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Abstract 

Succulent plants represent a large functional group of drought-resistant plants that store water in specialized tissues. 
Several co-adaptive traits accompany this water-storage capacity to constitute the succulent syndrome. A widely 
reported anatomical adaptation of cell walls in succulent tissues allows them to fold in a regular fashion during ex-
tended drought, thus preventing irreversible damage and permitting reversible volume changes. Although ongoing 
research on crop and model species continuously reports the importance of cell walls and their dynamics in drought 
resistance, the cell walls of succulent plants have received relatively little attention to date, despite the potential of 
succulents as natural capital to mitigate the effects of climate change. In this review, we summarize current know-
ledge of cell walls in drought-avoiding succulents and their effects on tissue biomechanics, water relations, and 
photosynthesis. We also highlight the existing knowledge gaps and propose a hypothetical model for regulated cell 
wall folding in succulent tissues upon dehydration. Future perspectives of methodological development in succulent 
cell wall characterization, including the latest technological advances in molecular and imaging techniques, are also 
presented.

Keywords:  Cell wall composition; cell wall folding; cell wall remodelling; collapsible cell walls; drought avoidance; plant cell 
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Introduction

With their peculiar appearance and their capacity to thrive 
under extreme conditions, succulent plants have long captiv-
ated botanists and plant enthusiasts (Eggli, 2017). Drought-
avoiding succulent plants store water in living cells for later 
remobilization, which renders them temporarily independent 
of an external water supply (see Box 1) (Eggli and Nyffeler, 
2009; Griffith and Males, 2017). Water-storage capacity in 
succulents is usually accompanied by several co-adaptive 

traits, such as certain xeromorphic features and different de-
grees of crassulacean acid metabolism (CAM), so that succu-
lence emerges as a complex adaptive syndrome (Ogburn and 
Edwards, 2010; Winter et al., 2015; Males, 2017). The link be-
tween succulence and CAM is an ongoing debate: succulence 
has long been regarded as a prerequisite for CAM, and suc-
culence and strong CAM are highly correlated (Kluge and 
Ting, 1978; Sayed, 2001; Lüttge, 2004), but it remains unclear 
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whether the co-occurrence of CAM and succulence is due to 
mutual facilitation or just a result of co-selection under similar 
selective pressures (Ogburn and Edwards, 2010; Heyduk et al., 
2016; Edwards, 2019; Leverett et al., 2021). Succulence and its 
co-adaptive traits have evolved in numerous lineages across the 
plant tree of life (Fig. 1) (Nyffeler and Eggli, 2010; Edwards, 
2019). Among photosynthetic succulent organs, a widely used 
functional classification, coined by Ihlenfeldt (1985), considers 
two types of succulence: all-cell succulence (e.g. Crassulaceae; 
Fradera-Soler et al., 2021), with all cells both performing 
photosynthesis and storing water, and storage succulence 
(e.g. Aloe, Asphodelaceae; Ni et al., 2004a), in which there is 
a functional demarcation between photosynthetic tissue (i.e. 
chlorenchyma) and water-storing tissue (i.e. hydrenchyma). 

In reality, the anatomical diversity of succulent organs is even 
larger when considering the intermediate states between all-
cell and storage succulence and the various arrangements of 
hydrenchyma and chlorenchyma within an organ. The term 
‘succulent tissue’ is usually applied to those tissues in succulent 
organs responsible for water storage, which are constituted pri-
marily of highly vacuolated parenchyma cells with thin, elastic 
primary cell walls (Kluge and Ting, 1978; Gibson and Nobel, 
1986; von Willert et al., 1992). Thus, ‘succulent tissue’ may refer 
specifically to the hydrenchyma in a storage succulent or to all 
parenchyma cells in an all-cell succulent organ.

Across the plant tree of life, variation in cell wall structure 
and composition governs plant morphology and physiology 
and has undoubtedly played a crucial role in the adaptation to 
different evolutionary pressures (Sarkar et al., 2009; Sørensen 
et al., 2010). Primary cell walls are complex and dynamic sys-
tems capable of deformation due their intrinsic viscoelasticity 
(Niklas, 1992; Braybrook et al., 2012; Cosgrove, 2018). They 
are composed of three coextensive polymeric networks: (i) a 
tension-bearing cellulose-hemicellulose network, (ii) a water-
retentive, gel-forming pectin network, and (iii) a structural pro-
tein network (Fig. 2) (Cosgrove, 2005; Albersheim et al., 2011; 
Carpita et al., 2015). Hemicelluloses, pectins, and structural 
proteins are highly diverse, and differing abundances and ar-
rangements of these components result in contrasting cell wall 
characteristics (Showalter, 1993; Willats et al., 2001; Harholt 
et al., 2010; Scheller and Ulvskov, 2010). These characteristics 
can be modified through cell wall remodelling, which affects 
cell wall structure and/or composition (see Box 2). Some cell 
wall polysaccharides, known as cell wall storage polysacchar-
ides (CWSPs), appear to have been evolutionarily repurposed 
for storage and other functions across several plant lineages (see 
Box 3).

Cell wall properties are expected to be decisive in over-
coming the alleged biomechanical and physiological chal-
lenges posed by the succulent syndrome. Besides being 
involved in mechanical support, cell walls in succulent tissues 
are capable of folding, which allows for reversible changes in 
the volume of succulent organs during dehydration/rehydra-
tion cycles while preventing catastrophic cell collapse and ir-
reversible damage (von Willert et al., 1992; Christensen-Dean 
et al., 1993; Mauseth, 1995; Burgoyne et al., 2000; Bobich and 
North, 2009). Secondly, cell walls are the gas–liquid interface 
in the parallel processes of CO2 diffusion and water movement 
in photosynthetic organs, thus influencing the interplay of 
factors linked to limitation of photosynthesis (Barbour, 2017; 
Gago et al., 2019). Therefore, water relations and CO2 uptake 
in succulents are expected to be tightly controlled by cell wall 
characteristics (Flexas et al., 2013; Xiong et al., 2017; Xiong 
and Nadal, 2020). Despite the general assumption that cell wall 
characteristics play a pivotal role in the succulent syndrome, 
the cell walls of succulent plants have received little research at-
tention to date. Studies have been hampered by the challenges 
of applying standard histological and biochemical techniques 

Box 1. Ecology of succulents

Drought can lead to different degrees of water stress 
in plants, defined as ‘situations in which plant water 
potential and turgor are reduced enough to interfere 
with normal functioning’, although the ‘exact cell water 
potential at which this occurs depends on the kind of 
plant’ (Kramer, 1983). Many drought-resistant plants 
(as defined by Levitt, 1980) are drought tolerant and are 
able to track soil water potential to exceptionally low 
values (Walter and Stadelmann, 1974; Pockman and 
Sperry, 2000; Griffiths and Males, 2017); this category 
includes ‘true’ xerophytes and the extreme case of 
resurrection plants, which are additionally desiccation 
tolerant. However, most succulent plants do not tolerate 
low water potentials (Ψ) and are therefore regarded 
as drought avoiders, with stored water delaying or 
completely preventing the effects of water stress at the 
cellular/tissue level (Eggli and Nyffeler, 2009; Ogburn 
and Edwards, 2010); this review focuses on drought-
avoiding succulents. Succulence may be linked to 
other ecological strategies, most notably halophytism 
(Kadereit et al., 2003; Flowers and Colmer, 2008), 
although halophytic succulents are functionally distinct 
from drought-avoiding succulents.

Despite being traditionally associated with arid and 
hyper-arid deserts (‘true’ deserts as defined by Laity, 
2008), drought-avoiding succulents need to refill their 
water stores periodically and are therefore dependent 
on seasonally predictable rainfall, typical of semi-arid 
habitats (von Willert et al., 1992). Thus, the hotspots of 
succulent diversity tend to occur in semi-arid habitats 
and desert fringes (Burgess and Shmida, 1988; Ogburn 
and Edwards, 2010). Drought-avoiding succulents 
are also well represented in xeric microhabitats within 
relatively hydric habitats (Fig. 1H–J), as is the case with 
many epiphytes (Zotz, 2016) and plants in some alpine 
niches (Körner, 2003).
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Fig. 1. Succulence can occur in any plant organ, with leaf succulents and stem succulents being the most familiar. (A–G) Examples of drought-
avoiding succulent plants from arid and semi-arid regions of the world. (A) Lithops ruschiorum (Aizoaceae) (photo: John Barkla; https://www.
inaturalist.org/observations/3179166). (B) Crassula deceptor (Crassulaceae) (photo: Matt Berger; https://www.inaturalist.org/observations/96923687). 
(C) Anacampseros filamentosa (Anacampserotaceae) (photo: Kevin Murray; https://www.inaturalist.org/observations/18098778). (D) Aloe striata 
(Asphodelaceae) (photo: Christiaan Viljoen; https://www.inaturalist.org/observations/91416316). (E) Carnegiea gigantea (Cactaceae) (photo: Matt 
Berger; https://www.inaturalist.org/observations/105300210). (F) Hoodia gordonii (Asclepiadoideae, Apocynaceae) (photo: Matt Berger; https://www.
inaturalist.org/observations/97449791). (G) Agave shawii (Asparagaceae) (photo: Alan Rockefeller; https://www.inaturalist.org/observations/21007526). 
(H–J) Examples of drought-avoiding succulent plants from xeric microhabitats. (H) Sempervivum montanum (Crassulaceae) (photo: Julien Renoult; 
https://www.inaturalist.org/observations/6840361). (I) Peperomia galapagensis (Piperaceae) (photo: Anja Junghanns; https://www.inaturalist.org/
observations/70609760). (J) Dendrobium kratense (Orchidaceae) (photo: Gerard Chartier; https://www.inaturalist.org/observations/63818588). All photos 
from iNaturalist. (A, H) Licensed under CC1.0; (B–F, I, J) licensed under CC-BY-4.0; (G) licensed under CC-BY-SA.
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to water-rich tissues, with methodological modifications often 
being required in order to investigate succulent tissues (e.g. Ahl 
et al., 2018; Mozzi et al., 2021).

Increasing surface temperature and expanding aridity 
in many parts of the world (Intergovernmental Panel on 
Climate Change, 2007) are intensifying the need for deeper 
insights into the mechanisms of drought resistance and water 
management in plants. CAM-performing succulent plants 
have been identified as natural capital to mitigate the effects 
of climate change (Grace, 2019), including the possibility of 
engineering CAM into crops (Borland et al., 2014; Yang et 
al., 2015). However, while several succulence-related traits 
will probably allow many succulent groups to better with-
stand future climatic conditions (Willis, 2017), other suc-
culent taxa are facing a high risk of extinction (Goettsch 
et al., 2015; Guo et al., 2016; Young et al., 2016). A better 
understanding of the mechanisms underlying the succulent 
function would reaffirm the role of succulent plants as nat-
ural capital and would help to promote conservation efforts. 

This review focuses on the current knowledge of cell walls 
in drought-avoiding succulent plants and their influence on 
the function of the succulent syndrome, and highlights the 
knowledge gaps in these topics. Future perspectives of the 
characterization of cell walls in succulents and its challenges 
are also presented.

Functional relations between cell wall 
components and responses to drought

Cell wall responses to drought and other abiotic stresses, most 
of which involve differential gene expression leading to cell 
wall remodelling, have been widely studied and reviewed in 
crop and model plants (Le Gall et al., 2015; Tenhaken, 2015; 
Ezquer et al., 2020). These acclimation processes highlight the 
importance of cell walls in drought resistance and can also hint 
at cell wall adaptations in succulents that may have shaped their 
evolution into drought-prone habitats.

Fig. 2. Three-dimensional molecular model of type I primary cell wall typical of most angiosperms (except the commelinids), showing the molecular 
interactions between the cell wall polysaccharides. The boxes show some representatives of the two groups of non-cellulosic cell wall polysaccharides 
and of cell wall structural proteins (not included in the three-dimensional model). Modified from Carpita et al. (2015). The cell wall. In: Buchanan BB, 
Gruissem W, Jones RL, eds. Biochemistry and Molecular Biology of Plants. 2nd edition. 45–110. © 2015 John Wiley and Sons, Ltd. Created with 
BioRender.com.
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Since the highly labile pectin network strongly influences 
many interrelated cell wall properties (e.g. thickness, por-
osity, hydration, elasticity), changes in pectin are likely cru-
cial to drought-induced cell wall remodelling (Harholt et 
al., 2010; Braybrook et al., 2012; Levesque-Tremblay et al., 
2015; Bidhendi and Geitmann, 2016). The nature of pectin 
gels is determined, at least partially, by the degree of methyl-
esterification (DM) of homogalacturonans (HGs), which is 
regulated by pectin methylesterases, resulting in the formation 
of either ‘strong’ gels that stiffen the cell wall or ‘weak’ gels 
that soften it (Hocq et al., 2017). Other pectin-modifying en-
zymes, such as pectin acetylesterases, polygalacturonases, and 
pectate lyases, also influence the properties of the pectin ma-
trix. Xyloglucan, the most abundant hemicellulose in primary 

cell walls of spermatophytes, is targeted by xyloglucan endo-
transglycosylases/hydrolases, which can perform two dif-
ferent catalytic activities and either strengthen or soften the 
cell wall (Eklöf and Brumer, 2010; Scheller and Ulvskov, 2010; 
Nishikubo et al., 2011). Contrasting patterns of regulation in 
response to drought have been reported among pectin- and 
xyloglucan-modifying enzymes (Pelloux et al., 2007; He et al., 
2009; Clauw et al., 2015; Nguyen et al., 2016; Xuan et al., 2016), 
which highlights the complex relationship between these en-
zymatic activities and cell wall properties. On the other hand, 
drought stress has been strongly linked to the up-regulation of 
a large portion of expansin isoforms (Harb et al., 2010; Chen et 
al., 2019, 2020; Jin et al., 2020), which suggests that adjustments 
of cell wall loosening and extensibility are general responses 
against drought.

Pectin gel properties are also determined by 
rhamnogalacturonan I (RG-I), whose side chains influence cell 
wall hydration and elasticity (Willats et al., 2001; Harholt et al., 
2010). Drought stress has been associated with an increase in 
the amount of arabinan, galactan, and arabinogalactan RG-I 
side chains (Leucci et al., 2008; Gribaa et al., 2013). Due to the 
high mobility of RG-I arabinans and galactans in the cell wall, 
they have been postulated as cell wall plasticizers, which main-
tain the fluidity of the pectin network and stabilize the cell wall 
during dehydration and rehydration (Harholt et al., 2010). This 
is a particularly relevant feature for cells that undergo drastic 
changes in shape as water is lost during drought. Structurally 
highly complex rhamnogalacturonan II (RG-II) side chains, 
which are thought to provide mechanical strength to the 
cell wall by forming borate cross-links (O’Neill et al., 2004), 
also seem to increase in number in response to drought stress 

Box 2. Cell wall remodelling

The primary cell wall is a dynamic system whose 
properties can be tightly controlled via cell wall 
remodelling, which involves controlled modification, 
rearrangement, degradation, and/or reconstruction 
of the cell wall in both growing and mature cells in 
response to various stimuli (Barnes and Anderson, 2018; 
Anderson and Kieber, 2020). Cell wall extension and 
contraction are generally regarded as a consequence 
of cell wall remodelling through the processes of 
cell wall loosening (i.e. cell wall stress relaxation and 
increased extensibility) and/or softening (i.e. reduced 
stiffness and increased deformability; Cosgrove, 2018; 
Zhang et al., 2019). Cell wall loosening is thought to 
be mediated by expansins, a class of non-enzymatic 
proteins that weaken non-covalent bonds in the 
cellulose–hemicellulose network and allow for slippage 
among cell wall components, whereas the activity of 
several hemicellulose- and pectin-modifying enzymes 
can lead to cell wall softening and secondary loosening 
(Cosgrove, 2016, 2018). These enzymes comprise 
xyloglucan endo-transglycosylases/hydrolases (XTHs), 
pectin methylesterases (PMEs), pectin acetylesterases 
(PAEs), polygalacturonases (PGs), and pectate lyases 
(PLs), among others (Eklöf and Brumer, 2010; Sénéchal 
et al., 2014). There has been a growing interest in 
cell wall remodelling in response to abiotic stress 
due to its potential applications in near-future climate 
change scenarios (e.g. Le Gall et al., 2015; Tenhaken, 
2015; Ezquer et al., 2020). A large proportion of plant 
genes are involved in cell wall synthesis, assembly 
and remodelling (~15% of the genome in Arabidopsis; 
Arabidopsis Genome Initiative, 2000; Carpita et al., 
2001), and shifts in the expression patterns of these 
genes in response to different stresses have been 
widely reported (Houston et al., 2016), which highlights 
the relevance of cell walls in the stress response.

Box 3. Cell wall storage polysaccharides

Cell wall storage polysaccharides (CWSPs) are 
apoplastic polysaccharides associated with the cell 
wall that can be repurposed for energy storage and 
other functions (Meier and Reid, 1982). They comprise 
mannans, xyloglucans, and (arabino)galactans, and 
are mobilized from the cell wall via various enzymatic 
activities (Buckeridge et al., 2000; Buckeridge, 2010). 
In many cases, CWSPs occur as a special deposition 
inside the ordinary primary cell wall. Among mannan 
CWSPs, insoluble ‘pure’ mannans have been linked to 
increased hardness and are abundant in seeds, whereas 
soluble mannans, formed by substitution with galactosyl 
residues [i.e. galacto(gluco)mannans] and/or acetylation, 
have been reported in succulent-like storage organs, 
such as orchid pseudobulbs and underground organs 
of geophytes, where they are believed to play a role in 
cellular water relations and water storage (Stancato et 
al., 2001; Wang et al., 2006; Ranwala and Miller, 2008; 

Chua et al., 2013).
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(Leucci et al., 2008), although the interpretation of this re-
sponse is not as clear because the exact physiological role of 
RG-II is still relatively unknown.

Drought stress has also been associated with the 
up-regulation of arabinogalactan proteins (AGPs) (Cui et al., 
2012; Mareri et al., 2019). Periplasmic AGPs, many of which 
are anchored to the plasma membrane, seem to occur in a 
reticulate pattern along the external face of the cell mem-
brane, where they help to maintain the membrane–cell wall 
continuum by interacting with cell wall components (Gens 
et al., 2000; Liu et al., 2015). Given that this continuum can 
be compromised during abiotic stress, the up-regulated AGPs 
are believed to form a ‘buffer zone’ that stabilizes the mem-
brane by preventing its direct interaction with the cell wall 
(Lamport et al., 2006). Indeed, a decrease in AGP epitopes and 
their rearrangement have been linked to the disruption of the 
membrane–wall continuum in senescing fruits (Leszczuk et 
al., 2020). AGPs have also been postulated as cell wall plasti-
cizers (Lamport et al., 2006) and may perform a similar role 
to that of the aforementioned RG-I side chains during dehy-
dration. Another type of cell wall structural protein, extensins, 
are generally thought to form self-assembling scaffolds that 
strengthen the wall (Cannon et al., 2008). However, gene ex-
pression studies have given contrasting results regarding the 
regulation of different extensin genes upon drought (Molina 
et al., 2008; Cevher-Keskin, 2019), which suggests that dif-
ferent extensin isoforms may be performing different func-
tions in the cell wall. Several functions of cell wall structural 
proteins and their involvement in the drought response re-
main largely hypothetical, which presents many research 
opportunities.

Structure and function of cell walls in 
succulents

Biomechanics

Succulent organs tend to have a low surface area to volume 
ratio to minimize water loss and enhance water storage (Males, 
2017), but the considerable weight of stored water poses a bio-
mechanical problem. Cell walls in succulent organs are thus 
expected to have inherent mechanical properties allowing for 
efficient mechanical support. Small globose or prostrate suc-
culent plants possess succulent organs that mostly lack sup-
port tissues, which is the case for the leaves of Aizoaceae, 
Crassulaceae, and succulent Asteraceae, and the stems of small 
members of Cactaceae and some succulent Asteraceae and 
Asclepiadoideae (Apocynaceae; Gibson, 1996; Ogburn and 
Edwards, 2010). High cell turgor pressure in these succulent 
organs generates high hydrostatic pressure and provides most 
of the mechanical support (Niklas, 1992; Gibson, 1996; Bobich 
and North, 2009), which also makes them capable of drastic 
shrinking upon drought (Mauseth, 2006). As a remarkable 

exception, despite their relatively large size, succulent leaves of 
Aloe and closely related genera lack support tissues and are also 
primarily supported by hydrostatic pressure on a reinforced 
epidermis (Gibson, 1996).

Most large succulent organs usually possess support tis-
sues, such as hypodermis, fibres, and wood and bark from 
secondary growth (Blunden, 1973; Koller and Rost, 1988a; 
Mauseth, 2004a, b, 2006). There has been a growing interest 
in the support tissues and their cell walls in certain succulent 
lineages due to their adaptive and evolutionary relevance 
or their useful applications, such as the different types of 
wood of Cactaceae (Vázquez-Sánchez et al., 2017; Reyes-
Rivera et al., 2018; Maceda et al., 2019) and the scleren-
chyma fibres of Agave (Asparagaceae; Ferreira et al., 2014; 
Hidalgo-Reyes et al., 2015). Despite having support tissues, 
most large succulent plants are still capable of a high degree 
of volume change, which may be facilitated by morpho-
logical adaptations such as ribs in many Cactaceae and suc-
culent Apocynaceae and Euphorbiaceae (Gibson and Nobel, 
1986; Nobel, 1988; Felger and Henrickson, 1997; Eggli and 
Giorgetta, 2020). Most succulents undergo successive cycles 
of dehydration and rehydration following external water 
availability, which is reflected in shrinking and swelling of 
their succulent organs as the water stores are emptied and 
refilled (Gibson and Nobel, 1986; von Willert et al., 1992). 
Even in large succulents with support tissues, turgor pressure 
still plays an important role in mechanical support compared 
with non-succulent plants (Schulte et al., 1989; Bobich and 
North, 2009).

Since drastic changes in the volume of succulent organs 
can compromise tissue function, succulent taxa capable of 
extreme shrinking often exhibit secondary cell wall thick-
enings, which provide structural support during dehy-
dration and restrict the direction of shrinkage of cells. In 
the notoriously drought-resistant genus Sansevieria (syn. 
Dracaena, Asparagaceae), many species exhibit secondary cell 
wall bands in the hydrenchyma (Koller and Rost, 1988a, 
b). Similarly, wide-band tracheids occur in the vascular tis-
sues of succulent organs in many genera of succulent fam-
ilies of the Caryophyllales, namely Cactaceae, Aizoaceae, 
Anacampserotaceae, and Didiereaceae; these tracheids have 
annular or helical secondary wall thickenings that extend 
deeply into the lumen (Landrum, 2001, 2006; Mauseth, 
2004c). Wide-band tracheids are believed to increase hy-
draulic adaptability, as they preserve the function of vascular 
tissues by preventing both cavitation and occlusion during 
drought-induced shrinking of succulent organs (Landrum, 
2006; Mauseth, 2006).

Water relations

Unlike non-succulent ‘true’ xerophytes, succulent plants 
are able to maintain a relatively high water potential (Ψ) 
even during extended drought (Nobel and Jordan, 1983;  

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/73/8/2290/6529000 by guest on 17 Septem

ber 2023



2296 | Fradera-Soler et al.

von Willert et al., 1992; Griffiths and Males, 2017). Ψ can be 
calculated according to the simplified formula:

Ψ = ΨP +ΨS

where ΨP is the pressure potential, hydrostatic potential, or 
turgor pressure, and ΨS is the solute or osmotic potential (see 
Taiz et al., 2014). The capacity of succulents to maintain rela-
tively high Ψ is due to high values of hydraulic capacitance 
(C) and low values of volumetric modulus of elasticity (ε) in 
succulent organs, which is related to highly elastic cell walls 
(Ogburn and Edwards, 2010). C can be defined as:

C =
∆ V
∆ Ψ

where ΔV is the change in volume, and ΔΨ is the change in Ψ 
(Nobel, 2009). ε can be defined as:

ε =
∆ Ψ P
∆ V�V

where ΔΨP is the change in ΨP, and ΔV/V is the relative 
volume change; lower values of ε indicate higher elasticity 
(Nobel, 2009). Cell wall thickness has long been assumed to 
affect ε (i.e. thicker walls are generally more rigid; Tyree and 
Jarvis, 1982), and a strong positive correlation has recently 
been reported (Peguero-Pina et al., 2017). These formulas 
suggest that cell wall properties influence the trade-offs be-
tween maintaining tissue volume and tissue Ψ. The combin-
ation of high C and low ε means that succulents maintain 
higher turgor pressure for longer with decreasing Ψ and lose 
relatively large amounts of water before turgor loss occurs 
(Bobich and North, 2009; Ogburn and Edwards, 2010). The 
turgor loss point (TLPΨ; the Ψ at which turgor loss occurs) 
has generally been interpreted as an indicator of drought tol-
erance (i.e. tolerating low Ψ) among non-succulent plants 
(Lenz et al., 2006; Blackman et al., 2010). Many arid-adapted 
non-succulents respond to drought by lowering their already 
low TLPΨ through physiological adjustments, primarily os-
motic adjustments (Bartlett et al., 2012; Turner, 2018; Signori-
Müller et al., 2021). On the other hand, measurements of 
TLPΨ and the closely related ΨS (see formula in Bartlett et al., 
2012) in drought-avoiding succulents have shown that they 
exhibit relatively high TLPΨ values (Walter and Stadelmann, 
1974; Smith and Lüttge, 1985; von Willert et al., 1992; Donatz 
and Eller, 1993; Gotsch et al., 2021, Preprint; Leverett et al., 
2021); their ability to maintain high Ψ seems to relax the 
need for a low TLPΨ. Indeed, drought-avoiding succulents are 
assumed to have a relatively limited capacity for osmotic ad-
justment (Walter and Stadelmann, 1974; Griffiths and Males, 
2017). Given this limitation, if turgor loss is to be prevented 
during severe, extended drought, elastic adjustment by further 
decreasing ε may be an important process among drought-
avoiding succulents (Schulte, 1992). Such elastic adjustment 

likely involves rapid changes of the cell wall driven by wall 
remodelling, particularly of the pectin fraction (Peaucelle  
et al., 2011; Bethke et al., 2016; Roig-Oliver et al., 2020b, 
2021b). Indeed, changes in the DM of cell wall HGs have been 
reported as a response to dehydration in the hydrenchyma of 
Aloe species (Fig. 3E) (Ahl et al., 2019b). In succulent organs 
of storage succulents, cell wall heterogeneity between tissues 
in terms of wall thickness and elasticity allow for preferential 
water loss and tissue-to-tissue remobilization. As Ψ decreases 
during the early stages of drought, water is preferentially lost 
from the large-celled hydrenchyma, given that hydrenchyma 
cell walls are thinner and more elastic (i.e. lower ε) than those 
of the chlorenchyma, and this water can then be remobilized 
to the chlorenchyma to maintain photosynthesis (Schmidt 
and Kaiser, 1987; Goldstein et al., 1991; Nobel, 2006). This 
remobilization process seems to be driven by minor osmotic 
adjustments primarily involving the polymerization or de-
pletion of organic solutes, which create an osmotic gradient 
(ΔΨS) between hydrenchyma and chlorenchyma (Barcikowski 
and Nobel, 1984; Schulte and Nobel, 1989; Schulte et al., 
1989; Nerd and Nobel, 1991; Herrera et al., 2000).

Despite adaptations of the vascular system to optimize hy-
draulic connectivity (e.g. Mauseth, 2006; Ogburn and Edwards, 
2013; Melo-de-Pinna et al., 2016), succulent organs are gener-
ally assumed to have reduced hydraulic conductance [K; calcu-
lated as Ktissue/organ = (KX

–1 + KOX
–1)–1; see Sack and Scoffoni, 

2013], with outside-xylem hydraulic conductance (KOX) ex-
pected to be particularly limiting due to long outside-xylem 
hydraulic pathways (Brodribb et al., 2007; de Boer et al., 2012; 
Ferrio et al., 2012; Sack and Scoffoni, 2013). Water movement 
in succulents is tightly controlled: emptying of succulent tis-
sues during drought is remarkably slow, whereas refilling upon 
rain events can happen strikingly quickly (Gibson and Nobel, 
1986; Smith and Nobel, 1986; Flach et al., 1995). In transpiring 
non-succulent leaves, recent evidence suggests that water flow 
predominantly follows the apoplastic pathway (Buckley, 2015; 
Buckley et al., 2015). Assuming that the dominance of the 
apoplastic pathway can be extrapolated to other photosynthetic 
organs, such as succulent leaves and stems, cell wall features such 
as thickness, effective porosity, and cell-to-cell connectivity 
are expected to be among the strongest determinants of KOX 
(Buckley, 2015; Buckley et al., 2015; Bidhendi and Geitmann, 
2016; Xiong et al., 2017). Since such features can be modulated 
through cell wall remodelling, water movement in succulents 
is likely controlled, at least partially, by cell wall modifications. 
Among these modifications, pectin remodelling has been pos-
tulated as the strongest contributor: conformational changes of 
pectin due to different enzymatic activities can affect cell wall 
porosity (McKenna et al., 2010; Levesque-Tremblay et al., 2015; 
Bidhendi and Geitmann, 2016), and increased cell wall pectin 
content has been linked to lower cell wall thickness and higher 
elasticity and hydration (Roig-Oliver et al., 2020a, b, 2021a; 
Carriquí et al., 2020). Other factors, such as pH and ion con-
centration, also influence cell wall thickness and extensibility 
(Demarty et al., 1984; Cosgrove, 2005).
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Although the largest reservoir of water in succulent tissues 
is symplastic, apoplastic water contributes to stored water in 
some succulent groups, most notably in suborder Portulacineae 
(Nyffeler, 2007), and is facilitated by a matrix of highly hydro-
philic apoplastic polysaccharides known as mucilage (Nobel et 
al., 1992; von Willert et al., 1992; Ogburn and Edwards, 2010). 
The term mucilage has also been used interchangeably (and 
arguably mistakenly) to refer to all water-extractable polysac-
charides from succulent tissues (e.g. Sáenz et al., 2004; Ni et 
al., 2004a). Mucilage has been extensively reported in seeds 
and/or fruits of numerous land plant lineages, which in many 
cases has also been linked to water retention (Phan and Burton, 
2018). Mucilage in succulents occurs in the apoplastic space, 
either partially filling the space between cells or within the 
wall of specialized mucilage cells (Nobel et al., 1992; Mauseth, 
2006). Mucilage in Cactaceae has been extensively studied 
and its composition resembles that of pectins, particularly 
RG-I, with a highly branched structure rich in arabinose and 
galactose (Cárdenas et al., 1997; Goycoolea and Cárdenas, 
2003). Mucilage has also been reported in succulent species 
of Aizoaceae, Anacampserotaceae, Crassulaceae, Didiereaceae, 
Portulacaceae, and Vitaceae (Landrum, 2002; Mauseth, 2004a), 
although its role and composition remain unclear.

Photosynthesis

A recent review by Flexas et al. (2021) has highlighted the 
often-neglected effect of cell wall properties on limiting in-
ternal conductance to CO2 (gi) and, thus, on photosynthesis, in 
addition to the limitation they impose on KOX. Several inter-
related cell wall properties, such as thickness, ε, and effective 
porosity, have been postulated as some of the strongest deter-
minants of gi (Evans et al., 2009; Tosens et al., 2012; Ellsworth et 
al., 2018; Nadal et al., 2018). However, the influence of cell wall 
composition on gi is still scarcely understood, as indicated by 
contrasting findings regarding the relationship between pectin 
content and gi (Clemente-Moreno et al., 2019; Carriquí et al., 
2020; Roig-Oliver et al., 2020a, 2021a, b). Correlations be-
tween gi and K and their relationship with cell wall parameters 
indicate coordination between these two parameters and dem-
onstrate the shared cell wall pathway for CO2 and water (Flexas 
et al., 2013; Xiong et al., 2017; Xiong and Nadal, 2020; Roig-
Oliver et al., 2021a). Throughout land plant evolution, both gi 
and K have generally increased with enhanced photosynthetic 
capacity (de Boer et al., 2012; Flexas and Carriquí, 2020), and 
such increases have likely been facilitated by changes in cell wall 
characteristics such as thickness and ε (Nadal et al., 2018; Gago 
et al., 2019; Carriquí et al., 2020). Thin cell walls and a periph-
eral distribution of chloroplasts against the cell membrane in 
succulent tissues (Gibson and Nobel, 1986; von Willert et al., 
1992) would suggest that in succulents the cell wall poses a 
relatively low limitation on gi (Evans et al., 2009; Gago et al., 
2019; Flexas et al., 2021). However, contrary to the aforemen-
tioned evolutionary trend, CAM-performing succulent plants 
have regressed to states of relatively low gi, with values being 

as low as those in gymnosperms, which is thought to increase 
CAM capacity by limiting internal CO2 efflux (Maxwell et al., 
1997; Flexas et al., 2008; Ripley et al., 2013). Even though such 
low gi has been previously attributed primarily to anatomical 
features related to intercellular air spaces (Nelson et al., 2005; 
Nelson and Sage, 2008), the role of cell wall characteristics in 
limiting gi in succulents remains unexplored.

Cell walls of succulent tissues under 
drought

Succulent tissues are characterized by having thin and highly 
flexible primary cell walls, yet little is known of the mechanism 
that translates into drought avoidance. Early academic works on 
succulent tissues noted that distinctive cell wall folding patterns 
could be observed as cells shrink during drought (Westermaier, 
1884; Haberlandt, 1904; Engmann, 1934). Since those early 
studies, these collapsible cell walls have been reported for a few 
succulent taxa and are often assumed to be a general anatom-
ical feature of succulents, allowing for controlled regular wall 
folding and reversible volume changes in succulent organs (Fig. 
3). Studies on the cortex hydrenchyma in stems of Cactaceae 
(Mauseth, 1995) and the hydrenchyma in leaves of Aloe (Ahl et 
al., 2019b) have given the most detailed descriptions to date of 
collapsible cell walls in succulents. This type of cell wall has also 
been reported in succulent stems of Euphorbia (Euphorbiaceae) 
and Asclepiadoideae (Apocynaceae; Mauseth, 2004b), and 
in succulent leaves of Sansevieria (Koller and Rost, 1988a, b) 
and Pyrrosia (Polypodiaceae; Ong et al., 1992). Although the 
presence of collapsible cell walls has not been systematically 
surveyed, histological images from an even broader body of 
research suggests that collapsible cell walls occur in many more 
succulent lineages: folding patterns can be observed in succu-
lent tissues of Aizoaceae (e.g. Melo-de-Pinna et al., 2014; Ogura 
et al., 2018), Crassulaceae (e.g. Jiménez et al., 1983; Sandoval-
Zapotitla et al., 2019), Bromeliaceae (e.g. Gomes-da-Silva et 
al., 2012; Reinert et al., 2013), Gesneriaceae (e.g. Pereira-Dias 
and Santos, 2015), and Piperaceae (e.g. Horner et al., 2017). 
When cells in non-succulent plants reach the TLPΨ under se-
vere drought, negative turgor pressures can develop and result 
in dehydration injury due to plasmolysis and/or collapse of the 
cell walls around the plasmolysed protoplasms (Ristic and Cass, 
1991; Palomäki et al., 1994; Ding et al., 2014; Vollenweider et al., 
2016). On the other hand, succulents maintain relatively high 
cell turgor pressures and rarely reach the TLPΨ, even during 
extended drought. As cells in succulent tissues shrink, the con-
voluted regular folding of collapsible cell walls, coupled with 
the maintenance of high turgor, points towards a coordinated 
response that preserves the cell membrane–cell wall continuum 
and prevents irreversible damage due to mechanical stress. 
Similarly, cell wall folding in resurrection plants (see Box 1)  
is thought to prevent the development of negative turgor and 
subsequent irreversible damage (Oliver et al., 2020; Vander 
Willigen et al., 2001).
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Fig. 3. (A–F) Drought response in succulent tissues of Aloe helenae (Asphodelaceae). (A) Morphology of a succulent leaf. (B, C) Section of a leaf, 
stained with toluidine blue, under (B) well-watered and (C) severe drought conditions; note the extreme degree of shrinking of the hydrenchyma upon 
dehydration. (D) Close-up of the shaded area in (B), showing highly convoluted collapsible cell walls in the hydrenchyma, in contrast to the mostly smooth 
cell walls in the chlorenchyma. Chl, chlorenchyma; Hyd, hydrenchyma. (E) In situ detection of highly de-methyl-esterified HGs using the monoclonal 
antibody COS488 (green signal); note the loss of signal in hydrenchyma cell walls (arrowhead) compared with chlorenchyma. (F) In situ detection of 
acetylated mannans using the monoclonal antibody CCRCM-170 (red signal), with calcofluor white used to stain cellulose in cell walls (blue signal); note 
the intracellular accumulation of granular mannans (arrowhead). (G–I) Drought response in succulent tissues of Facheiroa sp. (Cactaceae). (G) Morphology 
of a succulent stem of Facheiroa cephaliomelana (photo: Pierre Braun; https://commons.wikimedia.org/wiki/File:Facheiroa_tenebrosa_P.J.Braun_%26_
Esteves_Bahia_Brasil.jpg; licensed under CC-BY-SA-4.0). (H, I) Stem sections of Facheiroa ulei stained with Safranin O/Fast Green FCF of cortex 
hydrenchyma under (H) well-watered and (I) severe drought conditions. (A–C) Modified from Ahl et al. (2019b); (H, I) modified from Mauseth (2020).
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Besides the cell wall and its polysaccharidic components, 
plant cells also contain carbohydrates within the symplastic 
domain; all carbohydrates in a tissue, an organ, or a whole plant 
can be referred to as the glycome. The glycome of some eco-
nomically important succulent groups has received particular 
attention due to its multiple applications in pharmaceutics, 
food, cosmetics, bioremediation, bioenergy, and material sci-
ences (Borland et al., 2009; Grace, 2019). Studies have there-
fore focused on taxa such as Aloe (e.g. Reynolds and Dweck, 
1999; Ni et al., 2004a), Opuntia (Cactaceae; e.g. Goycoolea 
and Cárdenas, 2003; Ginestra et al., 2009), and Agave (e.g. Li 
et al., 2014; Jones et al., 2020). The interest in Aloe vera (L.) 
Burm.f. and its relatives in Asphodelaceae due to their wide-
spread medicinal uses has fostered one of the most detailed 
cell wall characterizations in succulent tissues. In the leaf 
hydrenchyma of A. vera, besides structural cell wall polysac-
charides, cell contents are rich in storage polysaccharides and 
free sugars, including the prized acetylated glucomannans, 
which have putative medicinal properties (Reynolds and 
Dweck, 1999; Ni et al., 2004a, b). Subsequent studies have 
shown that monosaccharide profiles of the hydrenchyma 
across Aloe species and their relatives are phylogenetic-
ally constrained, and that well-developed hydrenchyma is 
the main predictor for medicinal use (Grace et al., 2013, 
2015). More recent studies have highlighted the usefulness 
of high-throughput polysaccharide screening methods such 
as comprehensive microarray polymer profiling (CoMPP) to 
characterize the glycomic profiles of succulent tissues (Ahl 
et al., 2018). Among four Aloe species, such profiles exhib-
ited abundant mannans and were shown to vary seasonally 
(Ahl et al., 2019a), which suggests that acclimation processes 
affecting storage polysaccharides and/or cell walls occur in 
response to seasonal changes.

Another study on two species of Aloe (A. helenae and A. 
vera) has confirmed the existence of a tightly regulated cell 
wall folding process during dehydration (Ahl et al., 2019b). 
Drought-induced pectin remodelling of hydrenchyma 
cell walls in these Aloe species is thought to cause the 
loss of low-DM HG (Fig. 3E) that is believed to enhance 
cell wall elasticity and initiate the cell wall folding pro-
cess. Remarkably, the same study also reported changes in 
cell wall mannans, including (galacto)(gluco)mannans and 
acetylated glucomannans, which accumulated inside the 
cells upon drought in a granular form that resembles that of 
starch (Fig. 3F). Granular forms of mannans have also been 
observed in storage organs of Dendrobium (Orchidaceae; He 
et al., 2017) and Amorphophallus (Araceae; Ohtsuki, 1968; 
Chua et al., 2013). The presence of cell wall mannans in the 
hydrenchyma of Aloe was shown to decrease sharply during 
drought, whereas intracellular mannans increased in the 
chlorenchyma (Ahl et al., 2019b). It has been postulated that, 
despite not being directly involved in the folding process, 
mannans in Aloe could be acting as CWSPs (see Box 3) by 

providing energy storage, particularly during drought periods 
with stalled photosynthesis, and by helping to maintain an 
osmotic gradient between hydrenchyma and chlorenchyma 
(Ahl et al., 2019b). Mannan mobilization from storage organs 
has also been reported in orchids and geophytes, and it has 
been linked to certain growth stages and to the drought stress 
response by establishing osmotic gradients and promoting 
water transfer between tissues (Stancato et al., 2001; Tan et al., 
2007; Wang et al., 2008; Chua et al., 2013). The reason why 
Aloe and perhaps other succulents seem to rely on mannans 
as storage during drought, rather than the more widespread 
starch, probably stems from their different physicochemical 
properties: starch granules are highly packed and insoluble, 
and thus exhibit extremely low osmotic activity, whereas 
soluble mannans possess high osmotic activity and water-
holding capacity, and are also mobilized more readily and 
rapidly than starch (Meier and Reid, 1982; Buckeridge et al., 
2000). In storage organs of some orchids and geophytes, the 
mobilization of mannans occurs before that of coexisting 
starch (Matsuo and Mizuno, 1974; Franz, 1979), whereas 
during flowering of Oncidium (Orchidaceae) mannans are 
mobilized from the pseudobulb and subsequently degraded 
and converted to starch, which temporarily accumulates be-
fore further catabolic reactions (Wang et al., 2008). Either 
way, these observations indicate that mannans can be more 
easily mobilized than starch, which may be the basis of the 
use of mannans as CWSPs in Aloe.

From different studies, it seems clear that collapsible cell 
walls in succulents maintain their high elasticity or even in-
crease it further during drought through elastic adjustment, a 
process that is likely driven by cell wall remodelling (Mauseth, 
1995; Ahl et al., 2019b). However, the exact mechanism be-
hind this highly regulated process is still largely unknown. 
Anatomical peculiarities of collapsible cell walls hint at the 
mechanism behind the folding process: in Sansevieria the col-
lapsible walls in the hydrenchyma exhibit bands of secondary 
thickening (Koller and Rost, 1988a, 1988b), and it is possible 
that this ridged spatial patterning of stiffer and softer regions 
determines how the wall folds. However, most succulent tis-
sues lack secondary wall thickening. Instead, cell wall remod-
elling can create patterns of local softening and/or loosening 
and induce phase-separation phenomena in the wall, as seen 
in many developmental and acclimation processes that re-
quire cell growth or a change in cell shape (Peaucelle et al., 
2011; Miedes et al., 2013; Amsbury et al., 2016; Bidhendi and 
Geitmann, 2016; Chebli and Geitmann, 2017; Bidhendi et al., 
2019; Haas et al., 2020, 2021). Thus, similar processes leading 
to localized cell wall softening and/or loosening could be in-
volved in the initiation of the regular cell wall folding process 
in succulent tissues.

A hypothetical model, based on the observations of Moore 
et al. (2013) on leaves of resurrection plants, those of Bidhendi 
et al. (2019) on pavement cells of Arabidopsis, and those of  
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Ahl et al. (2019b) on leaves of Aloe, is presented in Fig. 4. Cell 
wall folding can also be observed in plant tissues and organs 
frequently subjected to desiccation, such as seeds of some plant 
lineages (Webb and Arnott, 1982) and leaves of some resur-
rection plants (Cooper and Farrant, 2002; Moore et al., 2006; 
Oliver et al. 2020). In resurrection plants, cell wall folding upon 
dehydration has been linked to expansin-mediated cell wall 
loosening, which enhances wall extensibility, and to wall re-
modelling affecting primarily pectin (Jung et al., 2019), with 
arabinose-rich polymers (e.g. RG-I arabinans/arabinogalactans 
and AGPs) postulated as cell wall plasticizers that allow for 
elastic adjustment (Moore et al., 2013). These cell wall com-
ponents could act as plasticizers in collapsible cell walls of 
succulent plants as well. Observations in resurrection plants 
also suggest that the up-regulation of certain proteins during 
dehydration-driven cell wall folding, such as glycine-rich pro-
teins (Wang et al., 2009; Giarola et al., 2016) and wall-localized 
dehydrins (Layton et al., 2010), may help to maintain cell wall 
integrity and enable repair. As these proteins are ubiquitous 
among land plants (Sachetto-Martins et al., 2000; Hanin et al., 
2011), it is possible that they also play a role in the dehydra-
tion response in succulent plants and in regulating the cell wall 
folding process. However, the high values of cell wall thick-
ness found in resurrection plants makes drawing parallels with 
drought-avoiding succulents challenging (Flexas et al., 2021; 
Nadal et al., 2021).

Future perspectives

The cell wall is a central aspect of drought resistance in plants, 
yet much remains to be determined about the molecular and 
physiological mechanisms of cell wall folding processes in 
drought-avoiding succulents. Cell wall folding in resurrection 
plants, which has received special attention over the past dec-
ades, relies on different mechanisms in different lineages, most 
of which involve arabinose-rich polymers acting as cell wall 
plasticizers (Moore et al., 2013). More research is thus needed 
to elucidate how cell wall folding is regulated in the numerous 
succulent lineages and whether a shared mechanism exists. In 
Aloe, for instance, it has recently been postulated that HGs and 
mannans are involved in the folding process (Ahl et al., 2019b). 
Changes in the DM of HGs reinforce the idea that cell wall 
elasticity is optimized during wall folding, whereas the in-
volvement of mannans suggests that CWSPs and soluble sugars 
likely play a crucial role during dehydration. Whether similar 
processes occur in other succulent lineages and whether other 
cell wall components are involved in the folding process re-
main to be explored.

As studies of separate cell wall components tend to over-
look the complexity of the cell wall and the interactions be-
tween different components, holistic approaches should be 
favoured for cell wall characterization in succulents. Advancing 
cell wall analytical methods provide promising prospects, with 

Fig. 4. Diagram of the hypothetical cell wall folding process in succulent tissues during drought conditions. (A) Detail of contact region between two cells 
in a succulent tissue. From a highly hydrated state, initial decreases in relative water content may result in different responses among different succulent 
lineages: cell wall remodelling may occur in some taxa to increase overall cell wall elasticity and/or to mobilize CWSPs, as seen in Aloe (Ahl et al., 2019b), 
whereas other taxa may exhibit constitutively highly elastic cell walls and may not need any modifications at this stage. (B) As relative water content 
decreases further during extended drought and the cells lose volume, the cell walls experience buckling due to local mechanical stress (in red), which 
triggers a subcellular response that initiates localized cell wall remodelling (orange arrows). (C) Cell wall remodelling results in patterning of softened and/
or loosened regions along the cell wall (in blue), which may act as hinges and facilitate the regular cell wall folding process. Created with BioRender.com.
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a growing demand for high-throughput methods for rapid 
screening and profiling of cell wall components (Persson et al.,  
2011). Spectroscopic methods have been widely used for cell 
wall characterization (Bauer, 2012; Mansfield et al., 2012; 
Pettolino et al., 2012; Gierlinger, 2018; Zhao et al., 2020) in 
combination with imaging techniques (Zhao et al., 2019; 
Bidhendi et al., 2020; DeVree et al., 2021; Xu et al., 2021). 
Recent advances in non-destructive real-time imaging, such 
as light-sheet fluorescence microscopy (LSFM), could allow us 
to observe changes in the cell walls of succulent tissues under 
drought in near-physiological conditions (Grossmann et al., 
2018; Ovečka et al., 2018). CoMPP, a method based on the spe-
cificity of molecular probes, allows high-throughput screening 
of numerous cell wall components across a wide range of sam-
ples (Moller et al., 2007; Rydahl et al., 2018). CoMPP has re-
cently been used alongside immunolocalization to characterize 
the cell wall and glycomic composition of several Aloe spe-
cies and relatives and to provide a deeper insight into cell wall 
dynamics under drought (Ahl et al., 2018, 2019b). However, 
the semi-quantitative nature of CoMPP poses some limita-
tions, and it should usually be employed as a complementary 
method to quantitative biochemical techniques (Moller et al., 
2007; Persson et al., 2011). Another disadvantage of CoMPP is 
the difficulty of isolating succulent tissues within a succulent 
organ, which is not feasible in most cases and requires whole 
organs. The latest technological developments include imaging 
techniques that allow for three-dimensional visualization of cell 
wall structure, composition, and connectivity, including serial-
sectioning scanning electron microscopy (ssSEM; Oi et al.,  
2017; Harwood et al., 2020, 2021; Antreich et al., 2021) among 
other high-resolution microscopy techniques (Zeng et al., 
2017; Haas et al., 2020), X-ray microcomputed tomography 
(X-ray microCT; Théroux-Rancourt et al., 2017; Earles et al., 
2018), and magnetic resonance imaging (MRI; Malik et al., 
2016; Hesse et al., 2020; Mylo et al., 2021). These methods have 
the potential to elucidate how succulent tissues are built and to 
reveal their anatomical complexity from a three-dimensional 
perspective.

While omics studies have shed light on cell wall-related 
genes and their respective products (Carpita et al., 2001; 
Minic et al., 2009; Albenne et al., 2013; Houston et al., 2016), 
genetic tools and resources to specifically study succulents 
are still largely missing. Genome sequencing of a few succu-
lent taxa over the past decade (Cai et al., 2015; Ming et al.,  
2015; Copetti et al., 2017; Yang et al., 2017; Jaiswal et al., 2021) 
offers the possibility of establishing them as models to study 
drought resistance and/or CAM performance (Yang et al., 
2019). Given that succulence has often been regarded as a 
prerequisite for CAM, engineering CAM into crops and 
other economically important plants to enhance their water-
use efficiency would probably first require the engineering of 
succulence (Borland et al., 2014; Yang et al., 2015). Since cell 
walls are expected to play a central role in succulence, next-
generation sequencing can be used for future omics studies 

to mine candidate genes involved in cell wall remodelling in 
succulent plants (Egan et al., 2012; Strickler et al., 2012; Gross 
et al., 2013), which would provide opportunities for ongoing 
(e.g. Lim et al., 2020) and future efforts of engineering tissue 
succulence into crops.
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