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Abstract – The design automation of high-speed digital system
interconnects is a challenging problem which requires control-
ling reflections from discontinuities and noise due to crosstalk.
On-chip interconnect design automation is well defined since
the objective is to minimize R and C to minimize delay. In con-
trast, for boards and packaging interconnect, the design objec-
tive is much more difficult to specify in terms of a metric.

This paper presents a generalized approach for RLC inter-
connect design automation. A new metric is defined that speci-
fies the optimal design as a function of input signal rise-time,
loading conditions on the line, parasitic resistance in the circuit
and discontinuities in the interconnect. The approach is based
on the recognition of the relation between moments of the
responses and critical damping of the circuit. The metric is eval-
uated without any time-domain simulations to obtain the opti-
mal termination. No simplifying assumptions are required for
combinations of lumped and distributed lossy lines, with non-
ideal terminations.

I. I NTRODUCTION AND BACKGROUND

The design of system-level interconnects remains a challenging
problem for high-speed digital systems. Without proper termina-
tions, reflections from discontinuities and induced voltages due to
crosstalk can adversely influence the delay and the signal integrity.
It is often the case that an additional lumped resistance is introduced
either in series with the driver (series termination) or in parallel with
the load (parallel termination). The lumped resistance value is gen-
erally selected to be equal to the characteristic impedance of the
transmission line.

Experienced designers recognize, however, that these termination
schemes are “optimal” only for a limited class of interconnect cir-
cuits, and are inappropriate when any of the following conditions are
true: (1)The unloaded line driver has a significant rise/fall time;
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(2)The circuit has significant capacitive loading; (3)There is signifi-
cant parasitic resistance in the circuit (e.g. lossy line); (4)There are
discontinuities or a number of transmission lines with different pa-
rameters.

When any or all of these conditions are true, the “optimal” value
of a termination resistor will be less than the characteristic imped-
ance value. Terminating the line with the characteristic impedance
can overdamp the response and increase the circuit delay. Notice,
however, that all of the conditions stated above are rather subjective.
That is, the designer will have to determine what “significant” means
due to the absence of any appropriate metrics. For this reason, de-
signers usually select a termination resistance value through trial and
error, requiring a detailed time-domain simulation at each iteration.

Previous work on a quantified approach to optimal termination
has utilized an interconnect model to generate a simplified pole-zero
description of the circuit behavior [3,17,18]. A single-lump RLC
model is used for the interconnect path in order to generate a closed-
form expression for the two-pole voltage response at the driving
point, and the optimal series resistance is defined as the value which
produces a critically damped circuit based on this two-pole model.
Since the 2-poles are not theexact dominant poles of the system, the
termination resistance value produced, in general, cannot be truly op-
timal. In [5] a distributed interconnect model is used for self-damped
lossy transmission lines under the restriction that the highest frequen-
cy component transmitted by the line does not exceed the quarter-
wavelength limit. However, the main limitation of this technique, as
well as the single-RLC lump approaches, is their restriction to pin-
to-pin nets and the inability to consider driver rise-time effects or
loading effects on the interconnect.

In this paper, a completely new metric has been defined for opti-
mal termination of transmission lines that uses the coefficients of the
Taylor series expansion of the “exact” time domain response, as a
symbolic function of the resistances in the circuit, to determine the
conditions for critical damping. The optimal termination choice is
shown to be a trade-off between the rise time of the signal and the ac-
ceptable amount of peak overshoot, and is a direct function of the
loading conditions, driving signal characteristics and the resistivity
of the line. The foundation for this approach lies in the relation be-
tween the Taylor series coefficients and the moments, which repre-
sent the time-weighted integrals of the exact time-domain responses.
No time-domain analysis is required and there are no restrictions on
the type of interconnect circuit. Moreover, the symbolic resistances
can be either distributed or lumped circuit parameters. Self-termina-
tion of a transmission line has been considered in [15]. Examples of
the optimal termination metric and the overall methodology are
shown for series and ac terminations.



II. O PTIMAL  TERMINATION

Off-chip interconnect and packaging are generally modeled as
combinations of distributed and lumped RLC elements. Since these
interconnect circuits are characterized by a time-of-flight delay and
ringing, defining and optimizing the delay is much more complicated
than for the on-chip RC propagation case. For example, for an under-
damped waveform the delay is determined by the settling time and
the logic thresholds for the signal line. Increasing the resistance in
the circuit will decrease the settling time, and hence the delay. How-
ever, excessive resistance will cause the line to be overdamped, and
the time at which the waveform crosses some threshold, say 90% of
the final value, will occur at a later point.

The most general and desirable condition for optimal termination
is to decrease the time at which the signal first crosses some logic
threshold and control the maximum overshoot and undershoot a sig-
nal can experience. Achieving this condition requires a positive val-
ue of termination resistance which is guaranteed to be less than or
equal to the characteristic impedance of a given line.

FIGURE 1: Open circuited lossless line with series termination at
source end.l=0.2nH/mm,c=0.15pF/mm,length=25mm,Z0=36.51,
Tf=0.14ns.

From transmission line theory it is well known that a pure LC line,
as shown in Fig.1, is perfectly terminated with a series impedance
given by Z0, the characteristic impedanceof the line. With

 there is maximum power transfer and no overshoot. With
 and a parallel termination of , there is no reflec-

tion, and the line is equivalent to an infinitely long line insofar as the
source is concerned [16].

A. The Moment Representation

Moment-matching techniques such asAsymptotic Waveform
Evaluation (AWE) have been widely applied for efficient waveform
estimation of large RLC lumped and distributed circuits [12,14]. Mo-
ments of a time-domain waveform,V(t), are classically defined via
the Laplace domain representation of the waveform, as follows:

(1)

wheremk are the Maclaurin series coefficients ofV(s). Thus, thek-th
moment,mk is:

(2)

The zero-th moment,m0, is the time domain integral of the wave-
form from t = 0 to t = . Similarly, thek-th moment,mk, is thetk-
weighted time-domain integral of the waveformv(t). Our definition
of optimal termination is in terms of these moments.

Consider the lossless line in Fig.1, open-circuited at the end, and
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with Rs as the series termination. The transfer functionG(s) is:

(3)

where  is thepropagation constantand  is
thecharacteristic impedanceof the transmission line. l andc are the
inductance and capacitance of the transmission line per unit length
respectively, andd is the length of the line. Expanding abouts=0,:

(4)

Each momentmk in (4), is a polynomial function of the series termi-
nation resistance and can be evaluatedsymbolically in terms ofRs:

(5)

For a positive value ofRs, as ,  (i.e.mk grows
in magnitude without bound) which is the asymptotic limit of the
overdamped case. AsRs is reduced from infinity, therefore, the first
zero-crossing of the moment expressionmk in (5), in terms ofRs, is
the point at which thetk-weighted time domain responseV(t) has the
integral from  exactly equal to zero. As the order of the
moment being considered is increased (larger value of k), this first
zero-crossing of the momentmk, as a function ofRs, signifies the
point at which the circuit changes from overdamped to critically
damped.

The moments of the output responseV2(s) in Fig.1 for a step input
are shown as a symbolic function of the series termination resistance
in Fig.2. The first, second, fourth, sixth and eighth moments (m1, m2,
m4, m6 andm8) are plotted as a function ofRs. The moments magni-
tudes are not plotted on the same scale, but it is evident that the great-
est zero-crossing ofmk, ask is increased, converges to a value ofRs
equal to the characteristic impedance of the transmission line.

.

FIGURE 2: Momentsm1, m2, m4, m6 andm8 of the voltage response
V2 as a function of the termination resistance, Rs. Z0=36.5

This symbolic approach to optimal termination via the moment
representation provides a metric that is powerful and offers impor-
tant advantages in terms of generality and efficiency. Considering
loading effects on the termination requirements for a transmission
line, for example, a low-loss transmission line with a capacitive load
has the transfer function:

(6)
where,  and . A low-
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to-high input transition with non-zero rise-time,tr, is given by:

(7)

This input can be convolved with the impulse response of the trans-
mission line to obtain moments for the output response,Y(s):

(8)
As explained above, the expression formoment-3of the output re-
sponse is of the form:

(9)

where  is a function of the loadCL and rise-
time of the driving signal tr.

FIGURE 3: Output response of low-loss line (Z0=36.51 ) with
capacitive load (CL) and optimal series termination resistance (Rs)
obtained usingm3 via symbolic analysis.CL= 50.0pF.

For a rise-time of0.05nsand a capacitive load of 50pFon the cir-
cuit in Fig.1, the maximum root ofm3 as a function ofRs yields a val-
ue of 12 . Time-domain waveforms shown in Fig.3 contrast this
termination value against a no-termination condition and termination
equal to the characteristic impedance Z0. Notice the underdamped
response forRs=0 and the overdamped signal forRs=Z0.

The above discussion shows that we can determine the point at
which the circuit becomes critically damped without performing a
time-domain analysis. Further, sincem1 is thet1-weighted integral of
the voltage waveform,m2 is thet2-weighted integral, and so on, con-
sidering optimal termination to be the highest zero-crossing of thek-
th moment plotted against the series resistance ensures that a lower
order moment allows more signal overshoot/undershoot at “optimal
termination” than a higher moment. We will show next how to ap-
proximate the overshoot from the moments in order to facilitate fast
delay/overshoot trade-off choices during optimization.

B. Laplace Domain Representation

The distributed model of a transmission line represents the system
as an infinite pole system. It can be argued that, in general, the con-
dition for optimal termination for a step-response translates in the
Laplace domain to “What makes the first complex pole pair (pole-
pair closest to the real-axis) of the infinite-order transmission line
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system become real ? [15]”. For the LC line example in Fig.1, the
movement of the first pole pair as a function of the termination value
Rs is shown in Fig.4. When , the poles of the lossless trans-
mission line system lie on the -axis. AsRs is increased, the poles
move away from the -axis, and at , the first pole pair be-
comes a repeated real pole, after which the poles move in opposite
directions on the real axis.

FIGURE 4: Movement of first pole-pair as a function of the
termination resistanceRs. Pole-pair becomes real forRs = Z0.

C. Convergence of First Pole Pair

Moments, obtained as coefficients of a Maclaurin series expan-
sion of an RLC distributed interconnect, can be used totheoretically
show “convergence” of a single pole-pair model to the exact first
pole-pair of a system as higher and higher moments of the system are
used to derive the two-pole model. For aq-th order system defined
in the form of poles and residues as:

(10)

the n-th moment,mn, is defined as:

(11)

Since the complex poles of the system exist as complex conjugate
pairs, the poles can be ordered as:

(12)

In polar form, we rewrite (11) as:
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considering momentsmn, mn+1, mn+2 and mn+3, by the Caley-
Hamilton theorem [1], the first two poles of the system can be exact-
ly determined, and a two-pole model converges to system’s first
pole-pair.

As higher order moments are considered for determining the opti-
mal termination for a transmission line system, the time-domain out-
put-response of the interconnect is increasingly dominated by the
first pole pair. Thus, the greatest zero-crossing of a high-order mo-
ment, saymk, corresponds to a response due to the first-pole pair that
contains minimal or no ringing. This corresponds to a real pole-pair
[15], and hence follows our argument for optimal termination in
Section II B. The convergence of the highest moment root for a loss-
less line toZ0 (as the moment-ordermk is increased) and the move-
ment of the first pole-pair corroborates this argument.

D. Approximating Signal Overshoot/Undershoot

The Laplace domain treatment of a distributed model of a trans-
mission line in Section B led to a criterion for optimal termination
based on the first “exact” pole-pair of the infinite order system. For
a loss-less line it can be shown using Fourier analysis that between
the undamped and the critically damped conditions, the first pole-
pair and its corresponding residues provide bounds on the signal am-
plitude. When the line is unterminated, the output response oscillates
between V and 2V, as shown in Fig.5, where V is the amplitude of
the step-input. For this output, the Fourier series is:

(15)
Since , it is clear that the amplitude of the first harmonic,
which corresponds to the first pole-pair of the lossless transmission
line system, bounds its output response.

FIGURE 5: Output response of an unterminated, open-circuited
lossless line.Tf = time of flight.

The exact first pole-pair for an RLC system can be obtained using
moment shifting [1] which effectively involves exciting the system
with a low frequency input, , if momentsmp, mp+1, mp+2, mp+3
are used to converge to the actual pole-pair. From linear system the-
ory, it is well known that low frequency signals “excite” the low fre-
quency poles of a system more than the poles high in thes-plane.
Thus the residues corresponding to the first pole pair increase in
magnitude as the low frequency content of the input signal increases.
For an input excitation given by , as , the first pole-pair
is said to have converged to the exact pole-pair, and the time-domain
response due to this pole-pair bounds that due to the second order
AWE approximation.

For optimal termination obtained usingmoment-3, the first pole-
pair can be obtained by solving the quadratic equation:
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where,

(17)

The exact first pole-pair for an RLC transmission line response
provides a pessimistic approximation for the signal overshoot/under-
shoot as compared with a second order moment matching approxi-
mation (AWE [14]), as shown in Fig.6. However, a “tight” bound
requires consideration of the second pole pair when the first pole-
pair approaches the real-axis at optimal termination [15].

FIGURE 6: Time domain response of a low-loss transmission line
with a capacitive load of 0.1pF.r=0.13 /mm, l=0.2nH/mm,c=0.15pF/
mm. length=25mm,Z0=36.51, Tf=0.14ns.

III. Variants Affecting Optimal Termination

A. Optimal Termination as Function of Capacitive Load

A capacitive load at the end of a transmission line due to the input
capacitance of a receiver drastically affects the characteristics of the
signal on the line. The charging and discharging ofCL has a time-
constant ofZ0CL for a lossless line. This time-constant should be
small compared to the time-of-flight of the transmission line for the
capacitive effects of the load to be negligible [2]. As shown in Fig.7,
this relation can be easily analyzed with the metric from this paper.

FIGURE 7: Optimal termination resistance (Ropt) as function of
capacitive load (CL). Cline=3.75pF. ForCL<Cline, Ropt=Z0.
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B. Optimal Termination as Function of Line-loss

Interconnections for multi-chip modules and thin-film wirings
have significant resistance and cannot be approximated using a loss-
less transmission line analysis. From empirical observation it is
known that whenRline< Z0/2 the transmission line behavior of the
interconnect is dominant, and whenRline> 5Z0, the line can be con-
sidered to be a distributed RC line[2]. For long lines and fast rising
signals, inductive effects in interconnects are considerable, and ap-
propriate termination for lossy lines withRline< 5Z0 can be obtained
using the technique described in this paper.

The optimal termination value for a lossy transmission line has a
monotonically decreasing dependence on the value of the line resis-
tance,Rline, as shown in Fig.8. The moment representation results in
a zero value of optimal termination for , which can be
shown to be the condition for self-termination for an unloaded lossy
line [15]. Fig.9 shows the time-domain response for a lossy line with
optimal termination obtained usingm3 versus a termination value
equal toZ0.

FIGURE 8: Optimal termination resistance, Rs, plotted as a function
of the resistance of the transmission line,Rline. Z0 = 36.5 . Self
termination condition for the line isRline= 109.5 .

FIGURE 9: Time-domain response for lossy transmission line (Z0 =
36.51 ,Rline=40 ) with termination valueRs=0.0 ,
20.3 (termination value fromm3) and 36.5 .

C. Optimal Termination as Function of Rise-time of Driver

Transmission line phenomenon becomes significant for fast-ris-
ing signals where the smallest wavelength component of the signal
is comparable to the interconnect length. In terms of rise-time, tr, this
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condition is empirically known to be equivalent to ,
whereTf is the time-of-flight of the signal on the line [2].

Rise-time,tr, of the input signal is determined by the rate at which
the driver for the line is turned on. This depends on the driver char-
acteristics and the ratio of the driver source resistance to the line im-
pedance. Thus, owing to practical considerations,tr is always > 0,
and can be modeled as a saturated ramp.

As shown in Fig.10, the optimal terminal resistance,Ropt, for a
transmission line reduces with increase in the rise-time,tr, of the
driving signal. The sensitivity ofRopt to variations intr is very high
for values of  which is also the condition when transmission
line effects cease to be dominant, and the line can be considered to
be a lumped circuit. Moment domain symbolic analysis gives an op-
timal termination value of zero for  since the RC effects be-
gin to dominate, and minimization of RC delay follows the usual
strategy for delay reduction as in on-chip interconnects [2].

FIGURE 10: Optimal termination resistance,Ropt, as function of input
signal rise-time, tr. Tf = 0.14ns.Ropt obtained from moment analysis
(usingm3) equals0 for .

The time-domain response for a lossy transmission line with a
rise-time of 0.35ns, open-circuited at the end with a time-of-flight of
0.14ns, is shown in Fig.11. Considering the resistance of the line and
rise-time, the moment analysis usingmoment-3 yields a zero value
of termination.

FIGURE 11: Output response of lossy line (Rline=60.0 ,
Z0=36.51 ) for input signal rise-time,tr= 0.35ns.Rs=0.0  (optimal
series termination resistance obtained from moment-3),Rs=15.0
(from moment-6) andRs = 36.5  (Z0).
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D. AC Termination

FIGURE 12: Low loss line terminated in parallel withRpCp
combination. r=0.13 /mm,l=0.2nH/mm,c=0.15pF/mm,
length=25mm.

FIGURE 13: Output response of a low-loss line with parallel AC
termination in contrast with parallel resistance termination. OTTER
yields values ofRp=35.68  andCp=20.0pF using the symbolic
analysis approach described.Rline=5.0 .

Parallel termination of transmission lines results in unwanted dc
power dissipation, and this can sometimes be eliminated using an RC
parallel termination as shown in Fig.12. For a pure lossless line, the
signal travels down the line unattenuated and in order that there are
no reflections, the value ofRp should equalZ0. Cp should be such
that ringing at the output is minimal. Since the input signal in a lossy
line gets attenuated along the line, obtaining the optimal values ofRp
andCp is a two-step process:
• Obtain the value of theoptimal parallel termination resistance

from moment analysis.
• Use the transfer function in (18) to obtain optimal value of the

parallel capacitor,Cp, using moment analysis.

(18)

A result is shown plotted in Fig.13 for a low-loss transmission line
with AC termination versus a parallel resistive termination with an
optimal R.

IV. CONCLUSIONS

This paper presents a comprehensive and generalized approach
for optimal termination of transmission lines using moment-based
symbolic analysis. A new metric has been defined for terminating
transmission lines based on the interpretation of moments of a signal
as the time-weighted integral of the waveform in the time-domain.
No time-domain simulations are required to obtain this optimal value
of termination. Furthermore, the general framework of this method-
ology is shown to be conducive for incorporating rise-time effects of
the input signal and loading conditions at the end of a line.
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Towards the objective of providing a reliable metric that can effi-
ciently evaluate the trade-off between the overshoot/undershoot of a
signal and delay, future work will involve determining accurate
bounds on the signal. Estimating the sensitivity of the signal to pa-
rameter changes owing to process variations is also an important
consideration. Finally, calculating the moments as a symbolic func-
tion of various R’s will be considered for more complex interconnect
circuits.
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