
ar
X

iv
:2

20
5.

03
78

9v
1 

 [
gr

-q
c]

  8
 M

ay
 2

02
2

MNRAS 000, 000–000 (2022) Preprint May 10, 2022 Compiled using MNRAS LATEX style file v3.0

Screening Mechanism and Late-time Cosmology : Role of a
Chameleon-Brans-Dicke Scalar Field

Soumya Chakrabarti1⋆, Koushik Dutta2† and Jackson Levi Said3‡
1Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India
2Department of Physical Science, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
3 Institute of Space Sciences and Astronomy, University of Malta, Msida, MSD 2080, Malta

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

We discuss a way in which the geometric scalar field in a Brans-Dicke theory can evade local astronomical tests

and act as a driver of the late-time cosmic acceleration. This requires a self-interaction of the Brans-Dicke scalar as

well as an interaction with ordinary matter. The scalar field in this construct acquires a density-dependent effective
mass much like a Chameleon field. We discuss the viability of this setup in the context of Equivalence Principle,

Fifth Force and Solar System tests. The cosmological consistency is adjudged in comparison with observational data

from recalibrated light-curves of type Ia supernova (JLA), the Hubble parameter measurements (OHD) and the

Baryon Acoustic Oscillation (BAO). We deduct that the astrophysical constraints indeed favour the existence of a
mild scalar-matter interaction in the Jordan Frame.
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1 INTRODUCTION

The accelerated expansion of the universe is one of the
most beautiful phenomena of modern era cosmology.
The present phase of cosmic acceleration as well as the
preceding epoch of deceleration receives quite conclu-
sive support from a range of astrophysical observations
(Perlmutter et. al. 1997; Riess et. al. 1998; Melchiorri et. al.
2000; Sahni and Starobinsky 2000; Jaffe et. al. 2001;
Lange et. al. 2001; Halverson et. al. 2002; Netterfield et. al.
2002; Tonry et. al. 2003; Copeland, Sami and Tsujikawa
2006). As a matter of intrigue, no clear theoretical expla-
nation can be found in the standard cosmological dynamics
of a fluid description in the context of General Theory
of Relativity (GR), inspite of the theory being the best
theory of gravity till date. This requirement has driven
physicists towards the foundation of a so-called Dark Energy
(DE) component of the universe (Riess 2001) exhibiting a
negative pressure that can drive the recent phase of cosmic
acceleration. Astrophysical constraints also demand that
the transition between subsequent epochs of the expanding
universe must be smooth (Padmanabhan and Roychoudhury
2003; Roychoudhury and Padmanabhan 2005). Over the last
few decades, a plethora of cosmological models are proposed
in this regard. The simplest toy models are written using
an energy component of the order of a Cosmological Con-
stant or a time varying scalar field called the Quintessence
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(Zlatev, Wang and Steinhardt 1999; Sahni and Starobinsky
2000). The case of a Cosmological Constant has already
become superfluous due to the ridiculous mismatch with
quantum field theoretical estimates. On the other hand, the
typical couplings between the quintessence field and the
baryons seem to rule out a straightforward quintessence
cosmology in view of the stringent constraints coming from
the fifth-force experiments (Adelberger, Heckel and Nelson
2003). Nevertheless, using a quintessence field in a broader
context can produce solutions of considerable interest.
For instance, two interesting possibilities exist where
the scalar field is either pseudo-Nambu-Goldstone-Boson
(pNGB) (Frieman, Hill, Stebbins and Waga 1995) or the
scalar field hides its couplings via screening mechanisms
(Khoury and Weltman 2004; Hinterbichler and Khoury
2010). In the latter case, it is assumed that the cosmological
constant is zero due to some unknown reasons. For the case
of a pNGB, the potential is natural from the view point of
quantum field theory even though it faces some technical
difficulties in UV complete theories (Dutta and Sorbo 2007;
Adak and Dutta 2014; Banks, Dine, Fox and Gorbatov
2003; Arkani-Hamed, Motl, Nicolis and Vafa 2007).

The present work is motivated primarily by scalar extended
theories of gravity where the acceleration of the universe is
driven by a geometric DE. Brans-Dicke (BD) theory arguably
is the paradigm of any such extension (Brans and Dicke 1961;
Misner, Thorne and Wheeler 1973) where the effective gravi-
tational coupling can vary (Faraoni 2004). The BD scalar field
φ alongwith a dimensionless parameter ω mark the charac-
teristics of the theory in comparison with standard GR. Lo-
cal astronomical tests in general demand strict constraints
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over this BD parameter ω and more often than not, this re-
quirement poses a problem in finding consistent cosmolog-
ical solutions (Banerjee and Sen 1997; Faraoni 1999). As a
consequence, a standard BD theory, inspite of having im-
mense initial potential can not quite be regarded as ‘the

better theory’ of gravity. It can still provide excellent toy
models though, in particular of the early acceleration of the
universe in the form of an extended inflation (Guth 1981;
Mathiazhagan and Johri 1984; La and Steinhardt 1989) and
a late time accelerated expansion Banerjee and Pavon (2001)
as well. Addition of a self-interaction potential of the BD
scalar field or an additional quintessence scalar field in the
action provides some of the simplest extensions of the the-
ory and these are studied in literature with rigorous details
Faraoni (1999); Bertolami and Martins (2000); Sen and Sen
(2001); Banerjee and Pavon (2001). Making ω a function of
the scalar field is another interesting possibility which can
provide a revival of the standard BD theory (Bergmann 1968;
Wagoner 1970; Nordtvedt Jr. 1970; Barker 1978). For more
aspects of standard BD theory and possible extensions, we
refer to some of the existing literature (Sotiriou 2014).

We intend to focus on the role of scalar interactions in these
extended theories. We find motivation in a theory where the
scalar, apart from its self-interaction, has interaction with
ordinary matter as well. We call the theory a generalized
Chameleon-Brans-Dicke (CBD) theory and give it’s basic
formalism in both Einstein and Jordan frames, employing
a suitable conformal transformation following the standard
literature (Jarv, Kuusk, Saal and Vilson 2015; Quiros et al.
2015). In the process, the scalar interaction in the Einstein
Frame is modified beyond the standard conformal coupling
with matter and leads to modification of gravitational inter-
action in small scale as well as large scale structure forma-
tions. However, the solar system constraints and fifth force ex-
periments require that such a scalar must remain subdued lo-
cally (Jain and Khoury 2010), i.e., in high-density regions. In
our setup, this is possible due to the dominant scalar-matter
interaction in the solar system, which can easily decouple the
scalar from matter. A scalar field acquiring such a nature is
popular for the ‘Chameleon’ like feature as in evasion from de-
tection by local experiments (Will 2005). The set of require-
ments for the chameleon nature of the scalar can generate
a novel set of constraints over any scalar dominated theory
of gravity (Khoury and Weltman 2004; Gubser and Khoury
2004; Upadhye, Gubser and Khoury 2006; Brax et. al. 2004).
These constraints essentially ensure that the Equivalence
Principle (EP) violation is avoided on the solar system scales
(Will 2001; Baessler et al. 1999; Damour and Polyakov 1994;
Huey, Steinhardt, Ovrut and Waldrum 2000; Hill and Ross
1988; Ellis, Kalara, Olive and Wetterich 1989).

Due to the generalized scalar interaction, the scalar be-
haves in an entirely different manner in the solar system
even if it is quite massive around Earth. More importantly,
on cosmological scales one can use such a scalar to con-
struct an entity with a mass of the order of present value
of Hubble parameter and provide a perfect candidate to
generate the acceleration of the universe. Previous endeav-
ors with similar motivation have produced promising cosmo-
logical solutions (Das, Corasaniti and Khoury 2006; Easson
2007; Mota and Shaw 2006, 2007; Das and Banerjee 2008)
as well as a possibility of interacting dark energy-dark mat-

ter models of cosmology (Zimdahl and Pavon 2004), how-
ever, the equivalence principle requirements were never re-
ally considered. We show that the generalized CBD scalar
model can satisfy these constraints alongwith the astro-
physical requirements to generate a viable model of late
time cosmology that can describe the smooth transition of
the universe from deceleration into acceleration. We em-
ploy a simple statefinder diagnostic to discuss the cosmo-
logical issues. We estimate the constraints on model param-
eters with a statistical analysis with observational data sets
such as the Joint Light-Curve Analysis (JLA) (Betoule et al.
2014; Simon, Verde and Jimenez 2005; Stern et al. 2010;
Chuang and Wang 2013; Moresco et al. 2012; Blake et al.
2012; Delubac et al. 2015), Hubble parameter estimation
(OHD) (Ade et al. 2014) and the Baryon Accoustic Oscilla-
tion (BAO) (Beutler et al. 2011; Anderson et al. 2012) data,
using a Markov Chain Monte Carlo (MCMC) numerical sim-
ulation (Foreman-Mackey et al. 2013).

However, demanding that the Milky Way galaxy is
screened, it has recently been proved that standard
chameleon like theories need to satisfy m−1

o . Mpc, where
m0 is the mass of the chameleon field at present cosmological
density (Wang, Hui and Khoury 2012). With the assumption
of a vanishing divergence of the matter stress-energy ten-
sor, this essentially leads to the deduction that a standard
chameleon field alone can not be the driver of the present
cosmic acceleration. We emphasize that the BD scalar in this
theory interacts with standard (baryonic) matter in the Jor-
dan Frame itself, such that the standard matter conservation
and the geodesic equations are altered. The steep constraint
over the mass of the chameleon field at the cosmological den-
sity therefore, does not apply straightaway.

In the next section, Sec. II, we discuss the basic setup of
the theory and the transformation in between Jordan and
Einstein Frame. This is followed by a discussion of static so-
lutions of spherical bodies such as the Earth in this theory,
in Sec. III. Subsequently we analyze these solutions and com-
ment on the fifth force and solar system constraints on the
profile of the earth, in Sec. IV. Sec. V contains a discussion
on late-time cosmology from a kinematic approach and there-
after we conclude in Sec. VI. We also include some detailed
calculations in the Appendix.

2 BASIC SETUP : ACTION AND THE

EQUATIONS

The generalized Chameleon-Brans-Dicke (CBD) action in
Jordan frame is written as

S =
1

16π

∫

d4x
√−ḡ{φR̄− ωBD

φ
ḡµν∇̄µφ∇̄νφ− V (φ)

+16πf(φ)Lm}, (1)

where R̄ is the Ricci scalar and φ is the BD scalar field in
the Jordan frame. ωBD is the dimensionless BD parameter.
We have two unknown analytical functions of φ at the outset,
V (φ) and f(φ) and they represent the self-interaction and the
scalar-matter interaction respectively. To write the action in
Einstein Frame we use a conformal transformation

ḡµν → gµν = Ω2ḡµν , (2)

Ω =
√

Gφ. (3)

MNRAS 000, 000–000 (2022)
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We also redefine the BD scalar as

ϕ(φ) =

√

2ωBD + 3

16πG
ln(

φ

φ0
). (4)

One needs to ensure that ωBD > − 3
2
. With these, the Ein-

stein Frame action becomes

SEF =

∫

d4x
√
−g{ R

16πG
− 1

2
gµν∇µϕ∇νϕ− U(ϕ)

+ exp(− σϕ

Mp
) f(ϕ)Lm}. (5)

The parameter σ carries the original BD parameter, defined
as

σ = 8

√

π

2ωBD + 3
, (6)

and therefore, constraints on σ essentially leads one to con-
straints over ωBD. The self-interaction of the BD field in Ein-
stein frame is

U(ϕ) = V (φ(ϕ)) exp(−σϕ/Mp). (7)

Variation of the Einstein frame action in Eq. (5) with respect
to the metric and the redefined scalar field leads one to the
field equations

Gµν = M−2
p (h(ϕ)Tm

µν + Tϕ
µν), (8)

and

�ϕ− U ′(ϕ) = −h′(ϕ)Lm. (9)

Note that a redefined interaction as in h(ϕ) =
e−σϕ/Mpf(ϕ) dictates the field equations, as in the scalar evo-
lution equation there is now a new source term. The same can
be realized with Jordan frame field equations as well. In the
rest of the manuscript, we analyse static and time-evolving
solutions of the field equations to make some important de-
ductions.

3 THE BRANS-DICKE SCALAR AS A

CHAMELEON

In this section we discuss that the geometric scalar in the
present setup can exhibit a chameleon like behavior by virtue
of it’s interactions. The standard chameleon mechanism and
the requirements to satisfy the fifth force constraints are
discussed in details in the works of (Khoury and Weltman
2004; Waterhouse 2006). Realisation of this mechanism
requires the static profile of the scalar in Einstein frame. The
self-interaction potential U(ϕ) must be taken in a runaway
form which also brings in additional motivations from
string theory (Huey, Steinhardt, Ovrut and Waldrum 2000;
Hill and Ross 1988; Ellis, Kalara, Olive and Wetterich
1989; Barreiro, Carlos and Copeland 1998;
Binetruy, Gaillard and Wu 1997; Barrow 1990)
and standard quintessence cosmological models
(Zlatev, Wang and Steinhardt 1999; Sahni and Starobinsky
2000). We recall that the equation of motion for ϕ is

�ϕ = U ′(ϕ)− h′(ϕ)Lm. (10)

The scalar-matter energy exchange and the field equa-
tions are directly related to the choice of matter La-
grangian density Lm (Schutz 1970; Brown 1993). In lit-
erature, two well-discussed choices remain, Lm = pm
and Lm = −ρm (Bertolami, Boehmer, Harko and Lobo
2007; Bertolami and Paramos 2010) and it has been
proved that if the scalar-matter interaction is negligible,
these choices are equivalent (Bertolami and Martins 2012;
Bertolami, Frazao and Paramos 2011; Sotiriou and faraoni
2008). It is not a straightforward case in presence of in-
teraction and the question of equivalence already inspires
qualitative arguements over the choice of matter lagrangian
(Faraoni 2009). Avoiding the conundrum, we straightaway
take Lm = −ρm and write the RHS of Eq. (10) as an effec-
tive potential

Ueff (ϕ) = U(ϕ)− ρ0

∫
(

σ

Mp
− df

dϕ

)

e
σϕ

2Mp . (11)

ρm ≡ ρ0e
3σϕ
2Mp is the energy density conserved in Einstein

frame (see for instance (Waterhouse 2006) on more discus-
sions in this regard). U(ϕ) is monotonic as in a runaway form
but Ueff can have a minimum. We assume that ϕmin is the
value of ϕ at the minimum such that

Ueff,ϕ(ϕmin) = 0 . (12)

Similarly, we define the mass of small fluctuations about
ϕmin as

m2
min = Ueff,ϕ,ϕ(ϕmin) = 0 . (13)

Both ϕmin and mmin are functions of density and this has
notable consequences. For a simple spherical mass distribu-
tion of radius R, the minima of Ueff is expected, for instance
ϕc for r < R and ϕ∞ for r > R. In a similar fashion, the
mass of small fluctuations in the respective regions are mc

and m∞. Thus the static scalar profile outside the sphere de-
pends on the size of the sphere. While small objects can only
produce mild perturbation on the ϕ profile, for large objects,
it relies on the solution of Eq. (10), the nature of the effective
potential in Eq. (11) and the smooth matching of ϕ solutions
inside and outside. We have discussed the solutions in some
details in the later parts of the manuscript. For simplicity, it
is fruitful to assume at the outset that

m∞R ≪ 1, (14)

and think of the spherical object as an accumulation of in-
finitesimal disks or volume elements dV . This means that one
has to solve the scalar Klein-Gordon equations for these thin
disks and assemble to write the distribution of ϕ. Intrigu-
ingly, it can be proved that only the volume elements lying
within a thin shell of thickness ∆R close to the surface of
the sphere dominates this contribution (The scalar profiles
for other disks inside the sphere contributes proportional to
exp(−mcr̃) and are subdued, since ϕ ≈ ϕc and mc ≫ m∞.
The solution for this thin shell volume elements of thickness
∆R near the surface can be written as

ϕ(r) ≈ −
(

β0

4πMP

)(

3∆R

R

)

Mce
−m∞r

r
+ ϕ∞. (15)

MNRAS 000, 000–000 (2022)
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The radial distribution of a chameleon field essentially is
driven by the thin shell satisfying

∆R

R
≪ 1. (16)

However, this is only true for large spherical objects such as
the Earth. For small objects, picking out a thin shell close to
the boundary surface is not possible as ∆R/R > 1 and there-
fore the entire volume contributes to the ϕ-field outside. For
them the whole thing acts like a thick shell and the exterior
solution can be found as

ϕ(r) ≈ −
(

β0

4πMP

)

Mce
−m∞r

r
+ ϕ∞. (17)

These two solutions in Eqs. (15) and (17) differ by the thin-
shell suppression factor of ∆Rc/Rc. To mathematically derive
the chameleon profile, we consider that the sphere of radius
R has homogeneous density ρc and is submerged in a medium
of homogeneous density ρ∞, very much like any astronomical
body in our solar system. Then Eq. (10) becomes

d2ϕ

dr2
+

2

r

dϕ

dr
= U,ϕ + ρ0(r)

β(ϕ)

Mp
e

σϕ
2Mp , (18)

β(ϕ)

Mp
=

(

df

dϕ
− σ

Mp

)

, (19)

where

ρ0(r) =

{

ρc for r < R
ρ∞ for r > R

. (20)

The trick is to approximate the effective potential accord-
ing to physical requirements in separate regions and write a
solution for the scalar in closed form. Outside the sphere the
effective potential pushes the scalar towards ϕ∞ and we use
a damped harmonic oscillator approximation (Waterhouse
2006) to write, for r > R,

d2ϕ

dr2
+

2

r

dϕ

dr
= m2

∞ (ϕ− ϕ∞) . (21)

One can write the general solution to this as

ϕ(r) = A
e−m∞(r−R)

r
+B

em∞(r−R)

r
+ ϕ∞. (22)

The dimensionless parameters A and B can be determined
using the asymptotic condition ϕ → ϕ∞ as r → ∞. This
leads to B = 0 and one can write

ϕ(r) = A
e−m∞(r−R)

r
+ ϕ∞. (23)

As discussed earlier, the interior solution is the assembly
of two different approximations in two different regions, the
thin shell close to the surface and the rest, separated at some
r = Rc. For [0, Rc] the chameleon ϕ ∼ ϕc and for [Rc, R],
ϕ ≫ ϕc.

(i) Approximation 1: ϕ ≫ ϕc.
This approximationi is valid in the region where the
chameleon field has moved away from it’s minima. Here,
∼ eσϕ/Mp dominates and the runaway potential U(ϕ) de-
cays rapidly. Assuming ϕ ≪ Mp the effective potential then

becomes

Ueff,ϕ (ϕ) ≈ β(ϕ)

Mp
ρc. (24)

Eq. (19) then takes the form

d2ϕ

dr2
+

2

r

dϕ

dr
≈ β(ϕ)

Mp
ρc. (25)

We note that, unlike the case of a standard chameleon
(Khoury and Weltman 2004), the present case sees a mod-
ification due to the function β(ϕ). This is directly related to
the scalar-matter interaction in Jordan frame f(ϕ). As a sim-
ple example and to remain as close to the original chameleon
setup as possible, we choose f(ϕ) to be a slowly varying func-
tion of ϕ

f(ϕ) = f1 + f0ϕ. (26)

Therefore

β(ϕ) = (f0Mp − σ) = β0. (27)

With this, the solution to Eq. (25) can be written as

ϕ (r) =
β0

6Mp
ρcr

2 +
C

r
+Dϕc. (28)

(ii) Approximation 2 : ϕ ∼ ϕc.
In this limit we use a damped harmonic oscillator approxi-
mation to write

Veff (ϕ) ≈ m2
c (ϕ− ϕc) , (29)

whose solution is

ϕ(r) = E
e−mcr

r
+ F

emc(r−Rc)

r
+ ϕc. (30)

A complete solution to Eq. (19) requires a smooth match-
ing of these two solutions. The process involves lengthy cal-
culations and we include most details in the Appendix. Of all
the possible cases, we particularly concentrate on the Rc = 0
case, or the thick-shell solution and the 0 < Rc < R, or the
thin-shell solution. Together, these two cases enable us to
comment on the thickness of a spherical object in the grav-
itational field. The exterior approximate solution for all the
cases is

ϕ (r) = A
e−m∞(r−R)

r
+ ϕ∞.

The dimensionless constant A is of utmost importance as it
gives us the strength of the chameleon force due to the scalar
(see Appendix for more details). A is determined in term of
the known physical parameters of the lagrangian. The final
solutions for the thick shell case and the thin shell case with
explicit expressions of A are found as

ϕthick (r) ∼ − β0

4πMp

(

4

3
πR3ρc

)

e−m∞(r−R)

r
+ ϕ∞(31)

ϕthin (r) ∼ − β0

4πMp

(

4

3
πR3ρc

)(

3
Mp (ϕ∞ − ϕc)

β0ρcR2

)

e−m∞(r−R)

r
+ ϕ∞. (32)

The factor 3∆R/R is found through the relation

∆R

R
≡ Mp (ϕ∞ − ϕc)

β0ρcR2
. (33)
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Using this we define a chameleon suppression factor (see for
instance Eq. (A18) in Appendix)

W ≡ −A

[

β0

4πMp

(

4

3
πR3ρc

)]−1

= −A
3Mp

β0R3ρc
.

The suppression factor is directly responsible for bringing
the term β0 into play, resulting in a modification of the stan-
dard chameleon screening. The generalized scalar-interaction
in this process makes sure that all the results include the

additional function β(ϕ)
Mp

=
(

σ
Mp

− df
dϕ

)

. A slowly varying ap-

proximation β(ϕ) = (f0Mp − σ) = β0 essentially leads to a
straightforward scaling of the original results and keeps the
theory close to the original chameleon theory. The suppres-
sion factor lets us comment on the thickness of an astronom-
ical object (e.g. the earth) and plays a crucial part in deter-
mining the evasion of the scalar from astronomical tests.

4 CONSTRAINTS FROM FIFTH FORCE, EP

VIOLATION AND SOLAR SYSTEM TESTS

The primary requirement is that the chameleon field must
not be detected in any laboratory vacuum experiments. To
have an accord with this we take the mass of the chameleon
field inside a chamber to be of the order of R−1

vac (for more dis-
cussions see (Khoury and Weltman 2004)), where the radius
of the vacuum chamber is Rvac.

mvac ≡
√

U,ϕϕ(ϕvac) = R−1
vac . (34)

For a more complicated system as in an Earth + atmo-
sphere system, we combine the solutions mentioned in the
previous section for different regions, labelled by their density
and solve for an increased number of continuity conditions.
For the sake of brevity we only focus on the results as the cal-
culations are just an extended case of the solutions provided
in Appendix.

4.1 Profile for the Earth

To write the radial distribution of the scalar in and around
earth, we write the Earth-Atmosphere system as a spherical
distribution of three phases of matter density

ρ(r) =







ρ⊕ for 0 < r < R⊕

ρatm for R⊕ < r < Ratm

ρG for r > Ratm

(35)

ϕ⊕, ϕatm and ϕG are the field values minimizing the effec-
tive potential in the three layers of the density distribution.
Similarly, m⊕, matm and mG are the respective masses of
fluctuation. It is necessary for the atmosphere to have a thin
shell in order to avoid large violations of the EP as extensively
proved by (Khoury and Weltman 2004). In this scenario, the
scalar value is supposed to remain around the stable mini-
mum ϕatm in the atmosphere. Moreover, assuming that the
Earth has a thin shell, ϕ ≈ ϕ⊕ inside the Earth. Then from
Eq. (33), the thin-shell condition for the atmosphere can be
written as

∆Ratm

Ratm
=

ϕG − ϕatm

6β0MPΦatm
≪ 1 , (36)

where Φatm ≡ ρatmR2
atm/6M2

P . If the atmosphere must have
a thin shell the shell must atleast be thinner than the the
atmosphere itself. Therefore, taking Ratm ≡ R⊕+ 10 km,
∆Ratm/Ratm . 10−3. Taking ρatm ≈ 10−4ρ⊕ and Φatm ≈
10−4Φ⊕, we write the condition for the atmosphere to have
a thin shell as

∆R⊕

R⊕

≡ ϕG − ϕatm

6β0MPΦ⊕

< 10−7 . (37)

4.2 Fifth Force Searches

The potential energy associated with the fifth force between
test bodies M1 and M2 in a separation of r is defined as

V (r) = −α
M1M2

8πM2
P

e−r/λ

r
. (38)

α and λ are the strength and range of the interaction. We
have already taken the range of chameleon originated inter-
actions in vacuum to be of the order of the size of a vacuum
chamber, i.e., λ ≈ Rvac. Assumming the scale of λ to be cen-
timetres, the widely accepted bound on α is given by standard
laboratory experiments

α < 10−3 . (39)

In the present case, we proceed by considering two identical
test bodies of uniform density ρc, radius Rc and total mass
Mc and claim that the test masses must have a thin shell
satisfying the criterion

∆Rc

Rc
≡ ϕvac − ϕc

6β0MPΦc
≪ 1 . (40)

If the test masses have a thin shell, the chameleon field profile
is written as

ϕ(r) ≈ −
(

β0

4πMP

)(

3∆Rc

Rc

)

Mce
−r/Rvac

r
+ ϕvac , (41)

with the corresponding potential energy as

V (r) = −2β2
0

(

3∆Rc

Rc

)2
M2

c

8πM2
P

e−r/Rvac

r
. (42)

Comparing with Eq. (38), one can write the bound in Eq. (39)
as

2β2
0

(

3∆Rc

Rc

)2

. 10−3 , (43)

which essentially gives an idea on how the β0 parameter
must be chosen and this leads to an immediate idea on how
strong the scalar-matter interaction can be in the generalized
CBD construct.

4.3 Solar System Tests

An important constraint comes by comparison of free-fall ac-
celeration in the Moon-Earth-Sun system, measured by laser
ranging experiments (Will 2001).

|aMoon − a⊕|
aN

. 10−13. (44)

aN is the Newtonian acceleration. The Sun, Earth and Moon
and their respective atmospheres are spherical and all subject
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to the thin shell effect. It is obvious for the Sun to exhibit
thin-shell since it has a Newtonian potential much larger than
the Earth. For the Moon, assuming ϕG ≫ ϕMoon and using
Eq. (37) this condition can be written as

∆RMoon

RMoon
∼ ∆R⊕

R⊕

Φ⊕

ΦMoon
< 10−5 , (45)

where standard values of Φ⊕ = 10−9 and ΦMoon = 10−11

are used. Now, studying the ϕ profiles outside each spherical
body one can write explicitly the acceleration of the Earth
and Moon towards the Sun. Comparison of them produces a
constraint over the free-fall acceleration as

|aMoon − a⊕|
aN

≈ β2
0

(

∆R⊕

R⊕

)2

< β2
0 · 10−14 . (46)

This is a scaled version of the constraint in Eq. (44), courtesy
of the scalar-matter interaction parameter β0.

4.4 Constraints on the Scalar Interactions and the

Brans-Dicke Parameter

The constraints on different model parameters induced by
the overall requirements of fifth force, EP violation and solar
system constraints are discussed in this section. The model
parameters come from the scalar self-interaction, the scalar-
matter interaction and the Brans-Dicke parameter. The BD
scalar self-interaction is written as a power-law potential of
runaway form

U(ϕ) = M4+nϕ−n. (47)

n > 0 and M is of mass dimension. The essential constraint
we focus upon is Eq. (37), which gives

∆R⊕

R⊕

≡ ϕG − ϕatm

6β0MPΦ⊕

< 10−7. (48)

For ϕ = ϕG, the minimized effective potential and ρ = ρG
we can write

U,ϕ(ϕG) + β0ρGe
σϕG/MP /2MP = 0. (49)

With the runaway potential and an assumption of
σϕG/MP ≪ 1 this leads to

ϕG =

(

nM4+nMP

β0ρG

)
1

(n+1)

. (50)

If one takes ρG = 10−24 g/cm3 and Φ⊕ = 10−9, Eq. (48)
leads to a bound on M as

M <

(

6n+1

n

)
1

n+4

β
n+2
n+4

0 · 10
15n−7
n+4 · (1 mm)−1 . (51)

The condition in Eq. (51) is the main constraint to be de-
rived before we move on to cosmology. As an example, if
n, β0 ∼ O(1) Eq. (51) leads one to a constraint on M such
that M . 10−3 eV. Remarkably, this is comparable with the
mass scale of cosmological constant. It is a hint, if only tiny,
that under suitable conditions, a chameleon scalar can drive
the late-time acceleration to a fair degree of consistency.

Another important fact is, the choice of β0 ∼ O(1) leads
to a constraint on the couplng parameter σ. We also recall
that σ carries the original BD parameter, defined as σ =

8
√

π
2ωBD+3

. Together with Eqs. (26) and (27) this constraint

becomes

f0Mp − 8

(

π

2ωBD + 3

)1/2

∼ O(1), (52)

or alternatively

ωBD ∼ 32π

(f0Mp − 1)2
− 3

2
. (53)

Clearly the parameter f0 must be of the dimension of M−1
p .

We also stress upon the fact that a slowly varying f(ϕ) as
in Eq. (26) is perhaps the most suitable choice of the scalar-
matter chameleon interaction, since one is working under the
precinct of ϕ ≪ Mp. For instance, if f(ϕ) ∝ f1 + f0ϕ

n

with n > 3, β(ϕ) is then of the order of ϕ2 or an even
more sharply increasing function of ϕ (courtesy of Eq. (19)).
Under the assumption of ϕ ≪ Mp, this ultimately nullifies

ρ0(r)
β(ϕ)
Mp

e
σϕ

2Mp in the effective potential, leaving behind U,ϕ.

In case of an exponential f(ϕ), one can follow similar ar-

guements, as for f(ϕ) ∼ f0e
f1ϕ
Mp , the exponential factor is

suppressed and β(ϕ) ∼ β1 = (f0f1 − σ). In such a case, one
can easily calculate that the constraint on the Brans-Dicke
parameter becomes

ωBD ∼ 32π

(f0f1 − 1)2
− 3

2
. (54)

These constraints primarily help us determine the scale of the
model parameters such as f0, f1, which signify the strength of
interactions. Aditionally it also hints us that perhaps with a
suitable scalar-matter interaction, it is also possible to realize
a viable theoryo of gravity wth relaxed constraints on the BD
parameter.

5 LATE TIME COSMOLOGY WITH A

CHAMELEON-BRANS-DICKE SCALAR

FIELD

It is an interesting proposition to look into the cosmologi-
cal nature of a Brans-Dicke scalar field of chameleon nature
(Noller and Nicola 2019; Sergijenko, Durrer and Novosyadlyj
2011; Yang et. al. 2019; Bernardo and Said 2021). In the
present case, the scalar field already appears to pass smaller
scale phenomenology tests. We take a flat homogeneous and
isotropic cosmology for our Brans-Dicke Chameleon scalar
field. We start by writing the Friedmann equations in the
Jordan frame for this background cosmology, giving

3H2 =
ρmf

φ
+

ω

2

φ̇2

φ2
− 3H

φ̇

φ
, (55)

2Ḣ + 3H2 = −ω

2

φ̇2

φ2
− φ̈

φ
− 2H

φ̇

φ
, (56)

and the Klein-Gordon equation

(2ω + 3)
(

φ̈+ 3Hφ̇
)

= ρmf + ρmf ′φ , (57)

where H(t) is the Hubble parameter and where dots de-
note derivatives with cosmic time and primes derivatives with
the scalar field. Also, we recall that f is described through
Eq. (26) and that ω is expressed through Eq. (53). On the
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matter side, the energy density ρm may have an impact on
the effects of dark matter but a fuller galactic rotation curve
analysis would need to be carried out to fully understand how
this would play out. As usual, we take the matter contribution
to be pressure-less dust. Using the the independent equations
above, we can write the matter conservation equation giving
the integrated form

ρm =
ρ0

a3f3/2
, (58)

where ρ0 is an integration constant. This expression again
reiterates that for an interacting CBD theory, the matter
conservation equation is modified by the scalar-matter inter-
action terms.

• First, we incorporate a direct implementation of Markov
chain Monte Carlo (MCMC) analysis to estimate the model
parameters, directly from late time observational data. For
this we choose the functional form of the interaction at the
outset (through Eq. (26)).

• As a second example, we give a toy model based on the
statefinder parameter which allows us to write Hubble as a
function of redshift. This is not as accurate as a direct imple-
mentation of MCMC, however, it allows us to solve for the
interaction profile as a function of redhshift.

5.1 Direct Implementation of MCMC and

Estimation of model parameters

To perform the first analysis we consider cosmic chronometer
(CC) and the 1048 Supernovae type Ia (SNIa) Pantheon com-
pilation data (SN). The CC data set is composed of 31 points
which are inferred from a differential aging method using
passively evolving galaxy pairs separated by small redshift in-
tervals (Zhang et. al. 2014; Jimenez, Verde, Treu and Stern
2003; Moresco et al. 2016; Simon, Verde and Jimenez 2005;
Moresco et al. 2012; Stern et al. 2010; Moresco 2015).
These measurements are independent of Cepheid dis-
tance scale measurements and any cosmological model.
Despite being somewhat dependent on the modeling
of stellar ages, they are based on a robust stellar popula-
tion synthesis technique (Gómez-Valent and Amendola 2018;
Lopez-Corredoira, Vazdekis, Gutierrez, and Castro-Rodriguez
2017; Lopez-Corredoira and Vazdekis 2018;
Verde, Protopapas and Jimenez 2014; Moresco et al. 2012,
2016). The resulting χ2

H estimator is given by

χ2
H(Θ) =

31
∑

i=1

(H(zi, Θ)−Hobs(zi))
2

σ2
H(zi)

, (59)

where H(zi,Θ) are the theoretical Hubble parameter values
at redshift zi with model parameters Θ, Hobs(zi) are the
corresponding measured values of the Hubble parameter at
zi with observational error of σH(zi).

The SN data set is a compilation of 1048 SNIa relative lu-
minosity distance measurements (Scolnic et. al. 2018). This
publicly available release of the SN data set is corrected for
systematic effects. However, since the apparent magnitude
of each SNIa needs to be calibrated through a fiducial ab-
solute magnitude constant M , this parameter will appear as
a nuisance parameter in the MCMC analyses, which can be
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Figure 1. Posteriors and confidence levels for the CBD scalar–

tensor model using CC+SN data together with the R21 and F21
priors.

implemented through the theoretical values of the distance
moduli in a straightforward manner.

µ(zi, Θ) = 5 log10 [DL(zi, Θ)] +M , (60)

for redshifts zi corresponding to the luminosity distance

DL(zi,Θ) = c (1 + zi)

∫ zi

0

dz′

H(z′, Θ)
, (61)

where c is the speed of light. The Hubble constant will then
be marginalized over the MCMC analyses where the χ2

SN is
prescribed by (Conley et. al. 2011)

χ2
SN(Θ) = (∆µ(zi, Θ))T C−1

SN ∆µ(zi, Θ)+ ln

(

S

2π

)

− k2(Θ)

S
,

(62)
where CSN is the total covariance matrix, S is the sum of all
the components of C−1

SN , while k is given by

k(Θ) = (∆µ(zi, Θ))T ·C−1
SN , (63)

with ∆µ(zi, Θ) = µ(zi, Θ)− µobs(zi).
In addition to the CC and SN data sets, we also con-

sider the impact of priors on the Hubble constant in the
CBD MCMC analyses. In the constraint analyses, we con-
sider three scenarios: (i) The combined CC and SN data sets
without any prior on H0 which gives the result of purely ob-
servational data; (ii) we add the latest SH0ES local estimate
(Riess et. al. 2021) of H0 = 73.04± 1.04 kms−1Mpc−1 (R21)
which is based on the Hubble flow together with the com-
bined CC+SN data sets; (iii) we also consider the Hubble
constant obtained from the tip of the red giant branch from
Ref. (Freedman 2021) given as H0 = 69.8±1.71 km s−1Mpc−1

(F21) which we again use in conjunction with the com-
bined CC + SN data sets. Other measurements exist in the
literature (Abdalla et. al. 2022) but the measurements dis-
cussed here are the most representative in terms of model-
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Table 1. Results for the CBD model MCMC analysis. First col-
umn: data sets used together with H0 prior. Second column: H0

values derived from the MCMC analysis. Third column: Con-
strained values of Ωm0 . Fourth column: Best fit f0 values. Fifth
column: Best fit f1 values.

Model H0 ΩM0
f0 f1

CC+SN 66.0± 1.9 0.360+0.057
−0.059 3.50+0.62

−0.61 0.92+0.20
−0.24

CC+SN+F21 68.0+1.5
−1.6 0.352+0.079

−0.082 3.27+0.65
−0.58 1.11+0.21

−0.23

CC+SN+R21 69.8+2.0
−1.5 0.340+0.075

−0.076 3.20± 0.61 1.23+0.22
−0.23

independent local values and are also the most extremes of
the reported values of the Hubble constant in the literature.

The results of the MCMC analyses is shown in Fig. 1
together with the parameter constraints shown in Table 1
where outputs are shown for CC +SN without a prior, with
the F21 prior and then with the R21 prior. The fits give
reasonable values of for the Hubble constant and matter
density parameter. As expected the impact of priors on the
Hubble constant do lead to higher posterior values of the
value of H0 while simultaneously producing lower values of
ΩM0 . As for the model parameters, this hosts a much richer
structure than normal with two model parameters for the
CBD theory. These parameters appear to be anti-correlated
and to be fairly stable under the appearance of priors in the
data sets.

5.2 An Analytical Reconstruction Based on

Statefinder

In this subsection we try to give a simple toy model that can
describe late-time cosmology and provide a closed form of
the Hubble Function. In the cosmological equation Eq. (55),
we have four unknowns, the scale factor a, density ρm, the
interaction f(φ) and the scalar field φ, but only three inde-
pendent equations to solve for them. We essentially need an
ansatz over one of the unknowns. Keeping in mind that it is
non-trivial to directly find an exact solution of this system of
equations, we establish a desirable Hubble form, from a kine-
matic reconstruction technique.We use the cosmic statefinder
parameter, a dimensionless, purely kinematic quantity, writ-
ten as a combination of the Hubble parameter H(z) and it’s
derivatives,

q = − äa

ȧ2
= − Ḣ

H2
− 1, (64)

r =

...
a

aH3
=

Ḧ

H3
+ 3

Ḣ

H2
+ 1, (65)

s =
r − 1

3
(

q − 1
2

) . (66)

For a detailed analysis of an analytical statefinder recon-
struction we refer to (Chakrabarti 2021). The main essence
is using 1+z = 1

a
≡ x as a variable and writing the definition

of statefinder s as a differential equation

s(x) =
−2xH′

H
+

(

H′2

H2 + H′′

H

)

x2

3
(

H′

H
x− 3

2

) . (67)
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Figure 2. Combined analysis of OHD+JLA+BAO : Best fit and
associated 1σ, 2σ confidence contours on the parameter space

If we assume that the statefinder can be rendered as a con-
stant s = δ − 2

3
during the deceleration to acceleration tran-

sition of the universe at late-times, as a function of redshift
the Hubble can be written as

H(z) =

100h0

(1 + C1)1/2
(1 + z)

1
4

[

1+3δ−{1+6δ+9δ2+36(δ− 2
3 )}1/2

]

[

C1 + (1 + z){1+6δ+9δ2+36(δ− 2
3 )}1/2

]1/2

. (68)

C1 is a constant of integration. h0 is dimensionless, a scaled
version of the present value of Hubble parameter, written
by dividing H0 with 100 km Mpc−1 sec−1. Indeed, this is a
resticted scenario, and can be rendered as a special case of
perhaps more generalized scenario where s(x) is a function of
redshift. From Eq. (68), to ensure a real evolution we must
also put a constraint on δ as

δ2 +
14

3
δ − 23

9
> 0. (69)

The analytical form of Hubble enables us to estimate the
model parameters from observational data. We take a simple
set, a combination of JLA + OHD + BAO, to analyze the
best fit parameter values and associated uncertainty regions.

The numerical code used in this subsection is a python
implementation of MCMC (Foreman-Mackey et al. 2013).
In Fig. 2, we show the estimated parameters of the model
and the likelihood regions through confidence contours. The
best-fit values of the model parameters and 1σ estimated
errors are written in Table 2. Using the best fit value of
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Table 2. The parameter values and the associated 1σ uncertainty
of the parameters, obtained from the analysis with different com-
binations of the data sets.

h0 C1 δ

OHD + JLA+ BAO 0.705+0.007
−0.007 2.913+0.303

−0.274 0.672+0.006
−0.006
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Figure 3. Hubble parameter H(z) as a function of redshift along-
with observational data points. The best fit parameter plot is in
thick black and associated confidence regions are in gray.

δ, the estimated statefinder parameter during late times is
0.011 > s > −0.001.

We plot the evolution of H(z) for the reconstructed model
in Fig. 3 and show that for best fit parameter values the
Hubble parameter around z ∼ 0 is very close to astrophysical
observations. It shows particular agreement with the CC +
SN +R21 estimation based on a larger range of observations
(See Table. 1).

The deceleration parameter q(z) and the jerk parameter
j(z) exhibit interesting non-trivial evolution as a function
of redshift as shown in Fig. 4. Evolution for the best fit
parameter values (bold blue curve) and the allowed depar-
ture due to the average uncertainty in parameter estimation
(faded blue curve) are shown. The present value of the
deceleration parameter is close to −0.62, which matches
well with observations. The transition in the signature of
q(z) marks the transition from decelerated phase into an
accelerated phase and the transition redshift zt < 1 is also
consistent with observations. We also note that the jerk
parameter evolves with redshift and the present value is
greater than 1, hinting at a departure from standard ΛCDM.

An additional benefit of having a closed form of Hubble is
that we can consider the thermodynamic equilibrium of the
cosmological system. We write the total entropy of the uni-
verse as a combination of the entropy of cosmological horizon
and fluid components, S = Sf + Sh (Gibbons and Hawking
1977; Jacobson 1995). The thermodynamic equilibrium re-
quires that

dS

dn
> 0, (70)

d2S

dn2
< 0, (71)

with n = ln a. Using this redefinition of coor-
dinate one can transform the above equations into
(Jamil, Saridakis and Setare 2010)
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Figure 4. Deceleration parameter q(z) (top graph) and the jerk
parameter j(z) (bottom graph) vs redshift. The best fit parameter
plots are in bold blue and the associated 3σ confidence regions are
in faded blue.
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Figure 5.
(

H,nn

H,n
−

2H,n

H

)

= Ψ vs the scale factor a. Only best

fit parameter values are used, h0 ∼ 0.71, C1 ∼ 2.913 and δ ∼ 0.67.

S,n ∝ (H,n)
2

H4
, (72)

S,nn = 2S,n

(

H,nn

H,n
− 2H,n

H

)

= 2S,nΨ. (73)

Therefore a thermodynamic equilibrium (S,nn < 0) re-
quires Ψ < 0. We ensure this by drawing Ψ vs a for the
kinematic model in Fig. 5. Ψ remains in a negative domain
during the late times and the evolution follows closely a corre-
sponding ΛCDM behavior, such as a smooth transition from
positive into negative values.
Altogether, these establish an observationally viable

cosmological behavior and a desired Hubble form. It still
requires to reconstruct and solve for the other unknown
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Figure 6. Evolution of the Brans Dicke scalar in Jordan Frame as
a function of redshift for the best fit parameter values, h0 ∼ 0.71,
C1 ∼ 2.913 and δ ∼ 0.67.

0 1 2 3 4 5 6 7

0

5

10

15

z

f(
z
)

Figure 7. Evolution of the Scalar-Matter interaction in Jordan
Frame as a function of redshift for the best fit parameter values,
h0 ∼ 0.71, C1 ∼ 2.913 and δ ∼ 0.67.

functions of the theory, such as the BD scalar and it’s
interaction. We write the components of the field equations
as functions of redshift and use the solution for Hubble as in
Eq. (68) tonumerically solve the field equations. We solve for
the best fit parameter values and show the evolution of the
chameleon-BD scalar in Fig. 6. The plot suggests that the
geometric scalar evolves slowly during deceleration. Since
the transition from deceleration into acceleration, the first
derivative of the scalar becomes increasingly high and the
scalar starts taking a dominating role.

In Fig. 7, we plot the scalar-matter interaction f(φ) as a
function of z. Intriguingly, we note that during a late-time
acceleration, the interaction f(φ) varies very slowly with z.
Therefore we can speculate that a slowly varying interaction
of this scalar field with Baryonic matter, is probably a vi-
able assumption, atleast during late time acceleration. The
interaction can also play a crucial role in acting as a switch
of smooth transition, since a strong interaction indicates de-
celeration and a dominating scalar with subdued interaction
drives the acceleration.

Due to the numerical solutions we can plot the effective
eqation of state (EOS) of the interacting scalar-matter sys-
tem in Fig. 8. The EOS exhibits a dark energy dominated
acceleration around z ∼ 0 (ωeff ∼ −1) and a matter domi-
nated deceleration for higher redshifts (ωeff ∼ 0).

In Fig. 9, we plot the density of the accompanying
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e
ff

Figure 8. Evolution of equation of state in Jordan Frame as a

function of redshift for the best fit parameter values for ωm = 0,
h0 ∼ 0.71, C1 ∼ 2.913 and δ ∼ 0.67.

pressureless fluid as a function of redshift for best fit model
parameter values. It depends on the parameter ρ0, as well
as on the Brans-Dicke parameter. The graph on top is
for different values of ρ0 while other parameters are kept
fixed. The graph on bottom is for different ωBD for a fixed
ρ0. The graphs clearly suggest that the fluid density in
the interacting scalar-matter scenario sees a steady decay
during the epoch of deceleration, perhaps starting from a
preceding era of early acceleration. It becomes completely
subdued around the redshift of deceleration-to-acceleration
transition. Essentially, this scenario gives us some hints of
what an interacting Dark Matter-Dark Energy cosmology
might look like, where the scalar field acts as the Dark
Energy and the fluid acts as a pressurless Dark matter and
the interaction between them plays the role of a trigger of
the transition across different epochs. We also comment
that the behavior of the fluid density during late-time
cosmology is independent on the BD parameter as can be
seen from the graph on bottom panel. We also note that
there is an increase in the matter energy densities at small
redshifts. This may not be entirely physical, however, given
the fact that we have a geometric scalar field interacting
with Baryonic matter distributions, there may be underlying
dynamical phenomenologies involved. The present work is
not completely suitable for addressing all such aspects and
we intend to extend this further using a dynamical symmetry
analysis in a future work.

Keeping in mind a possible comparison between Dark En-
ergy and Dark Matter distribution, we plot the scaled energy
density comparison between these components, ΩDM (z) and
ΩDE(z) in Fig. 10. These components are defined in a manner
such that

ΩDM (z) =
ρDM

ρ
,

ΩDM (z) + ΩDE(z) = 1.

The plot clearly suggests that the cosmology under con-
sideration is Dark Energy dominated in present era (yellow
curve) and Dark Matter/fluid dominated during the preced-
ing deceleration (blue curve).
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Figure 9. Density of the fluid in Jordan Frame as a function of
redshift for the best fit parameter values, h0 ∼ 0.71, C1 ∼ 2.913
and δ ∼ 0.67. Top Panel : Fluid density for different ρ0. Bottom
Panel : Fluid Density for different choices of ωBD .
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Figure 10. Comparison of the evolving Dark Energy density (yel-
low) with the perfect fluid density (blue) in Jordan Frame as a
function of redshift, for the best fit parameter values, h0 ∼ 0.71,
C1 ∼ 2.913 and δ ∼ 0.67.

6 CONCLUSION

The present work serves as a special generalization of
standard Brans-Dicke theory. The geometric scalar field in
a standard Brans-Dicke theory modifies the gravitational
interaction by making the Newtonian constant a function of
coordinates. We further extend the role of this scalar and
construct a model where the scalar interacts with ordinary
(baryonic) matter and in the process, acquires a density-
dependent mass term. This accounts for a chameleon like
behavior of the scalar, which is demonstrated for instance
by it’s evasion from local astronomical tests.

We discuss that if the geometric scalar must behave as a

chameleon, the extended interaction profiles of the theory
must obey some requirements such that the Equivalence
Principle (EP) is not violated on the solar system scales.
We follow methodically the seminal analysis of Khoury
and Weltman (Khoury and Weltman 2004) and deduct a
modified set of constraints on the scalar-matter coupling for
our extended version. This also leads us to some modified set
of constraints over the parameters in the lagrangian of the
theory, for instance, the Brans-Dicke parameter. Assuming
that the self-interaction potential of the Brans-Dicke scalar
is of a runaway form, we ultimately derive that for some
special cases, the mass parameter can be comparable with
the scale associated with the cosmological constant. We show
that with this generalized Chameleon-Brans-Dicke scalar
field it is possible to satisfy the astrophysical requirments
and describe the smooth transition of the universe from
deceleration into acceleration. These requirements of con-
sistency leads to restricted profiles of the scalar and the
interaction. This is discussed using a kinematic ansatz over
the Hubble evolution and estimation of model parameters
with a statistical analysis of observational data sets such as
the Joint Light-Curve Analysis (JLA), Hubble parameter
estimation (OHD) and the Baryon Accoustic Oscillation
(BAO) data.

On a local astronomical scale, a standard chameleon scalar
must satisfy the mass bound m−1

o . Mpc, where m0 is the
mass of the chameleon field at present cosmological density
(Wang, Hui and Khoury 2012). Essentially this can rule out
any cosmological potential of a scalar of chameleon nature,
atleast in the context of the present acceleration. However,
we emphasize that the the present construct of extended
scalar-tensor theory, do not have a vanishing divergence of
the matter stress-energy tensor at the outset as there is an
interaction with standard (baryonic) matter in the Jordan
Frame itself. With a modified matter conservation law as
well as altered geodesic equations the constraint over the
mass of the chameleon field in the present theory is expected
to be different.

In summary, the generalized Chameleon-Brans-Dicke type
theories with generalized scalar interactions serve an over-
all purpose of promoting the idea that standard ΛCDM is
only the simplest special case of a far more enriched struc-
ture of the universe. These theories do rejuvinate interests
in generalized scalar-tensor theories where the scalar field(s)
can cleverly evade detection from local experiments through
some sort of screening mechanisms. In the seminal work of
Khoury and Weltmann, the key deduction is that a scalar-
matter interaction in Einstein Frame can do the trick and
help the scalar in it’s successful escapade from observation.
The first clear extension we derive is the fact that even with
a mild scalar-matter interaction in the Jordan Frame, the
geometric scalar remains as good a candidate as it can be
as a chameleon. The second result is derived from a cos-
mological analysis, such that the interacting scalar-matter
construction is also a good fit to construct a viable late-
time acceleration. Cosmologically this interacting model can
also motivate a search for unified Dark Energy-Dark Mat-
ter interacting model, where the non-trivial interaction in
fact can act as a controller in between deceleration and ac-
celeration. Finally, in view of the fifth force as well as so-
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lar system constraints (such as difference in free-fall accel-
eration within solar system) we derive a mathematcial con-
straint over the Brans-Dicke parameter which has the poten-
tial to resolve it’s longstanding conflict with local astronom-
ical tests. The cosmological analysis is primarily based on
statistical analysis of data from astrophysical observations
and kinematic parameters. The analysis does not require any
pre-assigned constraints on the structure of the theory and
therefore, in principle, can be equally applied in other exten-
sions of the Brans-Dicke theory for instance (Nordtvedt Jr.
1970; Kofinas, Papantonopoulo and Saridakis 2016). We ex-
pect to report discussions on these extensions in a separate
work in near future.
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APPENDIX A: EXACT STATIC SOLUTIONS

FOR THE CHAMELEON SCALAR

A complete solution to Eq. (19) requires a matching of two
solutions and a continuity of the solution at the origin. There
are a few possible cases on which the interior and exterior
solutions depend upon.

A1 Low-Contrast Solution : Rc = R

A solution in this limit is known as the low-contrast solution
Waterhouse (2006), where Eq. (23) describes the outside of
the sphere and Eq. (30) describes the inside. For a finite ϕ (r)
at r → 0, we fix E = −Fe−mcR and write Eq. (30) as

ϕ(r) = F
emc(r−R) − e−mc(r+R)

r
+ ϕc. (A1)

The full solution is written as

ϕ(r) =















F
emc(r−R) − e−mc(r+R)

r
+ ϕc r < R

A
e−m∞(r−R)

r
+ ϕ∞ r > R.

The equations for the derivative of ϕ are,

dϕ

dr
=



























F

r2

(

mcre
mc(r−R) − emc(r−R) +mcre

−mc(r+R)

+ e−mc(r+R)
)

, r < R

A
−m∞re−m∞(r−R) − e−m∞(r−R)

r2
, r > R.

With this, the continuity conditions are written as

lim
r→R−

ϕ(r) = lim
r→R+

ϕ(r), (A2)

lim
r→R−

dϕ

dr
= lim

r→R+

dϕ

dr
. (A3)

These consition lead to two linear equations for A and F .
The solutions to these equations are

A =
ϕ∞ − ϕc

mc +m∞ +mce−2mcR −m∞e−2mcR

(

1−mcR

−e−2mcR −mcRe−2mcR
)

, (A4)

F =
ϕ∞ − ϕc

mc +m∞ +mce−2mcR −m∞e−2mcR

(

1

+m∞R
)

. (A5)

A2 Thick-Shell Solution : Rc = 0

This limit leads to the so-called thick-shell solution. In this
case Eq. (22) gives the outside of the sphere and Eq. (28) gives
the inside. The continuity condition at the origin requires
C = 0 in Eq. (28) and this allows us to write

ϕ(r) =















β0

6Mp
ρcr

2 +Dϕc, r < R

A
e−m∞(r−R)

r
+ ϕ∞, r > R,

and

dϕ

dr
=















β0

3Mp
ρcr, r < R

A
−m∞re−m∞(r−R) − e−m∞(r−R)

r2
, r > R.

The continuity conditions are thereafter solved for the co-
efficients A and D to write

A = − β0

3Mp
ρc

R3

1 +m∞R
, (A6)

D =
ϕ∞

ϕc
−

( 1

1 +m∞R
+

1

2

)β0ρcR
2

3ϕcMp
. (A7)

A3 Thin-Shell Solution : 0 < Rc < R

This is called the thin-shell solution and is of utmost interest
to us. The solution is written by an assembly of solutions for
three regions, through the respective continuity conditions.
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Using E = −Fe−mcRc we write ϕ and dϕ/dr as

ϕ(r) =































F
emc(r−Rc) − e−mc(r+Rc)

r
+ ϕc r ∈ (0, Rc)

β0

6Mp
ρcr

2 +
C

r
+Dϕc r ∈ (Rc, R)

A
e−m∞(r−R)

r
+ ϕ∞ r ∈ (R,∞) ,

dϕ

dr
=















































F

r2

(

mcre
mc(r−Rc) − emc(r−Rc) +mcre

−mc(r+Rc)

+ e−mc(r+Rc)
)

, r ∈ (0, Rc)

β0

3Mp
ρcr − C

r2
, r ∈ (Rc, R)

A
−m∞re−m∞(r−R) − e−m∞(r−R)

r2
, r ∈ (R,∞) .

The continuity equations at Rc are

F
1− e−2mcRc

Rc
+ ϕc =

β0

6Mp
ρcR

2
c +

C

Rc
+Dϕc, (A8)

F
mcRc − 1 +mcRce

−2mcRc + e−2mcRc

R2
c

=
β0

3Mp
ρcRc

− C

R2
c

. (A9)

The continuity equations at R are,

β0

6Mp
ρcR

2 +
C

R
+Dϕc = A

1

R
+ ϕ∞, (A10)

β0

3Mp
ρcR − C

R2
= A

−m∞R − 1

R2
. (A11)

The solution of the continuity equations depend on Rc ∈
[0, R], which is to be chosen in a manner such that the har-
monic approximation in Eq. (29) is a better approximation
for r ∈ (0, Rc) and the approximation in Eq. (24) is better for
r ∈ (Rc, R). The thick-shell solution is applicable for Rc = 0,
otherwise, Rc is defined by

m2
c (ϕ (Rc)− ϕc) =

β0

Mp
ρc,

and the scalar ϕ (r) is given by the thin-shell case. The r →
R−

c limit of the thin-shell solution gives

m2
cF

1− e−2mcRc

Rc
=

β0

Mp
ρc

⇒ F =
β0ρcRc

m2
cMp (1− e−2mcRc)

. (A12)

Essentially one determines F in terms of Rc and other pa-
rameters from the continuity equations using Eq. (A12). This
is quite comparable to standard Chameleon screening, for in-
stance, in the limit m∞R ≪ 1 and F = 0, (R −Rc) /R ≪ 1,
in thin shell case. The low-contrast solution is the Rc → R
limit of the thin-shell solution and is not of that interest to
us. The exterior approximate solution for all the cases is

ϕ (r) = A
e−m∞(r−R)

r
+ ϕ∞.

We note that the dimensionless constant A gives us the
strength of the chameleon force due to the scalar and we shall

discuss the structure of this constant in brief. For a thick-shell
approximation, assuming m∞R ≪ 1, we can write

A = − β0

3Mp
ρc

R3

1 +m∞R
(A13)

≈ − β0

4πMp

(

4

3
πR3ρc

)

. (A14)

However, for a thin-shell approximation and F = 0, the
two continuity equations in Eq. (A8) give

C =
β0

3Mp
ρcR

3
c , (A15)

D = 1− β0ρcR
2
c

2Mp

1

ϕc
. (A16)

On substituting into the continuity Eq. (A11), we get

β0

3Mp
ρcR − β0

3Mp
ρc

R3
c

R2
≈ − A

R2

⇒ A ≈ − β0

3Mpl
ρc

(

R3 −R3
c

)

. (A17)

Again, substituting into Eq. (A10) gives

β0

2Mp
ρcR

2 + ϕc − β0ρcR
2
c

2Mp
= ϕ∞

⇒ R2 −R2
c =

2Mp

β0ρc
(ϕ∞ − ϕc) .

Finally, we can Taylor-expand Eq. (A17) in Rc about R to
get

A ≈ − β0

3Mp
ρc

3

2
R
(

R2 −R2
c

)

(A18)

= − β0

3Mp
ρc

3

2
R
2Mp

β0ρc
(ϕ∞ − ϕc) (A19)

= − β0

4πMp

(

4

3
πR3ρc

)

3Mp (ϕ∞ − ϕc)

β0ρcR2
. (A20)

The approximate external solutions are therefore written as

ϕthick (r) ∼ − β0

4πMp

(

4

3
πR3ρc

)

e−m∞(r−R)

r
+ ϕ∞(A21)

ϕthin (r) ∼ − β0

4πMpl

(

4

3
πR3ρc

)(

3
Mp (ϕ∞ − ϕc)

β0ρcR2

)

e−m∞(r−R)

r
+ ϕ∞. (A22)
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