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Abstract— The vulnerabilities of face-based biometric sys-
tems to presentation attacks have been finally recognized but
yet we lack generalized software-based face presentation attack
detection (PAD) methods performing robustly in practical
mobile authentication scenarios. This is mainly due to the fact
that the existing public face PAD datasets are beginning to
cover a variety of attack scenarios and acquisition conditions
but their standard evaluation protocols do not encourage
researchers to assess the generalization capabilities of their
methods across these variations. In this present work, we
introduce a new public face PAD database, OULU-NPU, aiming
at evaluating the generalization of PAD methods in more
realistic mobile authentication scenarios across three covariates:
unknown environmental conditions (namely illumination and
background scene), acquisition devices and presentation attack
instruments (PAI). This publicly available database consists of
5940 videos corresponding to 55 subjects recorded in three
different environments using high-resolution frontal cameras
of six different smartphones. The high-quality print and video-
replay attacks were created using two different printers and
two different display devices. Each of the four unambiguously
defined evaluation protocols introduces at least one previously
unseen condition to the test set, which enables a fair comparison
on the generalization capabilities between new and existing
approaches. The baseline results using color texture analysis
based face PAD method demonstrate the challenging nature of
the database.

I. INTRODUCTION

The use of face modality is especially appealing in mobile

biometrics because it is highly accepted among users, consid-

ering the ”selfie generation”, and can be also easily integrated

in the natural interaction with the devices. Moreover, nowa-

days almost every mobile device is equipped with a decent

front-facing camera, while fingerprint and iris sensors are

just emerging. Face recognition is indeed being increasingly

deployed in mobile applications. As an example, MasterCard

is trialling a ”selfie verification” feature to secure its new

mobile payment service.

Spoofing (or presentation attacks as defined in the current

ISO/IEC 30107-3 standard [8]) poses serious security issue

to face recognition or biometric systems in general. The

vulnerabilities of face-based biometric systems to spoofing

have been now recognized and face presentation attack

detection (PAD) has finally received significant attention in

the research community [1], [3], [7]. Yet we lack generalized

software-based face PAD methods performing robustly in the
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unknown operational conditions of practical mobile authenti-

cation scenarios. For instance, in a recent study [9], six com-

mercial face recognition systems, namely Face Unlock, Face-

lock Pro, Visidon, Veriface, Luxand Blink and FastAccess,

were easily fooled with crude photo attacks using images of

the targeted person downloaded from social networks. Even

worse, also their dedicated challenge-response based liveness

detection mechanisms were circumvented using simple photo

manipulation to imitate the requested facial motion (liveness

cues), including eye blinking and head rotation.

The existing public datasets for developing and bench-

marking software-based face PAD methods are beginning to

cover a variety of attack scenarios and acquisition conditions

[4], [5], [13], [15]. However, the main problem is that their

standard evaluation protocols do not encourage researchers

to assess the generalization capabilities of their PAD methods

across these variations partly due to the lack of data. Instead,

the methods are evaluated using the homogeneous train

and test sets, i.e. corresponding to exactly the same known

operating conditions and artifacts, when many of the existing

face PAD methods achieve astonishing, near 0%, error rates.

The preliminary studies on generalized face spoof detection

[2], [3], [6], [12], [13] have shown that these reported

performances are indeed overly optimistic estimate on their

actual performance in real-world authentication applications.

While the existing datasets have been and continue to be

useful for the research community, the remarkable results

in intra-database experiments but lack of generalization

capabilities among face PAD methods indicates that more

challenging configurations are needed before the research on

non-intrusive software-based face spoof detection can reach

the next level.

In this paper, we address this issue and introduce a

new public face PAD database, OULU-NPU, which aims at

evaluating the generalization of PAD methods in more real-

istic mobile authentication scenarios across three covariates:

unknown environmental conditions (namely illumination and

background scene), acquisition devices and presentation at-

tack instruments (PAI). Altogether, the database consists of

5940 videos corresponding to 55 subjects recorded in three

different illumination conditions using high-resolution frontal

cameras of six different recent smartphones. High-quality

print and video-replay attacks were created using two printers

and two display devices. The first three evaluation protocols

assess the effect of each covariate separately, i.e. each of

them introduces one previously unseen condition to the test

set which is not present in the training material. The fourth978-1-5090-4023-0/17/$31.00 c©2017 IEEE



TABLE I: Comparison between the existing face PAD databases and the new OULU-NPU.

Database # subjects Acquisition devices # lighting scenarios PAIs # real/attack videos Fixed validation set
Replay-Attack [4] 50 1 laptop 2 1 printer & 2 displays 200/1000 Yes
CASIA-FASD[13] 50 3 webcams 1 1 printer & 1 display 150/450 No
MSU-MFSD [15] 35 1 laptop & 1 smartphone 1 1 printer & 2 displays 110/330 No
Replay-Mobile [5] 40 1 smartphone & 1 tablet 5 1 printer & 1 display 390/640 Yes

OULU-NPU 55 6 smartphones 3 2 printers & 2 displays 1980/3960 Yes

protocol is designed to simulate a real-world scenario where

all the three variations were taken into consideration at the

same time. In addition, the 55 subjects are divided into

subject-disjoint training, development and testing because the

use of unambiguous evaluation protocol with fixed validation

set enables unbiased comparison between new and existing

approaches. We provide baseline results of a state-of-the-

art method based on color texture analysis [2] that clearly

demonstrate the challenging nature of the database.

The rest of this paper is organized as follows. In Section

II, we introduce the evolution of publicly available face PAD

databases and discuss their advantages and shortcomings.

The new OULU-NPU face presentation attack detection

database is presented in Section III. Section IV describes

the benchmark experiments and results. Finally, Section V

concludes the paper.

II. RELATED WORK

In the very early phase of face PAD related research,

even software-based approaches were evaluated on pro-

prietary databases. The use of private data can be seen

somewhat reasonable when demonstrating proof-of-concept

custom imaging solutions or (random) challenge-response

based approaches introducing specific user interaction de-

mands. The results of non-intrusive software-based methods,

however, should be easily reproduced and fairly compared

because they are just further processing the same images

(or videos) used for the actual authentication purposes or

additional data captured with conventional cameras. Further-

more, the lack of publicly available data is likely to rule

out many potential researchers working on PAD. It was not

a coincidence that after the release of the first public PAD

dataset, NUAA Photograph Imposter Database (NUAA-PID)

[11], the research on face PAD exploded.

Shortly after NUAA-PID, larger scale video-based pub-

lic datasets with both print and video-replay attacks were

released, namely CASIA Face Anti-Spoofing Database

(CASIA-FASD) [15] and Replay-Attack Database [4], each

consisting of 50 subjects. These databases introduce some

variations in the acquisition conditions. The data in the

CASIA-FASD was captured using three cameras with vary-

ing level of image quality and resolution, i.e. low, medium

and high, while the Replay-Attack Dataset considers two

authentication scenarios with two illumination conditions

and backgrounds, i.e. controlled and adverse. Although the

CASIA-FASD, is smaller than the Replay-Attack Database,

it has shown to be more challenging benchmark dataset due

to the diversity in the data, including attack types and (less-

controlled) acquisition conditions in general, e.g. standoff

distance and input sensor quality.

The Replay-Attack Database and CASIA-FASD are still

the main datasets used for developing and benchmarking face

PAD methods. However, these datasets are not representative

of the current mobile authentication scenarios. First, the data

acquisition was conducted with generic web cameras or con-

ventional digital cameras whose image quality and resolution

is either too low or too high considering the latest generations

of mobile devices. Furthermore, the use of stationary cameras

does not correspond to the mobile applications where the

user holding the device poses additional variations, thus new

challenges, in the acquired face videos, including global mo-

tion, sudden illumination changes, extreme head poses and

various background scenes. Face PAD in mobile scenarios

does not have to be more difficult by default but the nature

of the development and benchmark data must be replicate

realistic of mobile authentication scenario [13].

Recently, the MSU Mobile Face Spoof Database (MSU-

MFSD) [13] and the Replay-Mobile database [5] introduced

mobile authentication scenarios to public face PAD bench-

mark datasets. In both datasets, two different acquisition

devices were used for recording the real accesses and attack

attempts. While the MSU-MFSD considers only small illu-

mination variations as the real subjects were recorded in the

same laboratory environment, the Replay-Mobile Database

includes five different mobile scenarios and paying special

attention to the lighting conditions. Therefore, it is very

unfortunate that the dataset suffers from a severe flaw as

the background scenes differ between the real accesses and

the attack attempts. Thus, the dataset can be probably easily

broken with algorithms utilising the whole video frame

(context) for PAD, like [10].

The current publicly available databases have been a very

important kick-off for finding out best practices for face PAD

and have provided valuable insight on the different aspects in

solving the problem. Many potentially useful approaches for

face PAD, including from liveness cues, like eyeblink detec-

tion [10], to static image propeties, like texture [2], [3], [10]

and distortions in image quality [13], have been explored.

However, the databases have been partially misleading the

research into wrong direction as well as a relatively large

part of the research has been concentrating on breaking the

datasets instead of really trying to bring new theoretical

insight into the problem of face PAD. As an outcome, we still

lack low-cost generalized methods that could be transferred

to practical applications like mobile authentication scenarios.

While existing publicly available databases still continue



Fig. 1: Samples of the subjects recorded in the database.

to be valuable tools for the community, more challenging

datasets are needed to reach the next level and solve some

fundamental generalization related problems in face PAD.

As seen above and in Table I, the existing public datasets

are beginning to cover the different variations in e.g. il-

lumination, acquisition devices and the attacks themselves,

that will be definitely faced in real operational conditions.

However, the main issue is that they do not provide default

evaluation protocols for evaluating the actual generalization

capabilities of the new PAD methods across these covariates.

One reason for this is that the databases are rather small,

when also the variations in some factors are still limited. For

instance, the MSU-MFSD considers only one illumination

condition and only two different cameras were employed

in collecting both the MSU-MFSD and the Replay-Mobile

Database. The variation in PAIs is another important factor

that cannot be extensively studied using the existing bench-

marks because they include at most one high-quality print

and video-replay attack.

It is also worth highlighting that some of the benchmark

datasets, like the CASIA-FASD and MSU-MFSD, contain

separate folds only for training and testing, which may

cause bias due to ”data peeking”. While independent (third-

party) testing [14] is practically impossible to arrange with-

out collective evaluations, the use of pre-defined training,

development and test sets would mitigate the effect of tuning

the methods on the test data, thus allowing a fairer direct

comparison between new and existing approaches.

III. THE OULU-NPU FACE PAD DATABASE

In this work, we address many of the issues mentioned

in the previous section and introduce the new OULU-NPU

face PAD database. The aim of the dataset is particularly

at evaluating the generalization of new PAD methods in

more realistic mobile authentication scenarios by considering

three covariates: unknown environmental conditions (namely

illumination and background scene), acquisition devices and

presentation attack instruments (PAI), separately and at once.

In the following, we describe the new OULU-NPU face PAD

database and its evaluation protocols in detail.

A. Collection of real access attempts

The OULU-NPU presentation attack detection database

includes short video sequences of real access and attack

(a) Session 1 (b) Session 2 (c) Session 3

Fig. 2: Sample images of a real subject highlighting the

illumination conditions across the three different scenarios.

attempts corresponding to 55 subjects (15 female and 40

male). Figure 1 shows samples of these subjects. The real

access attempts were recorded in three different sessions

separated by a time interval of one week. During each

session, a different illumination condition and background

scene were considered (see Figure 2):

• Session 1: The recordings were taken in an open-plan

office where the electronic light was switched on and the

windows blinds were up and the windows were located

behind the users.

• Session 2: The recordings were taken in a meeting

room where the electronic light was the only source

of illumination.

• Session 3: The recordings were taken in a small office

where the electronic light was switched on and the

windows blinds were up and the windows were located

in front of the users.

During each session, the subjects recorded two videos of

themselves (one for the enrollment and one for the actual

access attempt) using the frontal cameras of the mobile

devices. In order to simulate realistic mobile authentication

scenarios, the video length was limited to five seconds and

the clients were asked to hold the mobile device like they

were being authenticated but without deviating too much

from their natural posture while normal device usage.

The recent advances in sensor technology have introduced

high-resolution cameras also to the mid range models of



(a) Samsung (b) HTC (c) MEIZU (d) ASUS (e) Sony (f) OPPO

Fig. 3: Sample images showing the image quality of the different camera devices.

the last generation mobile devices capable of capturing

good quality images (and videos) in daylight and indoor

conditions. Considering that the acquisition quality of the

embedded (both front and rear) cameras can be expected

to be growing generation by generation, we selected six

smartphones with high-quality front-facing cameras in the

price range from e250 to e600 for the data collection:

• Samsung Galaxy S6 edge (Phone 1) with 5 MP frontal

camera.

• HTC Desire EYE (Phone 2) with 13 MP frontal camera.

• MEIZU X5 (Phone 3) with 5 MP frontal camera.

• ASUS Zenfone Selfie (Phone 4) with 13 MP frontal

camera.

• Sony XPERIA C5 Ultra Dual (Phone 5) with 13 MP

frontal camera.

• OPPO N3 (Phone 6) with 16 MP rotating camera.

The videos were recorded at Full HD resolution, i.e.

1920 × 1080 using the frontal cameras of the six mobile

devices and the same camera software1 installed on each

device. Even though the nominal camera resolution of some

mobile devices is the same, like Sony XPERIA C5 Ultra

Dual, HTC Desire EYE and ASUS Zenfone Selfie (13 MP),

significant differences can be observed in the quality of the

resulting videos as demonstrated in Figure 3.

B. Attack creation

Assuming that the legitimate users are trying to get au-

thenticated in multiple conditions, it is important to collect

the data of genuine subjects in multiple lighting conditions

from the usability point of view. In contrast, the attackers

try to present as high-quality artifact as they can to the

input camera in order to maximize the chance of successfully

fooling a face biometric system. Therefore, the attacks should

be carefully designed and conducted in order to guarantee

that they are indeed hard to detect.

During each of the three sessions, a high-resolution photo

and video of each user was captured using the back camera

of the Samsung Galaxy S6 Edge phone capable of taking 16

MP still images and Full HD videos. These high resolution

photos and videos were then used to create the presentation

1http://opencamera.sourceforge.net/

(a) Print 1 (b) Print 2 (c) Replay 1 (d) Replay 2

Fig. 4: Samples of print and replay attacks taken with the

front camera of Sony XPERIA C5 Ultra Dual.

attacks. The attack types considered in this database are print

and video-replay attacks:

• Print attacks: The high resolution photos were printed

on A3 glossy paper using two different printers: a Canon

imagePRESS C6011 (Printer 1) and a Canon PIXMA

iX6550 (Printer 2).

• Video-replay attacks: The high-resolution videos were

replayed on two different display devices: a 19” Dell

UltraSharp 1905FP display with 1280×1024 resolution

(Display 1) and an early 2015 Macbook 13” laptop with

Retina display of 2560× 1600 resolution (Display 2).

The print and video-replay attacks were then recorded

using the frontal cameras of the six mobile phones. While

capturing the print attacks, the facial prints were held by

the operator and captured with stationary capturing devices

in order to maximize the image quality but still introduce

some noticeable motion in the print attacks. In contrast,

when recording the video-replay attacks both of the capturing

devices and PAIs were stationary. Furthermore, we paid

special attention that the background scene of the attacks

matches the real accesses during each session and that the

attack videos do not contain the bezels of the screens or

edges of the prints. Figure 4 shows samples of the attacks

captured using the Sony XPERIA C5 Ultra Dual.

C. Evaluation protocols

To evaluate the performances of the face PAD methods on

the OULU-NPU database, we designed four protocols.



TABLE II: The detailed information about the video recordings in the train, development and test sets of each protocol.

Protocol Subset Session Phones Users Attacks created using # real videos # attack videos # all videos

Protocol I
Train Session 1,2 6 Phones 1-20 Printer 1,2; Display 1,2 240 960 1200
Dev Session 1,2 6 Phones 21-35 Printer 1,2; Display 1,2 180 720 900
Test Session 3 6 Phones 36-55 Printer 1,2; Display 1,2 120 480 600

Protocol II
Train Session 1,2,3 6 Phones 1-20 Printer 1; Display 1 360 720 1080
Dev Session 1,2,3 6 Phones 21-35 Printer 1; Display 1 270 540 810
Test Session 1,2,3 6 Phones 36-55 Printer 2; Display 2 360 720 1080

Protocol III
Train Session 1,2,3 5 Phones 1-20 Printer 1,2; Display 1,2 300 1200 1500
Dev Session 1,2,3 5 Phone 21-35 Printer 1,2; Display 1,2 225 900 1125
Test Session 1,2,3 1 Phone 36-55 Printer 1,2; Display 1,2 60 240 300

Protocol VI
Train Session 1,2 5 Phones 1-20 Printer 1; Display 1 200 400 600
Dev Session 1,2 5 Phones 21-35 Printer 1; Display 1 150 300 450
Test Session 3 1 Phone 36-55 Printer 2; Display 2 20 40 60

1) Protocol I: The first protocol is designed to evaluate

the generalization of the face PAD methods under different

environmental conditions, namely illumination and back-

ground scene. As the data is recorded in three sessions

with different illumination conditions and locations, the train,

development and evaluation sets can be constructed using

video recordings taken from different sessions, see Table II.

2) Protocol II: Since different PAI (i.e. different displays

and printers) create different artifacts, it is necessary to

develop face PAD methods robust to this kind of variations.

The second protocol is designed to evaluate the effect of the

PAI variation on the performance of the face PAD methods

by introducing previously unseen PAI in the test set as shown

in Table II.

3) Protocol III: One of the critical issues in face anti-

spoofing and image classification in general is the gener-

alization across different acquisition devices. A Leave One

Camera Out (LOCO) protocol is designed to study the sensor

interoperability of the face PAD methods. In each iteration,

the real and the attack videos recorded with five smartphones

are used to train and tune the countermeasure model. Then,

the generalization of the method is assessed using the videos

recorded with the remaining smartphone.

4) Protocol IV: In the last and most challenging scenario,

the previous three protocols are combined to simulate the

real-world operational conditions. To be more specific, the

generalization abilities of the face PAD methods are eval-

uated simultaneously across previously unseen illumination

conditions, background scenes, PAIs and input sensors, see

Table II.

In all these protocols, the 55 subjects were divided into

three subject-disjoint subsets for training, development and

testing (20, 15 and 20, respectively). Tables II gives a detailed

information about the video recordings used in the train,

development and test sets of each protocol.

IV. EXPERIMENTS

The experimental results of the baseline method under

the different protocols are presented and discussed in this

section. For the performance evaluation, we selected the

recently standardized ISO/IEC 30107-3 metrics [8]: Attack

Presentation Classification Error Rate (APCER) and Bona

Fide Presentation Classification Error Rate (BPCER). In

principle, these two metrics correspond to the False accep-

tance Rate (FAR) and False Rejection Rate (FRR) commonly

used in the PAD related literature. However, unlike the

FAR and FRR, the APCER and the BPCER take the attack

potential into account in terms of an attacker’s expertise,

resources and motivation in the ”worst case scenario”. To be

more specific, the APCER is computed separately for each

PAI (e.g. print or display) and the overall PAD performance

corresponds to the attack with highest APCER, i.e. the most

successful PAI. This indicates how easy a biometric system

is to fool on average by exploiting its vulnerability (if there

is any).

Since both the APCER and the BPCER depend on the

decision threshold, the development set operates as a separate

validation set for fine tuning the system parameters and

estimating the threshold value to be used on the test set.

To summarize the overall system performance in a single

value, the Average Classification Error Rate (ACER) is used

which is the average of the APCER and the BPCER at the

decision threshold defined by the Equal Error Rate (EER) on

the development set.

As a baseline face PAD method, we chose the color texture

based method [2] as it has shown promising generalization

abilities. In this method, the texture features are extracted

from the color images instead of the gray-scale representation

that has been more commonly used in face PAD. The color

reproduction (gamut) of different PAIs, e.g. prints, displays

and masks, is limited compared to genuine faces. Gamut

mapping functions are typically required in order to preserve

color perception properties across different output devices,

which can alter the (color) texture of the original image. In

general, the gamut mapping algorithms focus on preserving

the spatially local luminance variations in the original images

at the cost of the chrominance information because the

human eye is more sensitive to luminance than to chroma.

The camera used for capturing the targeted face sample

will also lead to imperfect color reproduction compared

to the legitimate sample. Furthermore, other disparities in

facial texture, including printing defects, video artifacts,

noise signatures of display devices and moiré effects, should

be more evident in the original color images compared to



gray-scale images. Thus, the color texture analysis provides

enhanced discrimination between the real and the attack

samples.

In this paper, for each frame, the face region is detected,

cropped and normalized into 64 × 64 pixel images. Since

the studies conducted in [2], [3] depict that the color texture

information extracted from both the HSV and YCbCr color

spaces gives the best results compared to the RGB, or the

gray-scale images, the uniform LBPu2

8,1
(i.e. neighbors=8 and

radius=1) features are extracted from each channel of the

HSV and YCbCr image representations. Then, the resulting

features are concatenated and fed into a Softmax classifier

with a cross-entropy loss function.

A. Protocol I: Effect of the illumination variation

To study the effect of the illumination variation on the

robustness of the face PAD method, we train and tune the

countermeasure model using the video recordings taken in

Session 1 and Session 2, then evaluate its performance on

the videos taken in the third session. Table III shows the

effect of this variation on the color LBP based method. As

we can see, using different sessions to train and evaluate

the countermeasure model results in a degraded performance

compared to the results of the countermeasure model trained

with video recordings from the same session as the evaluation

set (Session 3). The performance degradation from 2.7% to

13.5% indicates that the illumination variation can indeed

pose a big issue for the face PAD methods, especially for

the texture based methods in terms of BPCER.

B. Protocol II: Effect of the PAI variation

The effect of the PAI variation on the generalization

performance is investigated by selecting the spoofing attacks

created with different PAIs in the train and test conditions.

In the train set, we used the print and the video-replay

attacks created with Printer 1 and Display 1. Then, for the

evaluation, we used the attacks created with Printer 2 and

Display 2. To show how much this variation can affect the

generalization performance, we have also reported the results

without any PAI variation (i.e. the attacks in the training,

development and test sets are created using Printer 2 and

Display 2). The results reported in Table IV show that the

variation in the PAI decreases the performance of the baseline

method from 7.2% to 14.2% in terms of ACER. It is worth

highlighting that the baseline method is able to deal with the

PAI variation much better in the case of video-replay attacks

than print attacks as the ACER increases from 7.2% to 9.2%

and from 6.1% to 14.2%, respectively. It is not surprising to

notice that illumination variation increases specifically the

BPCER, while PAI variation has more significant effect on

the APCER.

C. Protocol III: Effect of the camera device variation

To study the effect of the camera device variation, we

compared the results obtained with the LOCO protocol to the

results obtained without any camera device variation (i.e. the

videos in the training, development and test sets are recorded

using the same mobile device). The results are presented

in Table V and Table VI. In addition to reporting the

performance on each mobile phone separately, the average

and the standard deviation over all folds are also computed

in order to summarize the results. From Table V and Table

VI, we can clearly see that sensor interoperability is another

major issue in face PAD that needs further attention.

D. Protocol IV: Effect of illumination, PAI and camera

device variations

This part demonstrates the combined effect of the illu-

mination, PAI and camera device variations on the gener-

alization performance, which gives us a better idea about

the robustness of the developed face PAD methods in more

realistic mobile authentication scenarios. The results reported

in Table VII show that combining the three variations causes

significant degradation in performance. Although the color

texture based method shows relatively good generalization

abilities in the previous experiments (in which only one

variation was taken into account), it fails completely to deal

with the different covariates at the same time, especially in

the case of some mobile phones.

V. CONCLUSIONS

In this paper, we introduced a new mobile face presen-

tation attack detection database. It consists of real access

and attack videos corresponding to 55 subjects. The videos

were recorded using six different mobile devices in three

different illumination conditions and background scenes. For

the spoofing attacks, we considered two types of attacks:

print attacks and video-replay attacks. Both of these attacks

were created using two presentation attack instruments (two

printers and two displays). To evaluate the robustness of

the developed face PAD methods, we designed four proto-

cols. These protocols study the effect of the environmental

conditions (namely illumination and background scene), PAI

and camera device variations on the generalization abilities.

The results of a face PAD method based on color texture

analysis were reported as a baseline. We invite the research

community to consider this new database for the evaluation

of new PAD methods.
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TABLE III: The performance of the of color LBP method under different illumination conditions.

Train Test
Dev Test

EER
Video-replay Print Overall

APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

Session 3 Session 3 2.9 2.6 2.4 2.5 2.9 2.4 2.7 2.9 2.4 2.7
Session 1, 2 Session 3 4.7 5.8 21.3 13.5 1.7 21.3 11.5 5.8 21.3 13.5

TABLE IV: The performance of the color LBP method under PAI variation.

Train Test
Dev Test

EER
Video-replay Print Overall

APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

Pr 2, D 2 Pr 2, D 2 4.9 10.3 4.0 7.2 8.2 4.0 6.1 10.3 4.0 7.2
Pr 1, D 1 Pr 2, D 2 4.3 11.4 7.0 9.2 21.5 7.0 14.2 21.5 7.0 14.2

TABLE V: The performance of the color LBP method without camera device variation.

Train Test
Dev Test

EER
Video-replay Print Overall

APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

P=1 P= 1 4.8 3.9 9.2 6.5 2.7 9.2 6.0 3.9 9.2 6.5
P=2 P= 2 3.8 5.0 3.8 4.4 8.6 3.8 6.2 8.6 3.8 6.2
P=3 P= 3 1.8 4.7 9.0 6.8 0.1 9.0 4.6 4.7 9.0 6.8
P=4 P= 4 7.7 8.9 7.8 8.4 10.3 7.8 9.1 10.3 7.8 9.1
P=5 P= 5 4.2 7.8 3.5 5.6 8.9 3.5 6.2 8.9 3.5 6.2
P=6 P= 6 1.9 4.2 1.8 3.0 3.8 1.8 2.8 4.2 1.8 3.0

Avg± std 4.0 ± 2.2 5.7± 2.1 5.9± 3.2 5.8± 1.9 5.8 ± 4.1 5.9 ± 3.2 5.8 ± 2.1 6.8 ± 2.8 5.9 ± 3.2 6.3 ± 1.9

TABLE VI: The performance of the color LBP method under camera device variation.

Train Test
Dev Test

EER
Video-replay Print Overall

APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

P={2,3,4,5,6} P= 1 5.4 5.6 19.1 12.3 2.9 19.1 11.0 5.6 19.1 12.3
P={1,3,4,5,6} P= 2 5.2 7.0 6.2 6.6 17.6 6.2 11.9 17.6 6.2 11.9
P={1,2,4,5,6} P= 3 5.0 7.2 19.9 13.5 3.7 19.9 11.8 7.2 19.9 13.5
P={1,2,3,5,6} P= 4 4.3 15.1 5.8 10.4 12.8 5.8 9.3 15.1 5.8 10.4
P={1,2,3,4,6} P= 5 4.8 6.3 4.9 5.6 8.2 4.9 6.6 8.2 4.9 6.6
P={1,2,3,4,5} P= 6 4.9 15.8 10.4 13.1 25.2 10.4 17.8 25.2 10.4 17.8

Avg± std 4.9 ±0.4 9.5 ±4.6 11.0 ±6.8 10.3 ±3.4 11.7 ±8.6 11.0± 6.8 11.4± 3.7 13.1± 7.6 11.0± 6.8 12.1 ±3.7

TABLE VII: The performance of the color LBP method under illumination, PAI and camera variations

Train Test
Dev Test

EER
Video-replay Print Overall

APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

P={2,3,4,5,6} P= 1 5.0 13.4 18.7 16.1 12.0 18.7 15.4 13.4 18.7 16.1
P={1,3,4,5,6} P= 2 6.0 23.0 16.4 19.7 19.6 16.4 18.0 23.0 16.4 19.7
P={1,2,4,5,6} P= 3 5.6 5.8 38.4 22.1 0.0 38.4 19.2 5.8 38.4 22.1
P={1,2,3,5,6} P= 4 5.2 42.7 36.4 39.6 12.4 36.4 24.4 42.7 36.4 39.6
P={1,2,3,4,6} P= 5 5.2 10.0 21.1 15.5 2.9 21.1 12.0 10.0 21.1 15.5
P={1,2,3,4,5} P=6 4.4 64.6 0.3 32.5 100.0 0.3 50.2 100.0 0.3 50.2

Avg± std 5.2 ±0.6 26.6± 22.8 21.9± 14.1 24.2± 9.7 24.5± 37.7 21.9± 14.1 23.2 ± 13.8 32.5± 35.6 21.9± 14.1 27.2± 14.3
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