large integer, usually the size of the largest normal integer on the user's

computer.

4.2.1 Monitoring Progress

report - default 0, range [O..MAX..INT]. If n is not 0, then output statistics approximately every
n seconds. It is not exact, because statistics will be output only after the current give clause is

finished. n should not be too small; n = 30 is a good start. This feature can be used in conjunction

with UNIX programs such as grep and awk to conveniently monitor OTTER jobs.

4.2.2 Placing Limits on the Search

max.seconds - default 0, range [0..MAX.INT]. If n is not 0, then terminate the search after about

n seconds. It is not exact, because OTTER will wait until the current gives: clause is finished before

stopping.

max.gen - default 0, range [0..MAX.INT]. If n is not 0, then terminate ,he search after about n
clauses have been generated. It is not exact, because OTTER will wait until it is finished with the

current given clause before stopping.

max..kept - default 0, range [0..MAX.INT]. If n is not 0, then terminate the search after about n

11

clauses have been kept. It is not exact, because OTTER will wait until it is finished with the current

given clause before stopping.

max-given - default 0, range [0..MAX.JNT]. If n is not 0, then terminate the search after n given

clauses have been used. This one is exact.

max..mem - default 0, range [0..MAXINT]. If n is not 0, then OTTER will terminate the search before

more than n K bytes have been dynamically allocated (malloc). Processing of the current given

clause is not completed with this kind of termination.

4.2.3 Limits on the Size of Generated Clauses

max.literals - default 0, range [O..MAXINT. If n is not 0, then new clauses are discarded if they

contain more than n literals.

max.eight - default 0, range [0..MAXJNT]. If n is not 0, then new clauses are discarded if their
weight is more than n. The weight list purge..gen or the weight list pick..and-purge is used to weigh

clauses (both lists cannot be present, Section 7).

4.2.4 Indexing Parameters

fpa-literals - default 3, range [0..8]. n is the FPA indexing depth for literals. (FPA literal indexing

is used for resolution inference rules, back subsumption, and unit conflict. It is also used for forward

subsumption if the flag lor..sub.fpa is set.) If n = 0, indexing is by predicate symbol only; if n = 1,

indexing looks at the predicate symbol and the symbols that are arguments of the literal, and so on.

Greater indexing depth requires more memory. Changing this parameter should never change the

clauses that are generated or kept.

fpa.terms - default 3, range [0..8]. n is the FPA indexing depth for terms. (FPA term indexing is
used for paramodulation inference rules and back demodulation.) If n = 0, indexing is by function

symbol only; if n = 1, indexing looks at the function symbol and the symbols that are arguments

of the literal, and so on. Greater in'z xing depth requires more memory. Changing this parameter

should never change the clauses that are generated or kept.

4.2.5 Miscellaneous Parameters

demod..limit - default 100, range [0..MAXJNT]. If n is not 0, then n is the maximum number of
rewrites that will be applied when demodulating a clause. If n is 0, there is no limit. A warning

message is printed if OTTER attempts to exceed the limit.

max-proof a - default 1, range [0..MAXJNT]. If n = 1, OTTER will stop if it finds a proof. If n > 1,
then OTTER will not stop when it has found the first proof; instead, it will try to keep searching
until it has found n proofs. (Some of the "different" proofs may in fact be identical.) (Because

forward subsumption occurs before unit conflict, a clause representing a truly different proof may

be discarded by forward subsumption before unit conflict detects the proof.) If n = 0, OTTER will

find as many proofs as it can.

neg-weight - default 0, range [-MAXJNT..MAXJNT]. n is the additional weight (positive or neg-

ative) that is given to negated literals. Weight temnplates cannot be used to do this, because the

negation sign cannot occur in weight. templates (Atoms, not literals, are weighed with weight

templates, Section 7.)

stats..level - default 2, range [0..3]. This is the level of detail of statistics printed in reports and

at the end of the search. If n = 0, no statistics are output; if n = 1, a few important statistics

12

are output; if n = 2, most relevant statistics are output; and if n = 3, most relevant statistics and

subsumption counts are output. This parameter does not affect the speed of OTTER, because all

statistics are always kept.

5 Ordering and Dynamic Demodulation

This section contains a more complete explanation of the options lex.order.vars, order-eq,

symbol.elim, dynamic.demod, and dynamic.demod.all, and it gives all the rules-built in and

optional-for orienting equality literals and determining dynamic demodulators. In this section,

a and Q always refer to the left and right arguments, respectively, of the equality literal under

consideration.

5.1 Lexical Order

One can assign an ordering on symbols by using the lox command (Section 5.1). For example, the

command

lex([a, b, c, d, or(x,x)]).

specifies a < b -.< - d -< or (or is a binary function symbol). If relevant symbols are omitted

from the lox command, OTTER chooses an order. An ordering on symbols gives a lexical ordering on
terms. Continuing the example, a - or(a,a) -< or(a,c) -< or(b,a). The flag lex.order.vars

controls lexical ordering of terms containing variables.

lex..order.vars is set: Variables are the lowest in the symbol ordering, with x -< y -< z -< u -< v -, v

-< v6 < v7 -< v8 < --"-. Since the order on symbols it total (any two symbols are comparable),

the lexical order on terms is total (any two terms are comparable). Note that applying a

substitution to a pair of terms may change their relative order.

lex.order.vars is clear (the default): A variable is comparable only to itself; it is not comparable to

different variables or to nonvariable terms. Continuing the example, f(a,x,y) -.< f(b,y,x),

but f(x,a,y) and f(y,b,x) are not comparable. The order on terms is partial. Note that if

t1 -<t2 , and if o is any substitution, then ticr -< t2 '-

Lexical ordering on terms is used in three contexts: deciding whether to apply a lex-dependent

demodulator (Section 5.2), evaluating functions/predicates that perform lexical comparisons (Section

6), and orienting equality literals (Sections 4.1.4 and 5.3). When orienting equality literals, partial

lexical ordering is used, even if lex-order-vars is set.

5.2 Lex-dependent Demodulation

Two terms are identical-except-variables if they are identical after replacing all occurrences of vari-

ables with x. An input demodulator is lex-dependent if and only if a and / are identica -except-

variables. A dynamic demodulator is lex-dependent only if a and ,9 are identical-except-variables.

(See Section 5.4 for determining lex-dependent dynamic demodulators.) A lex-dependent demod-

ulator applies to a term only if its application produced a lexically smaller term. When checking

"lexically smaller", the flag lex.order.vars is consulted.

In the presence of the lox command and the (lex-dependent) demodulators

13

lex([a, b, c, d, or(x,x)]).

list(demodulators).

eq(or(x,y), or(y,x)).

eq(or(x,or(y,z)), or(y,or(x,z))).

endoflist.

the term or(or(db),or(a,c)) will be demodulated to or(a,or(b,or(c,d))) (in several steps).

5.3 Orienting Equalities

Orienting equality literals (positive and negative) except positive unit equalities. The

arguments a and /3 are weighed (Section 7) using veight-list (terms). If wt(a) < wt(/3), the literal

is flipped; if wt(a) = wt(/3), then a and /3 are compared in the partial lexical order (Section 5.1); if

a / 3, the literal is flipped.

Orienting positive unit equalities. More car is taken in orienting positive unit equalities,

because they may become dynamic demodulators. The procedure is the following:

1. If the symbolelim flag is set and if the equality is a symbol-eliminating type (Section 4.1.4),

then orient the equality in the appropriate direction and exit.

2. If one argument is a proper subterm of the other argument, then orient the equality so that

the subternm is the right argument and exit.

3. Proceed as in the preceding paragraph "Orienting equality literals ... ". If the lexical com-

parison shows that the two arguments are incomparable, then if vars(a) vars(/3) and

vars(a) G vars(13), then the literal is flipped.

5.4 Determining Dynamic Demodulators

A dynamic demodulator is a demodulator that is inferred rather than input. If either of the flags

dynamic..demod or dynamic-demod-all is set, OTTER will attempt to make some or all inferred
positive equality units into demodulators.

If either of the flags dynamic4emod or dynamic.demod.all is set, then the flag order-eq is

automatically set (Section 4.1.4). (Dynamic demodulators are decided when equalities are oriented,

before forward subsumption. An equality actually becomes a dynamic demodulator after forward

subsumption.) The procedure assumes that equalities have already been oriented.

1. If the flag symbol-elim is set and if it applies, the equality becomes a demodulator.

2. If /3 is a proper subterm of a, the equality becomes a demodulator.

3. If a and /3 are comparable, in particular, if wt(a) < wt(3) or (wt(a) = wt(/3) and a -< 3),

(a) if dynamic-demod-all is set, the equality becomes a demodulator;

(b) if dynamic-demod-all is clear and if wt(13) < 1, the c quality becomes a demodulator.

4. If a and 3 are incomparable, if they are identical-except-variables (Section 5.2), and if vars(a) D
vars(13), then the equality becomes a lex-dependent demodulator.

14

5.5 Completion and Termination

The weig'hting and lexical ordering schemes of OTTER do not guarantee termination of demodulation.

It is up to the user to try to make sure that demodulation terminates. (Parameter demod-limit can

be used to limit the number of rewrites-see Section 4.1.4.)

The flag knuth-.bendix (Setion 4.1.4) can be used to simulate the Knuth-Bendix completion

procedure and some of its variants, but it is at best an approximation, because weighting and

lexical ordering schemes do not guarantee termination. Future releases may include orderings with

the appropriate properties. See [3] for a state-of-the-art theorem prover based on rewriting and

completion, and see [2] for recent work in that field.

6 Evaluable Functions and Predicates ($SUM, $LT, ...

)

OTTER, like AURA and ITP, recognizes some special function and predicate symbols as evaluable

symbols. Integer arithmetic, lexical comparison, Boolean evaluation, and conditional expressions

can be employed when a user wishes to "program" some aspect of a theorem-proving task. (The

speed of $ evaluation is not outstanding-it may be improved in future releases.)

Evaluation occurs during demodulation and during hyperresolution. If, for example, demodu-

lation encounters a term $SUM(ii, i2), where ii and i2 are integers, the term is rewritten to i6,

the sum of ii and i2, as if the demodulator ($SUM(ii, i2) = i3) were present. If, for example,

hyperresolution encounters the negative literal -$LT(t 1 , 12), then t1 and t 2 are demodulated; if the

results are (respectively) integers it and i2 , with i < i2, then the literal is removed as if the unit

clause $LT(ti , t2) were present.

The symbols that evaluate to type Boolean can occur as either function symbols (demodulation)

or predicate symbols (demodulation and hyperresolution). If they are used as function symbols, the

Boolean constants are $T (true) and $F (false).

int x int -+ int $SUM, $PROD $DIFF, $DIV, $MOD

int x int -+ bool $EQ, $NE, $LT, $LE, $GT, $GE

term x term -+ boot $ID, $LNE, $LLT, $LLE, $LGT, $LGE

boot x boot -+ bool $AND, $OR
bool -+ bool $NOT

boot $T, $F

boot x term x term -+term $IF

Table 2: Evaluable Functions and Predicates

Table 2 contains all of the evaluable functions and predicates. Their behavior is the following:

1. int x int -p int. The term evaluates if both arguments demodulate to integers. $DIV is integer

division, and $MOD is remainder.

2. int x int - bool. The term evaluates if both arguments demodulate to integers.

3. term x term - bool. The term always evaluates. These operations are similar to the five

operations in int x int - boot, except that the comparisons are lexical instead of arith-

metic. The lexical comparison is the same as in lex-dependnt denodulation; in particular,

the flag lexorder-vars (Section 4.1.4) has effect. Note that $LLT(t1,t2) is not the same as

$LGT(t 2 ,t 1), because ti and t2 are not necessarily comparable (Section 5.1).

4. bool x boot -- boot. The tem evaluates if both arguments demodulate to iBooleans. (This is

more restrictive than need be; for example, $AND($F,bird) does not evaluate.)

15

5. bool -+ boot. Tne tcrm evaluates if its argument demodulates to Boolean.

6. -+ bool. If hyperresolution encounters a literal -$T or a literal $F, the literal is removed. If
hyperresolution encounters a literal -$F or a literal $T, the entire hyperresolvent is discarded

(because it is a tautology).

7. bool x term x term -+ term. The $IF function is the if-then-else operator. It is described in

the following paragraph.

When inside-out (the default) demodulation encounters a term $IF(condition, ti, 12), demod-

ulation deviates from its inside-out behavior. The term condition is demodulated (evaluated); if the
result is $T, the value of the $IF term is the result of demodulating ti; if the result is $F, the value

of the $IF term is the result of demodulating t2 ; if the result is neither $T nor $F, demodulation

returns to its normal behavior. Note that if condition evaluates to a Boolean value, demodulation

strays from its inside-out behavior, because just one of ti and t2 is demodulated. If the outside-in

demodulation option has been set, there is no need to treat $IF terms differently from the norm,

because outside-in demodulation caues the $IF term to be evaluate before either t or t2.

The evaluable functions and predicates enable the use of equalities with demodulation as a

general-purpose equational programming language. Here are some example functions.

(gcd(x,y) - X greatest common divisor

$IF($EQ(x,0),

y,
$IF($EQ(y0),

X,

$IF $LT(x,y),

acd(x,$DIFF(yx)),

gcd(y,$DIFF(x,y)))))).

(member(x,I0) - $F). % some list functions

(member(x,[yiz]) - $IF($ID(xy),

$T,

member(U,z))).

(append(IJ,x) - x).
(append([xzy] ,z) - [xlappend(y,z)]).

(reverse([J) - [l).
(reverse([xly]) nappend(reverse(y),[x])).

A Boolean function defined with demodulators, such as Lember in the preceding set of definitions,

can be used as an antecedent (negated literal) in a hyperresolution nucleus in the following way:

-L I .---I $IOT(member(element, list)) I --- I-La I M.

Evaluable functions and predicates are very useful when using hyperresolution to perform state-

spacc searches. An example is the Missionaries and Cannibals puzzle:

There are 3 missionaries, 3 cannibals, and a boat on the west bank of a river. All
wish to cross, but the boat holds at most 2 people. If the cannibals ever outnumber the

missionaries on either bank of the river or in the boat, the outnumbered missionaries will

be eaten. Can they al safely cross the river? If so, how? (The boat cannot cross empty.)

16

[start of input file]

% State(X,Y,Z) means that I missionaries, Y cannibals,
% and the boat are on the Z side of the river.

x

set(hyperres).

list(axioms).

-State(xmbs,xcbs,xbp) 1 If we have a provable state,

I -pick(xm) X missionaries to cross
I -pick(xc) % cannibals to cross
I -$LE(xm, rubs)
I -$LE(xc, xcbs)

I -$GT($SUM(xm, xc), 0) % if number in boat > 0,
I -$LE($SUM(xm, xc), 2) % if number in boat <- 2,

I -$OR($GE(xm, xc),$EQ(xm,0)) % if no feast in the boat,

% if no feast after the boat leaves current side,

I -$OR($GE($DIFF(xmbs, xm), $DIFF(xcbs, xc)),$EQ($DIFF(xmbs, xm),0))

% if no feast when the boat arrives at the other side,

I -$OR($GE($SUM($DIFF(3, xmbs), xm), $SUM($DIFF(3, xcbs), xc)),

$EQ($SUM($DIFF(3, xubs), xm),0))

% then a crossing can occur

I State($SUM($DIFF(3, xmbs), xx),$SUM($DIFF(3, xcbs), xc),Otherside(xbp)).

pick (0).
pick(1).

pick(2).

-State(3,3,East). I goal state

end.of-list.

list(sos).
State(3,3,West). % initial state
end-ofjlist.

list(demodulators).

(Otherside(West) -East).

(Otherside(East) -West).

end.of.list.

[end of input file]

7 Weighting

OTTER maintains four lists of weight templates.

17

weight_list(pickgiven). % Choose given clauses from the set of support.

weightlist(purgegen). % Is used in conjunction with the max-weight
% parameter to discard undesirable generated clauses.

weightlist(pickandpurge). % Plays the roles of both pick-given and purge.gen

% (if present, neither pickgiven r- purgegen

% can be present).

weightlist(terms). % Used to orient equality literals and to decide

% dynamic demodulators.

See Section 3.2.4 for input of lists of weight templates.

7.1 Weighing Clauses and Literals

The weight of a clause is always the sum of the weights of its literals (excluding any answer literals).

The weight of a positive literal is the weight of its atom. The weight of a negative literal is the

weight of its atom plus the value of the neg.weight parameter (Section 4.2.5).

7.2 Weighing Atoms and Terms

Atoms and terms are weighed top-down. To weigh a given term, the appropriate weight list is

searched (in the order input) for the first matching template. If a match is found, then the subterms

of the given term that match the integers in the template are weighed. The weight of the given

term is the sum of the products of each integer and the weight of its corresponding subterm, plus

the second argument of the weight template. For example, t- template

weight(f(g(2),-3), -50)

matches the given term

f(g(h(a)),f (bx))

The weight of the given term is (2 * (the weight of h(a))) + (-3 * (the weight of f(b,x))) + (-50). If

a matching weight template is not found, then the weight of the given term is 1 + sum of the weights

of the subterms. (See the flags atom.wt.max-arga and term.wt-max-args for overrides.) Note that
this weighting scheme implies that if no weight ten:1 lates are present, the default weight of a term

or atom is the number of variable, constant, function, and predate symbols (symbol count).

Variables in weight templates are generic. A variable in a weight template will match any

variable (and only variables) in the given term. As a consequence, it is never necessary to use

different variable names in a weight template. For example, weight(f(x,x),-7) matches the term

f(u,v), and weight(x,32) matches all variables.

Warning: The two occurrences of symbol f in the term f(f ,x) are treated by OTTER as different

symbols because they have different arities. The weight template weight(f , 0) applies to the second

occurrence but not to the first. (This warning applies only if the clear(check.arity) command

has been issued.)

8 Answer Literals

The main use of answer literals is to record, during a search for a refutation, instantiations of variables

in input clauses. For example, if the theorem under consideration states that an object exists, then

18

the denial of the theorem contains a variable, and an answer literal containing the variable can be

appended to the denial. If a refutation is found, then the empty clause has an answer literal that

contains the object whose existence has just been proved.

Any literal whose predicate symbol starts with $ans, $Ans, or $ANS is an answer literal. Most

routines-including the ones that weigh clauses, count literals, and decide if a clause is positive or

negative-ignore any answer literals. The inference rules insert, into the children, the appropriate

instances of any answer literals in the parents. If factoring is enabled, OTTER does attempt to factor

answer literals.

9 Limits, Abnormal Ends (ABENDS), and Fixes

OTTER has a number of compile-time limits. If a limit is exceeded, a message containing the name of

the limit will appear in the output file and/or at the terminal. To raise the limit, find the appropriate

definition (#define) in a .h or . c file, increase the limit, and recompile OTTER. (Of course, you

must have your own copy of the source code to do this.) Some of the limits are

MAXLNAME - Maximum number of characters in a variable, constant, function, or predicate symbol.

MAX.BUF - Maximum number of characters in an input string (clause, formula, command, weight

template, etc.).

MAX-VARS - Maximum number of distinct variables in a clause.

If OTTER is using too much memory, one can decrease (down to 0) the value of the fpa.literal.
parameter, set the for-sub..fpa flag to switch forward subsumption indexing from discrimination

tree to FPA indexing, and use weighting to discard (more) generated clauses.

At present, demodulation with discrimination tree indexing (the default) does not allow more

than one demodulator with the same left side. If demodulation is being used and OTTER exits with

a message something like "ABEND, two demodulators with the same left side", one can get

around the problem by disabling discrimination tree indexing with the command set(demod-linear).

(It makes sense to have two demodulators with the same left side only if lex-dependent demodulation

is being used.)

10 Summary of the Options and their Defaults

set(forsub).
set (printkept).
set (backsub).

set (printback_ sub)

.

set (demodhistory)

.

set(print._newdemod).

set(print backdemod).

sat(symboLelim).

set (print_given).

set(checkarity).

set(printproofs).

clear(binaryres).

clear(hyperres).

cloar(urres).

clear(parainto).

clear(dynamicdemod).

clear(dynamicdemodall)

clear(backdemod).

clear(knuthbendix).

clear (new..funct ions)

.

clear (lexorder _vars)

.

c). ear(f orsubfpa).
clear(nofapl).

clear (no_fanl)

.

clear(processinpit).

clear(simplifyfol).
clear(printseight).

clear(sosqueue).

clear(freeallmem).

clear(birdprint).

clear (atom-wtmaxargs).

19

clear(parafrom).

clear(demodinf).
clear(parafromleft).
clear(para_fromright).

clear(para_fromvars).

clear(paraintcvars).
clear(paraonesrule).

clear(paraal.).

clear(noparaintoleft).

clear(noparaintoright).

clear(printgen).

clear(ordereq).

clear(sortliterals).

clear(unitdeletion).

clear(factor).

clear(demodlinear).
clear(demodout._in).
clear (dollareval).

clear(tarm_wtmaxargs).

clear(print-lists-at-end).

assign(report, 0).

assign(max._seconds, 0).

assig'(maxgen, 0).

assign(maxkept, 0).
assign(maxgiven, 0).

assign(maxmem, 0).

assign(maxliterals, 0).

ass ign(maxweight, 0).

assign(fpaliterals, 3).

assign(fpaterms, 3).

assign(demodlimit, 100).

assign(maxproofs, 1).
assign(neg..weight , 0).

assign(stats_level, 2).

References

[1] Chang, C., and Lee, R. C., Symbolic Logic and Mechanical Theorem Proving, Academic Press,

New York, 1973.

[2] Jouannaud, J.-P. (ed.), Rewriting Techniques and Applications, Springer-Verlag Lecture Notes

in Computer Science #202 (1985).

[3] Kapur, D. and Zhang, H., RRL: A Rewrite Rule Laboratory-A User's Manual, General Electric

R & D Center (June 1987).

[4] Kapur, D., and Zhang, H., "Proving equivalence of different axiomatizations of free groups", J.

Automated Reasoning 4(3), 331-352 (1988).

[5] Loveland, D., Automated Theorem Proving, North Holland, Amsterdam (1978).

[6] Lusk, E., and Overbeek, R., The Automated Reasoning System ITP, Report ANL-84-27, Ar-
gonne National Laboratory, Argonne, Ill. (April 1984).

[7] Lusk, E., and Overbeek, R. (eds.), Proceedings of the 9th International Conference on Auto

mated Deduction, Springer-Verlag Lecture Notes in Computer Science #310 (1988).

[8] Siekmann, J. (ed.), Proceedings of the 8th International Conference on Automated Deduction,

Springer-Verlag Lecture Notes in Computer Science #230 (1986).

[9] Smith, B., Reference Manual for the Environmental Theorem Prover: An Incarnation of AURA,

Report ANL-88-2, Argonne National Laboratory, Argonne, Ill. (March 1988).

[10] Wos, L., Overbeek, R., Lusk, E., and Boyle, J., Automated Reasoning: Introduction and Appli-

cations, Prentice-Hall, Englewood Cliffs, N.J. (1984).

[11] Wos, L., Pereira, F., Boyer, R., Moore, J, Bledsoe, W., Henschen, L., Buchanan, B., Wrightson,
G., and Green, C., "An overview of automated reasoning and related fields", J. Automated

Reasoning 1(1), 5-48 (1985).

[12] Wos, L., Automated Reasoning: 33 Basic Research Problems, Prentice-Hall, Englewood Cliffs,
N.J. (1988).

20

Distribution for ANL-88-44

Internal:

J. M. Beumer (175)
F. Y. Fradin
H. G. Kaper
A. B. Krisciunas
W. W. McCune (50)

G. W. Pieper
D. P. Weber

ANL Patent Dep irtment
ANL Contract File
ANL Libraries
TIS Files (3)

ExternaI:

DOE-OSTI, for distribution per UC-405 (66)
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Commnittee:

J. L. Bona, Pennsylvania State University
T. L. Brown, University of Illinois, Urbana
P. Concus, Lawrence Berkeley Laboratory
S. Gerhart, Microelectronics and Computer Technology Corp., Austin, TX
H. B. Keller, California Institute of Technology
J. A. Nohel, University of Wisconsin, Madison
M. J. O'Donnell, University of Chicago

21

