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ABSTRACT

We calculate detailed modification of pulses from a pulsar arising from the effects of phase transition induced

density fluctuations on the pulsar moment of inertia. We represent general statistical density fluctuations using a

simple model where the initial moment of inertia tensor of the pulsar (taken to be diagonal here) is assumed to get

random additional contributions for each of its component which are taken to be Gaussian distributed with certain

width characterized by the strength of density fluctuations ε. Using sample values of ε, (and the pulsar deformation

parameter η) we numerically calculate detailed pulse modifications by solving Euler’s equations for the rotational

dynamics of the pulsar. We also give analytical estimates which can be used for arbitrary values of ε and η. We show

that there are very specific patterns in the perturbed pulses which are observable in terms of modulations of pulses

over large time periods. In view of the fact that density fluctuations fade away eventually leading to a uniform phase

in the interior of pulsar, the off-diagonal components of MI tensor also vanish eventually. Thus, the modification of

pulses due to induced wobbling (from the off-diagonal MI components) will also die away eventually. This allows

one to distinguish these transient pulse modulations from the effects of any wobbling originally present. Further, the

decay of these modulations in time directly relates to relaxation of density fluctuations in the pulsar giving valuable

information about the nature of phase transition occurring inside the pulsar.
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1 INTRODUCTION

For last several decades, QCD phase diagram is being in-
tensely investigated both, on theoretical front as well as on
experimental front. The high temperature and low baryon
chemical potential regime of strongly interacting matter has
been thoroughly studied at RHIC and LHC which have pro-
vided compelling evidence for the formation of quark-gluon
plasma (QGP). This regime is very interesting as it closely
resembles the state of matter during first few microseconds
of the early stages of the Universe. There is compelling the-
oretical evidence that high baryon density regime of QCD
provides an extremely rich landscape. Starting with the pos-
sibility of transition to high baryon density QGP, there are
exotic phases of QCD expected at much larger baryon den-
sities, such as color flavor locked (CFL) phase, 2SC phase,
quarkyonic phase, crystalline color superconductor phase etc.
(Alford et al. 2008). However, most of these phases are ex-
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pected to occur at very high values of baryon chemical po-
tential which are difficult to achieve in laboratory experi-
ments. Focused experimental efforts are underway/planned,
such as the beam energy scan (BES) program of RHIC, CBM
at FAIR, and NICA. Though, the required baryon density for
some of these exotic phases may be out of reach in these lab-
oratory experiments.

This regime of very high baryon density in the QCD phase
diagram also relates to the cosmos, albeit in a completely
different stage of the evolution of the Universe. QCD matter
in this regime is expected to occur during present stage of the
universe in the cores of compact objects, such as a neutron
star, which form at the end of life of normal stars. Baryon
densities in the cores of these objects can reach very high
values, allowing possibility of these exotic QCD phases to
occur.

It then becomes very important to focus efforts on the pos-
sibility of observation of these phases in these compact astro-
physical objects. Indeed, many signals have been proposed
in literature to probe these phases (Heiselberg & Hjorth-
Jensen 1998). Some of us had earlier proposed a technique
(Bagchi et al. 2015) to probe the possibility of phase tran-
sitions occurring in the interior of a pulsar (which is a ro-
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tating neutron star) utilizing the fact that measurements of
pulse timings of pulsar signals have reached extraordinary
precision, to the level of one part in 1015. Basic physics of
that approach is based on the fact that any phase transi-
tion necessarily leads to density fluctuations. These density
fluctuations will be statistical in nature, and will be tran-
sient, eventually subsiding and leading to the uniform new
phase of the matter. Such density fluctuations arising dur-
ing a phase transition occurring inside the core of a neutron
star will lead to transient changes in its moment of inertia
(MI) tensor. This will directly affect its rotation, and hence
the pulsar timings. With extremely accurate measurements
of pulsar timings, very minute changes of moment of iner-
tia of star may be observable, providing a sensitive probe for
phase transitions in these objects.

As emphasized in ref. (Bagchi et al. 2015), there are two
main aspects of this proposal which can make this technique
a powerful probe of phase transitions inside neutron stars.
First is that the resulting density fluctuations being statisti-
cal in nature, every component of MI tensor will be affected.
A typical neutron star has very high degree of symmetry,
with extremely tiny difference in different MI values (of order
10−4% or less) (Horowitz & Kadau 2009; Baiko & Chugunov
2018). Density fluctuations will modify every component of
MI tensor, and for a NS rotating about one of its symmetry
axes, will generate non-zero off-diagonal components of MI
tensor. Consequently, a spinning neutron star will develop
wobble (on top of any previously present) which will lead to
modulation of the pulse profile as the direction of the beam
pointing towards earth will now undergo additional modula-
tion. This is a unique, falsifiable, prediction of this model, and
helps in distinguishing such a signal of phase transition from
the phenomenon of glitches. This is because standard expla-
nation of glitches invokes de-pinning of vortex clusters in the
superfluid core of the NS. Vortices being directed along the
rotation axis, primary effect of this de-pinning will be on the
spinning rate without significantly perturbing the rotation
axis itself. In contrast, density fluctuations from phase tran-
sitions will affect diagonal as well as off-diagonal components
of MI to same order, thus leading to same order of magnitude
effect for the pulse timing as well as the modulation of pulse
profile.

The second important feature of this technique relates to
the precise nature of density fluctuations. Specific statistical
distribution of density fluctuations (Landau & Lifshitz 1980)
arising during a phase transition, and the manner in which
these density fluctuations decay away (leading to eventual
uniform new phase) crucially depends on the nature of the
phase transition. For example, a first order transition pro-
ceeding via bubble nucleation leads to specific density fluctu-
ation pattern on the scale of bubble size (Applegate & Hogan
1985; Kajantie & Hannu 1986; Applegate et al. 1987; Chris-
tiansen & Madsen 1996; Layek et al. 2001), whereas a tran-
sition happening via spinodal decomposition has entirely dif-
ferent distribution of density fluctuations reaching very large
length scale. Density fluctuations during a second order phase
transition have universal nature (Goldenfeld 1992), and de-
pend on the specific critical exponents associated with the
phase transition.

An entirely different and rich source of information is con-
tained in these density fluctuations for spontaneous symme-
try breaking phase transitions if there are associated topo-

logical defects. Topological defects can occur in a variety of
shapes, from point defects (monopole), to strings, domain
walls, and three dimensional structures called as Skyrmions.
Formation of topological defects in symmetry breaking tran-
sitions is now a very mature field and there is extensive liter-
ature on this subject. Dominant mechanism of the formation
of topological defects during spontaneous symmetry break-
ing transitions is via the so called Kibble mechanism (Kibble
1976, 1980) which was originally proposed for cosmic defects.
Subsequently it was realized that this mechanism has com-
pletely general applicability (Zurek 1996). Indeed, it is now
used to study topological defect formation during any phase
transition, from those occurring in the universe, to a variety
of condensed matter systems (Kibble & Srivastava 2013), and
in neutron star cores etc.

These defects can be source of significant density fluctu-
ations depending on the relevant energy scales. Important
point is that the defect network resulting from a phase tran-
sition and its evolution shows universal characteristics. For
example, initial defect density depends only on the relevant
correlation length and on the relevant symmetries (and space
dimension). Further, the evolution of string defects and do-
main wall defects shows scaling behavior. These universal
properties of defect network and scaling during evolution will
be expected to lead to reasonably model independent predic-
tions for changes in the moment of inertia tensor and its
time dependence, hence on the effects on pulsar timing, the
pulse modification, and specifically, the eventual subsequent
relaxation to the original state of rotation. We mention here
that there will also be an effect of the new uniform phase
on pulsar rotation. Due to free energy difference between
the two phases, pulsar rotation frequency will be directly af-
fected. This aspect has been discussed in our earlier work
(Bagchi et al. 2015) where the possibility was discussed that
such effects may provide an explanation for both glitches and
antiglitches in a unified framework. In the present paper, we
will not discuss the effects of net changes in the free energy
of two phases and will only focus on the effects of density
fluctuations. However, we mention here that the effects of
free energy difference on pulsar timing and pulse modula-
tions caused by the density fluctuations depend on different
sets of parameters. It is possible that the free energy differ-
ence may induce changes in pulsar timings which may not
be observable at present. In contrast, the pulse modifications
due to induced wobbling (from off-diagonal MI terms) may
be within reach of observations (we will come back to this
point at the end of section 3).

Examples of specific changes in different components of MI
tensor, with crude estimates of the magnitudes were given in
ref. (Bagchi et al. 2015) for phase transitions between differ-
ent exotic QCD phases. A particular interesting example of
phase transition discussed in ref. (Bagchi et al. 2015) was for
the so-called nucleonic superfluid phase. This is not one of
the exotic QCD phases alluded to in the discussion above.
This is a rather conventional phase expected to occur inside
cores of neutron stars, and is of crucial important in explain-
ing the phenomena of glitches. Despite being of much lower
energy scale (with the relevant free energy density of order
few tenths of MeV) compared to the exotic QCD phases such
as the CFL phase (with relevant energy scale being the QCD
scale of 200 MeV, or higher depending on the baryon den-
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sity) even this superfluid phase transition is expected to lead
to significant changes in the MI tensor (Bagchi et al. 2015).

We follow up this proposal of Bagchi et al. (2015) in this
paper and calculate specific signals resulting from these den-
sity fluctuations in terms of its effect on the modification of
the pulses of the pulsar. There being too many possibilities
for different phase transitions in the pulsar core, we present
a general study in this work where the specific details of
density fluctuations relating to particular phase transition
are ignored. The only relevant part used here is that these
are random density fluctuations, and are expected to affect
each component of the MI tensor. For simplicity, in this first
study of this kind, we make further approximation and as-
sume that the initial moment of inertia tensor I0

ij gets ad-
ditional contribution δIij for each of its component. Initial
MI tensor is taken to be diagonal with eigenvalues I0

33 = I0,
and I0

11 = I0
22 ≡ IT < I0. Here I0

ii refer to Ixx, Iyy, Izz for
i = 1, 2, 3 respectively. δIij is assumed to be Gaussian dis-
tributed with width σ = εI0. In view of the estimates in
ref. (Bagchi et al. 2015), we consider two specific values of ε
10−8 to 10−5 (in order that the pulse modulations are visible
in a reasonable time scale for the numerical computations).
Though, we give analytical estimates which can be used for
even lower values of ε as discussed in ref. (Bagchi et al. 2015)
(it is not clear if such low values will lead to pulse modifica-
tions which can be currently observed).

We will see that there are very specific patterns in the per-
turbed pulses which are observable in terms of modulations
of pulses over much larger time periods than the basic pulse
period. In view of the fact that density fluctuations fade away
eventually leading to a uniform phase in the interior of pulsar,
the off-diagonal components of MI tensor also vanish eventu-
ally. As we will discuss below, as a consequence of this, pulsar
restores its original state of rotation completely (apart from
any effects resulting from free energy changes between the two
phases of the transition as discussed above). In particular the
modification of pulses due to induced wobbling (from the off-
diagonal MI components) will also die away eventually. This
will be crucial in distinguishing these pulse modulations from
the effects of any wobbling originally present.

We note that in representing the effect of density fluctua-
tions on MI tensor in terms of Gaussian distributed random
components δIij with a single parameter ε, we are missing
out very useful information about characteristic statistics of
the density fluctuations which could differentiate between dif-
ferent types of phase transitions. Thus, the present study is
meant to focus on the gross features of the pulse modifica-
tion, such as the period and amplitude of pulse modification.
Next step will be to determine the detailed modification of
the MI tensor depending on specific phase transition, and see
if observations of the perturbed signal are capable of distin-
guishing between different phase transitions.

We mention that there have been several theoretical stud-
ies on the effects of free precession of pulsars because of its
various observational consequences. The studies of pulsar pre-
cession have become even more exciting and relevant as there
seems to be evidence of free precession, as reported from the
observation of the periodic residuals of PSR 1828-11 (Stairs
et al. 2000). There was a theoretical proposal (Wasserman
2003; Akgun et al. 2006) that precession caused by triaxial-
ity of the pulsar can be a possible cause for such behavior
of PSR 1828-11. The precession of pulsars is also studied to

probe the internal structure of neutrons stars. In this context,
modeling the free precession of neutrons stars and by com-
paring with the observations, the authors Jones & Andersson
(2001) have made a few interesting conclusions regarding the
crust-core coupling and on the possible role of superfluidity
in the free precession of the crust. In our work here, we aim
to probe the various phase transitions occurring inside the
core of pulsars. Here, the phase transition induced density
fluctuation is considered to be responsible for the precession
of pulsars affecting the pulse profile.

The paper is organized in the following manner. In section
2, we present the basic formalism for calculating the effects
of the modification in the MI tensor by a random matrix
resulting from density fluctuations on the state of rotation
of the pulsar. Using Euler’s equations, we calculate the rate
of change of angular velocities about the principal axes of
the pulsar (which, due to density fluctuations, differ from
the original principal axes of a symmetric spheroidal shape
pulsar). Here we focus on specific points on the surface of
the pulsar which are emitting radiation (which, again, for
simplicity is taken to be on the surface of the pulsar), and
study changes in its trajectory as the pulsar rotation devel-
ops wobbling. We then calculate the resulting perturbation
in the pulsar signal as observed on the earth. Section 3 dis-
cusses parameter choices, initial conditions, and estimates for
modulation frequency etc. depending on the magnitudes of ε,
and Io, IT . Section 4 presents the algorithm for calculation
of the pulse modification and presents numerical results. Sec-
tion 5 presents discussion of results and various observational
aspects. We conclude in section 6 with discussion of various
limitations of our procedure, and future possibilities, e.g. pos-
sibility of observing details in the perturbed signal which can
distinguish between different phase transitions.

2 THE EFFECTS OF DENSITY
FLUCTUATIONS ON PULSAR DYNAMICS :
THE BASIC FORMALISM

For the study of pulsar dynamics in the presence of phase
transition induced density fluctuations, we take the initial
shape of the pulsar to be oblate spheroidal. The pulsar is as-
sumed to be rotating about the symmetry z-axis with angular
frequency ω and angular momentum Lz = L (Lx = 0 = Ly).
The unperturbed principal moment of inertia (MI) with re-
spect to the body-fixed frame S (Fig. 1) are denoted by I0

ij

(i, j = 1, 2, 3). In brief notations, the diagonal components
can be written as, I0

11 ≡ I0
1 , I0

22 ≡ I0
2 with I0

1 = I0
2 and

I0
33 ≡ I0

3 = I0 (with I0 > I0
1 , I

0
2 ), and I0

ij = 0 for i 6= j. The
oblateness of the star is parameterized by η = (I0 − I0

1 )/I0.
The value of η depends on various properties of the star,
such as mass, rigidity of the crust, and the magnetic field etc.
There have been several studies where the authors (Horowitz
& Kadau 2009; Baiko & Chugunov 2018) have carried out
detailed molecular dynamical simulations to determine the
values of η by estimating the crustal breaking strain of neu-
tron stars. Those works have put an upper limit of elliptic-
ity as η ' 10−6. However, the results being sensitive to the
modeling of the crust, there are uncertainties in the estimates
of breaking strain. In fact, it has been suggested (based on
the studies of a magnetar, (Makishima & et. al. 2014)) that
the deviation from the sphericity of pulsar can be as high
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as ∼ 10−4. From observational perspective, there were sev-
eral attempts (Abadie & et. al. 2011; Aasi et al. 2014; Abbott
et al. 2020) to constrain the deformation parameter of triaxial
stars through direct searches for gravitational waves (GWs).
For example, a recent result (Abbott et al. 2020) constrained
the upper limit of η for Crab and Vela pulsars at 10−5 and
10−4, respectively. As recorded by Aasi et al. (2014), there
are also a few pulsars with extremely high (η ∼ 10−2−10−3)
ellipticities.

Note that such constraints are valid for triaxial stars only.
It is not possible to put such constraints for the spheroidal
pulsars due to the absence of continuous GWs from these
sources. However, within these observational limitations and
the uncertainties in theoretical estimate, we will take sample
values of η in the range 10−3−10−2 for the initial unperturbed
pulsars. This is helpful in showing modulations of pulse profile
over reasonable time duration. The results can be straight-
forwardly extended to much smaller values of η (which lead
to pulse modulations over very long time durations).

As we have mentioned earlier, the phase transitions inside
the core of a pulsar inevitably produce density fluctuations
(Bagchi et al. 2015), and hence cause perturbation in MI ten-
sor. Importantly, the MI tensor now develops non-zero off-
diagonal components causing the star to precess about the
z-axis. Detailed simulations were carried out in ref. (Bagchi
et al. 2015) to estimate the magnitude of density fluctuations
caused by various possible phase transitions inside the core of
a pulsar. In those simulations, depending on the types of tran-
sitions, the fractional change in the MI tensor δIij/I0 were
estimated to be of order ∼ 10−14− 10−6 (with the limitation
of extrapolating the simulation results of small lattice sizes to
realistic NS size). We would like to study the pulsar dynamics
in the presence of such perturbations and present results for
density fluctuations of this order. As we will see, the results
can be straightforwardly extended to arbitrary small values
of density fluctuations (though, possibility of observing ef-
fects of much smaller density fluctuations on pulse profiles
may not be realistic at present stage).

Fig. 1 shows the space fixed frame S (black solid lines) for
the unperturbed pulsar (of oblate shape) which is rotating
about the z-axis with frequency ω and angular momentum
Lz = L. Phase transition is assumed to occur at time t = 0
(for simplicity, we assume the transition to be instantaneous)
generating density fluctuations. With density fluctuation, the
new principal axes of the pulsar at time t = 0 (after the phase
transition) are denoted by (x0, y0, z0). This new body fixed
frame S0 (at t = 0) is shown by red dotted lines. S′ frame
(with axes x′, y′, z′) denotes this body fixed frame at any
arbitrary time t > 0 and is shown by blue dashed lines.

Let us denote by I1, I2 and I3, the principal MI of the
perturbed pulsar with respect to the body fixed frame S′ (as
in Fig. 1). The frame S′ momentarily coincides (at time t)
with a space fixed frame, with respect to which the dynamical
equations need to be written. The angular frequency of the
star about this frame are denoted by ω1(t), ω2(t) and ω3(t),
respectively. The set of Euler’s equations which governs the
dynamics of the pulsar can now be written as (Goldstein et al.
2013; Kleppner & Kolenkow 2013)

Figure 1. Before phase transition, an oblate shape pulsar is rotat-

ing about z-axis with frequency ω and angular momentum Lz = L.

Black solid lines show the space fixed frame S for the unperturbed
pulsar. Orientations of the principal axes (x0, y0, z0) immediately

after the phase transition (at t = 0) of S0 frame are shown with

red dotted lines. The body-fixed frame S′ at any arbitrary time t
is shown with blue dashed lines.

I1ω̇1 − (I2 − I3)ω2ω3 = 0 (1)

I2ω̇2 − (I3 − I1)ω1ω3 = 0 (2)

I3ω̇3 − (I1 − I2)ω1ω2 = 0. (3)

We assumed that the angular frequency ω of the unper-
turbed state is along the z-axis. As density perturbations
are assumed to be small, the value of ω3 is expected to re-
main close to ω. However, ω1 and ω2 now become non-zero,
though much smaller compared to ω3, i.e., ω1, ω2 << ω3.
Thus, within first order in ω1 and ω2, we get from Eq. (3)

I3ω̇3 = 0 ; i.e., ω3 = constant. (4)

Here, we have neglected the higher order term ω1ω2 in Eq.
(3). The dynamics of ω1 can now be obtained by using Eq.
(1) and Eq. (2) as

ω̈1 + Ω2 ω1 = 0. (5)

Where, Ω = ω3[(I3−I1)(I3−I2)/(I1I2)]1/2 is the precession
frequency of the pulsars caused by the perturbations. We
assume that phase transition induced density fluctuations are
sufficiently small so that I3 > I1, I2 condition remains valid
even after the phase transition. Thus, Ω will be real. With
this, the solution of Eq. (5) becomes oscillatory,

ω1(t) = A cos(Ω t) +B sin(Ω t). (6)

A, B are two constants which can be determined from the
initial conditions. The solution of ω2 can be obtained by sim-
ply finding ω̇1 from Eq. (6), and substituting it in Eq. (1).
The resulting solution is given by

ω2(t) = k[A sin(Ω t)−B cos(Ω t)]. (7)

Where the overall factor k is given as k = [I1(I3 −
I1)/(I2(I3 − I2))]1/2. We have set the initial time t = 0 as
the time of completion of the phase transition, which is as-
sumed to be the onset of precession of the pulsar as well. If
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ω0
1 and ω0

2 denote the respective angular velocities at t = 0,
the set of solutions (6), (7) can then be rewritten as (using
Eqs. (1), (2)),

ω1(t) = ω0
1 cos(Ω t)− ω0

2

k
sin(Ω t) (8)

ω2(t) = kω0
1 sin(Ω t) + ω0

2 cos(Ω t). (9)

Note that the above set of equations still has two arbitrary
constants ω0

1 and ω0
2 to be fixed from the initial conditions. In

the next section, we will discuss the procedure of fixing these
quantities from the given initial conditions. Along with this,
we will also discuss our choice of parameters, and present an
estimate of precession frequency Ω. More detailed numerical
procedures for obtaining the effects on pulse profiles will be
discussed in the subsequent section.

3 INITIAL CONDITIONS, CHOICE OF
PARAMETERS, AND ESTIMATES FOR
MODULATION FREQUENCY

3.1 Initial conditions

The values of ω0
1 and ω0

2 in Eqs. (8) and (9) can be deter-
mined by using the conservation of angular momentum. Note
that there is no external torque on the pulsar, the dynamics is
affected solely due to the internal density fluctuations. Thus
the angular momentum is conserved. (We are neglecting the
possibility of significant emission of any particles during the
phase transition.) Prior to the phase transition, the pulsar ro-
tates about the z-axis with angular velocity ω and the angular
momentum has only z-component Lz = L. After completion
of the phase transition at t = 0, the orientations of the new
set of principal axes x0, y0 and z0 of frame S0 are changed
relative to the original frame S as shown in Fig. 1. The new
y0-axis is chosen to lie in the y-z plane, making an infinitesi-
mal small angle α (for small perturbations) with the y-axis.
Note that for the unperturbed state, the principal axis corre-
sponding to I0

3 is unambiguously fixed. However, this is not
true for the other two axes (since I0

1 = I0
2 ) lying in the x-y

plane. We have the freedom of choosing one of them arbitrar-
ily. Here we have exploited this freedom to choose the y-axis
(by rotating the x-y plane) in such a way that y0-axis lies in
the y-z plane. With this choice, we can now write the unit
vector along y0 as ŷ0 = ŷ + α ẑ. Denoting the polar angle
and the azimuthal angle of z0-axis as θ0 and φ0, respectively
(these are the standard angles in spherical coordinates mea-
sured relative to S-frame), one can also write the unit vector
along z0 as ẑ0 = θ0 cosφ0 x̂ + θ0 sinφ0 ŷ + ẑ. Using orthog-
onality, the angle α and the unit vector x̂0 can be fixed as
α = −θ0 sinφ0 and x̂0 = x̂−θ0 cosφ0 ẑ. Note that by express-
ing the unit vectors (x̂0, ŷ0, ẑ0) in terms of (x̂, ŷ, ẑ) allows us
to determine the rotational matrix R0, which describes the
orientations of the new set of principal axes relative to the
old set. The matrix R0 is parameterized by the angles (θ0, φ0)
and can be written as

R0 =

 1 0 −θ0 cosφ0

0 1 −θ0 sinφ0

θ0 cosφ0 θ0 sinφ0 1

 (10)

We will see later (section 4) the role of R0 in our numerical

calculations. The initial angle θ0 and φ0 are determined by
diagonalizing the perturbed MI matrix, and finding the eigen
vectors corresponding to three eigen values.

With the above choice of orientations of the new set of prin-
cipal axes, we now resolve the original angular momentum Lz
(= L) along x0, y0 and z0, respectively. The corresponding
components can be written as

Lx0(t = 0) = I1ω
0
1 = −Lθ0 cosφ0 (11)

Ly0(t = 0) = I2ω
0
2 = −Lθ0 sinφ0 (12)

Lz0(t = 0) = I3ω
0
3 = L. (13)

Using the above set of equations, the angular frequencies
Eq. (4, 8, 9) can be expressed in terms of θ0 and φ0 as

ω1(t) = θ̇1 = −ωθ0[cosφ0 cos(Ωt)− sinφ0

k
sin(Ωt)] (14)

ω2(t) = θ̇2 = −ωθ0[k cosφ0 sin(Ωt) + sinφ0 cos(Ωt)] (15)

ω3(t) = θ̇3 = ω. (16)

In the above, we have taken an approximation, L/I1 '
L/I3 ' ω. This is in view of Eq. (16) and the fact that angle
θ0 is very small for tiny density fluctuations, as we will see
below. The numerical algorithm for finding the set of solu-
tions θi(t) (i = 1, 2, 3), and their role in modulating pulse
profiles will also be discussed therein. Now before present-
ing such numerical prescription, we will provide below a few
estimates of various quantities relevant to the precession.

3.2 The choice of parameters and estimates of
various quantities characterizing the precession

First, we estimate the precession frequency Ω = [(I3−I1)(I3−
I2)/(I1I2)]1/2ω. As the perturbations δIij are small, the new
set of principal axes are expected to be very close to the
original (unperturbed) axes. This is also observed numerically
to be discussed in the next section. Thus the principal MI of
the perturbed state can be written as, I1,2 = I0(1− η + ε1,2)
and I3 = I0(1 + ε3). Where, εi (i = 1, 2, 3) are taken to be of
order ε for which we will take two sample values, 10−8 and
10−5. The precession frequency Ω can then be expressed in
terms of η and ε (a function of εi ; i = 1, 2, 3) as

Ω ' η + ε

1− η + ε
ω ' η ω. (17)

Where, as mentioned above we have assumed that ε, η <<
1 and ε << η. Therefore, the precession frequency is com-
pletely determined by the deformation parameter η of the
unperturbed pulsars. Thus, for a millisecond pulsar, for ex-
ample, the time period of precession will be of order 1 sec, if
the deformation parameter is of order 10−3. We will discuss
the implications of this further in section 5.

The amplitude ωm of frequency oscillations ω1(t), and the
amplitude θm of precession angle θ1(t) can be estimated from
Eq. (14). Note that since k = [I1(I3 − I1)/(I2(I3 − I2))]1/2 '
1 + ε/2η, the corresponding quantities associated with ω2(t)
will be of same order as for ω1(t). The relative angular shift
(θ0, φ0) of the principal axes (see Fig. 1) are determined by
diagonalizing the perturbed matrix Iij , and finding the eigen
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vectors corresponding to three eigen values. These eigen-
vectors will then correspond to the set of three principal
axes. The identification of z0-axis can be done by finding
the direction cosines of the eigen-vector corresponding to the
largest eigenvalue. Now, as mentioned earlier, the perturbed
moment of inertia (MI) matrix elements were taken to be
Iij = I0

ij + δIij . Where δIij is assumed to be Gaussian dis-
tributed with width σ = εI0 (I0 ≡ I0

3 ). For an analytical
estimate of θ0, let us define a quantity εij , which character-
izes the relative perturbation of MI matrix element due to
the density fluctuations as εij = δIij/I0. As the width σ of
the perturbations is assumed to be of order εI0, all the com-
ponents of εij (i, j = 1, 2, 3) are also expected to be of order
ε. For a simple analytical estimate, we use the approximation
εij = ε/I0. With this, the diagonalizations of the perturbed
matrix gives the result,

cos θ0 =

(
1 + 2

(
εI0

I3 − I1 − εI0

)2
)−1/2

. (18)

Substituting I1 = I2 ' I0(1 − η + ε), I3 ' I0(1 + ε) and
assuming ε << η, we now get the angular shift of z′-axis (to
leading order in ε) as

θ0 '
√

2

(
ε

η

)
. (19)

Allowing for slightly more general εij also gives similar re-
sult. The numerical procedure for finding θ0 will be discussed
later in section 4. It turns out that for a general random val-
ues of εij , our numerical results also approximately produce
the above analytical estimate of θ0.

As k = [I1(I3 − I1)/(I2(I3 − I2))]1/2 ' 1 + ε/2η, we can
now rewrite Eq.(14) and Eq.(15) as

ω1(t) = −ωθ0[cos(Ωt+ φ0) +
ε

2η
sinφ0 sin(Ωt)] (20)

ω2(t) = −ωθ0[sin(Ωt+ φ0) +
ε

2η
cosφ0 sin(Ωt)]. (21)

The corresponding rotational angles can be written as

θ1(t) = −ωθ0

Ω
[sin(Ωt+ φ0)− ε

2η
sinφ0 cos(Ωt)] (22)

θ2(t) =
ωθ0

Ω
[cos(Ωt+ φ0) +

ε

2η
cosφ0 cos(Ωt)]. (23)

Since θ0 '
√

2(ε/η), the second terms in the above set of
equations (Eq. (20) - Eq. (23)) are of order ∼ (ε/η)2. The
resulting amplitude ωm of frequency oscillations ω1,2(t) (Eq.
(20) and Eq. (21)), and the amplitude θm of precession angles
θ1,2 ((Eq. (22) and Eq. (23)) are thus given by ωm = ωθ0 '√

2(ε/η)ω and θm = (ω/Ω)θ0 '
√

2 (ε/η2). So for η = 10−3,
the oscillation amplitudes for θ1 and θ2 will be of order 106 ε.
This, for example, results in approximately 1◦ amplitude for
ε = 10−8. The observational aspects of this significant result
will be discussed in section 5.

The effects of precession will be seen on the observed fluxes
from the pulsars. To estimate that, we assume the flux emis-
sion to be conical in nature with the vertex of the cone at
the centre of the pulsar. The angular flux distribution for
the pulsars is taken to be azimuthally symmetric about the

Figure 2. Figure shows the radiation emission cone of a pulsar.

The magnetic axis (OP) and the line of sight (OE) pointing to-

wards earth, make angle θr and θe, respectively with the rotation
axis. θp is the angle between OP and OE.

centre of the emission region and is taken to be of Gaussian
shape (Krishnamohan & Downs 1983) of width w,

F (α) = F0 e
− α

2

w2 . (24)

Where α is the angle of the radial vector of the emission
point from the central axis of the cone. If the perturbations
result in the change of α by a small amount δ, the corre-
sponding change in flux becomes

F ′(φ) = F0 e
− (α+δ)2

w2 ' F (φ)
(

1− 2δ
α

w2

)
. (25)

Thus we see that the fractional change of flux will be of
order O(δ), which is approximately equal to θm, i.e., of or-
der ε/η2. Here, we recall our earlier discussion that the pulse
modifications due to induced wobbling (from off-diagonal MI
components) may be more easily observable, even if direct
effects on the pulsar frequency arising from free energy differ-
ence between two thermodynamic phases remain suppressed.

4 THE ALGORITHM FOR STUDYING PULSE
MODULATIONS AND THE NUMERICAL
RESULTS

We will describe here the numerical approach that was fol-
lowed to study the effects on pulse profile due to the preces-
sion of a pulsar. First, we consider the profile for an unper-
turbed pulsar rotating freely about the z-axis with frequency
ω. We assume the standard conical shape geometry (Gil 1981;
Gil et al. 1984) for the pulse emission region (Fig. 2). The an-
gles of magnetic axis and the line of sight pointing towards
earth with the rotation axis are denoted by θr and θe, respec-
tively. Assume P(Rr sin θr cosφr, Rr sin θr sinφr, Rr cos θr)
and E(Re sin θe cosφe, Re sin θe sinφe, Re cos θe) to be the
center of the pulse emission region, and the intersection point
on the emission region by the direction vector towards earth,
respectively. Both the points are assumed to be on the sur-
face of the pulsar, and Rr ' Re ≡ R is the radius (R) of the
(almost spherical) pulsar. The angle between ~OE and ~OP
is denoted by θp. Note that θp(t) changes with time as the
pulse emission cone sweeps across the line of sight with rota-
tion frequency φ̇r(t) = ω. The evolution of θp will be reflected
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Modulation of pulse profile 7

in the observed intensity distribution of the pulses. For that,
we take the intensity distribution of pulses as Gaussian (Kr-
ishnamohan & Downs 1983) of width w (as in Eqn.(21)),

I(θp) = I0 e
−(θ2p/w

2). (26)

Now, in the presence of density fluctuations, the above pro-
file will be modulated due to the precession of pulsars. For
understanding this, let us first set our notations and symbols
for various quantities. Let S(x, y, z) be the space-fixed frame
(frame of the observer) with respect to which the pulse profile
is supposed to be analyzed. S0(x0, y0, z0), S1(x1, y1, z1), ...are
the instantaneous space-fixed frames, which coincide with the
body-fixed frames at time t = 0 (immediately after the phase
transition), ∆t, 2∆t, ... and so on. At an arbitrary time t, the
orientations of body-frame axes are determined in terms of
the rotations θ1(t), θ2(t), and θ3(t) w.r.t. the corresponding
instantaneous space-fixed frame, with corresponding angular
frequencies ω1(t), ω2(t) and ω3(t), respectively. Assume an ar-
bitrary fixed point P ∗ on the surface of the (almost perfectly
spherical) star, whose angular coordinates with respect to
the space-fixed frame S at time t = 0, are labeled by (θ∗, φ∗).
After the phase transition, at t = 0, the new principal axes
become different, given by the body-fixed frame S0, with-
out any rotation occurring for the body. Hence, the location
of this point P ∗ w.r.t the body-fixed frame S0 will always
be given by R0(θ∗, φ∗) at any time t. Here R0 is the rota-
tional matrix parameterized by the angles (θ0, φ0) describing
the orientations of S0-frame relative S-frame (see Eq.(10)).
As the body rotates, the corresponding angular coordinates
as seen by a space-fixed observer at an arbitrary time t are
denoted by (θ(t), φ(t)). Corresponding Cartesian coordinates
will be represented as column vectors while performing coor-
dinate transformation through the operation of rotation ma-
trix. The matrices Rx(θ1), Ry(θ2) and Rz(θ3) describe the
rotations by angle θ1 about x-axis, θ2 about y-axis and θ3

about z-axis, respectively. The rotation matrices R0, R1, ...,
respectively describe the orientations of ‘S0-frame relative to
S-frame’, ‘S1-frame relative to S0-frame’,...and so on. These
matrices are in turn the products of matrices, Rx, Ry and Rz.
As the rotations are being considered for infinitesimal time
period ∆t w.r.t. the instantaneous space-fixed frames, all the
angles are infinitesimal, and Rx, Ry and Rz commute with
each other.

We will now discuss below our algorithm using which the
effect of precession on pulse profile is calculated. As we men-
tioned above, diagonalization of the perturbed MI matrix
gives the new set of principal axes (S0-frame in Fig. 1). The
orientations of axes of S0 relative to those of S is obtained
through R0 which is parameterized by the initial angles θ0

and φ0 of the z0 axis. We noted above that the coordinates
of the radiating point P ∗ in the body fixed frame at any time
t are fixed, given by R0(θ∗, φ∗). After this initial set up, fol-
lowing steps are performed to get the pulse profile for the
perturbed pulsar.

Step - 1 (t = ∆t) : θi(∆t), (i = 1, 2, 3) is obtained by
integrating Eq. (14) - Eq. (16) for a time step ∆t. The ma-
trix R1 that describes the orientations of S1-frame relative to
S0-frame is obtained through R1 = Rx(θ1)Ry(θ2)Rz(θ3). We
then get the location of the point P ∗ at time t = ∆t as seen
by the space-fixed fixed observer (frame S) through the coor-
dinate transformations, [θ(∆t), φ(∆t)] = R−1

0 R−1
1 R0(θ∗, φ∗).

Note that above prescription is valid for any arbitrary point
P ∗ on the surface of the star. For calculating θp, the point
P ∗ is chosen as the center of the emission cone labeled as
“P” in Fig. 2. As the star rotates, the angular coordinates of
this point change w.r.t. the space fixed frame S leading to
changing θp. Following the same procedure as one would do
for the unperturbed pulsars, θp is calculated at time t = ∆t
and hence, the intensity of the pulse I(θp) is obtained from
Eq. (26).

Step - 2 (t = 2∆t) : Following the same prescription as
above, θi(2∆t), (i = 1, 2, 3) is obtained for the next time
step ∆t (Note, the integration is performed from ∆t to 2∆t).
This allows to determine the matrix R2, which relates S2

with S1 through R2 = Rx(θ1)Ry(θ2)Rz(θ3). The location
of (θ∗, φ∗) at time 2∆t relative to S is obtained through
[θ(2∆t), φ(2∆t)] = R−1

0 R−1
1 R−1

2 R0(θ∗, φ∗). Again, I(θp) is
obtained at time t = 2∆t using Eq. (26) .

The above time steps are repeated for a sufficiently long
time duration to observe the modulations of the pulse profile
due to precession. For clarification, here we should mention
that the set of matrices (R1, R2,...) represents the sequence
of time evolution. However each of these rotation matrices
itself consists of three rotation matrices, about x,y, and z
axis, respectively. For example, the matrix R1 is given by
R1 ≡ (Rx(θ1)Ry(θ2)Rz(θ3)), and similarly for R2 and so on.
We take these three matrices (Rx(θ1)Ry(θ2)Rz(θ3)) to com-
mute as they represent infinitesimal rotations for small time
interval ∆t. However, (R1, R2, ...) in sequence represent time
integration of rotations. These are naturally time ordered and
we do not assume their commutation.

It should also be noted that the calculation of the time evo-
lution of any fixed point due to precession followed by coordi-
nate transformation to S-frame necessitates the appearance
of R0 matrix twice. The first R0 matrix (which now involves
two angles θ0 and φ0) gives the coordinates of the radiation
point P* in the (x0, y0, z0) frame. The radiation point P ∗ is
taken to have coordinates (θ∗, φ∗) in the original space-fixed
frame (which is now given by axes (x, y, z). Immediately af-
ter the phase transition, the point P ∗ does not move, but the
choice of axes now becomes the body fixed frame (x0, y0, z0).
The coordinates of P ∗ in this body fixed frame are always
given by R0(P∗). As the body rotates, at each time step, the
location of this point R0(P∗) in the body fixed frame has
to be transformed to the original space-fixed frame (x, y, z).
This gives the sequence of matrices (R−1

0 )(R−1
1 )....

We will now present the results obtained using the above
sequence of steps. The parameters used in our calculations
are listed in Table 1. A millisecond pulsar is chosen as a can-
didate for studying the effects of precession on pulse profiles.
The angles of magnetic axis and the line of sight pointing
towards earth relative to the (unperturbed) rotation axis are
taken as θr = 45◦ and θe = 40◦, respectively (Fig. 2). The ini-
tial (i.e., at t = 0) azimuthals of the locations P and E (Fig.
2) are taken as φr = 45◦ and φe = 40◦, respectively. Note,
the choice for φr and φe at t = 0 has the same azimuthal sep-
aration ∆φ as for the angular separation ∆θ between θr and
θe. The same value of ∆φ and ∆θ is just an arbitrary choice
and in principle, it could be anything. In fact, for other values
of ∆φ, there will simply be a phase shift in the modulation.
Now, as mentioned earlier, the change in MI components δIij
caused by the density fluctuations are assumed to be Gaus-
sian (Krishnamohan & Downs 1983) with width σ = εI0. The
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Figure 3. Evolution of normalized pulse intensity I(θp)/I0 with

(red color) and without (blue color) modulation (induced by den-
sity fluctuations) for a millisecond pulsar, for the parameter set

number 1 as listed in Table 1.
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Figure 4. Time evolution of I(θp)/I0 in the presence of density
fluctuation induced modulation for the parameter set number 1

in Table 1. Top plot shows the evolution of the top portion of

the pulse for a long time duration, clearly showing two different
modulation time scales. The plot interior is solid filled up due to

crowding of millisecond pulses. Bottom left plot shows the same

plot for a smaller time duration for a better resolution, which is
further resolved (bottom right) to observe full profiles of a few

individual millisecond pulses.
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Figure 5. Same plots as in Fig. 4, now only showing the top part

of the pulse profiles for clear visibility of the modulated pulse shape

details.
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time domain. The apparent kink which appears at time around
435 seconds in the top figure becomes smooth with an improved

resolution as shown in the bottom left plot showing expanded plot

in that region.

estimates in ref. (Bagchi et al. 2015), suggested that the val-
ues of ε may lie in the range 10−14 to 10−6. Here, for a case
study, we choose two sample values of ε as 10−8 and 10−5.
We also use two values of the deformation parameter η of the
assumed oblate shape pulsar as η = 10−3 and η = 10−2. (We
again emphasize, we use these parameter values so that dif-
ferent modulations have reasonable time period which can be
seen in our numerical simulations. The results are easily ex-
tended to much smaller values of ε as well as η, which usually
will lead to very long time scales of modulations.) Note that
the parameters η and ε set the time scales for the expected
flux modulations of the pulses due to the precession. As we
discussed above, this can be understood from the equations
of motion (Eq. 14 and Eq. 15) for ω1 (or ω2), which is given as
w1 ∼ ωm cos(Ωt). Thus, the time period TΩ corresponding to
the precession frequency Ω should set one of the time scales
for the flux modulation. Now, we see from Eq. (17) that (with
our choice ε << η), the precession frequency depends only on
the pre-existing deformation parameter η through Ω ' ηω.
Thus, for a pulsar with time period Tω = 10−3 s, the char-
acteristic time scale TΩ = Tω/η turns out to be about 0.1
second for η = 10−2 and one second for η = 10−3. As we will
see below, this is precisely what we see with our numerical
results.

Other than this modulation (let us call it as the first mod-
ulation), there will be another modulation time scale. This
is because ω1 and ω2 also describe periodic motions about
x and y axis respectively. This should lead to another (say,
the second modulation) of the millisecond pulses. The am-
plitude of ω1 oscillation is ωm (Eq. (20)), similar for ω2, as
k ' 1. With ωm ∼ (ε/η)ω = (2πε/η)1000 /sec., we expect the
second modulation time scale to be determined by the time
scale Tm ' 10−3 (η/ε) sec. The value of Tm is of order of few
seconds for (η, ε) = (10−2, 10−5), and a few hundred seconds
for (η, ε) = (10−3, 10−8). Note that this is the smallest value
of second modulation time scale expected because ωm gives
largest value of ω1 (and ω2), being the amplitude of ω1, ω2

oscillations. As ω1(ω2) oscillates with frequency Ω, changing
in magnitude from 0 to ωm, the final time scale for the second
modulation will be larger than the value Tm estimated above.
Further, the complexity of precession of a rigid body in the
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presence of three rotations about the three axes can only be
handled through the numerical simulations. Our numerical
results show that, indeed, there is a second modulation time
scale of the pulses, and that its time scale is larger by almost
on order of magnitude than the value of Tm estimated above.

For the initial Gaussian intensity distribution (Eq. (26))
we take the angular width w = 15◦. The results from our
numerical analysis are shown in Fig. 3 to Fig. 6. For the time
evolution of pulses, and calculations of θp(t) and I(θp), sim-
ulations are performed with time step dt = 10−5 sec. This
corresponds to total hundred time steps for each oscillation
of a millisecond pulse. The time evolution of the normalized
flux I(θp)/I0 is shown in Fig. 3 for parameter set no.1 (see
Table 1 for the choice of parameters). The red and blue colors,
respectively, represent the evolution of the above quantities
with and without precession. The effects of precession of pul-
sar are clearly imprinted in the modulation of I(θp)/I0. The
time scale TΩ of about 0.1 second for this parameter set for
the first flux modulation is also visible in Fig. 3. Due to small
time duration of the plot, the second modulation is not visible
in this plot.

Fig. 4 shows the long time evolution of the pulse profile
(I(θp)/I0) in the presence of density fluctuation induced pre-
cession for parameter set no.1 in Table 1. This also shows
the second modulation, with typical time scale of roughly 5
seconds. Recall, we estimated a time scale of about 1 sec. for
this second modulation (for this parameter set). However, as
discussed above, this is because of using maximum value ωm
for ω1 and ω2, and it is perfectly reasonable to get a larger
time scale for this second modulation. Top plot shows the
evolution of the top portion of the pulse, clearly showing the
two different modulation time scales. The plot interior is solid
filled up due to crowding of millisecond pulses. Bottom left
plot shows the same plot for a smaller time duration for a
better resolution, which is further resolved (bottom right) to
observe full profiles of a few individual millisecond pulses.
Fig. 5 shows the same plot as in Fig. 4, but only showing the
top of the pulse profiles for clear visibility of the modulated
pulse shape details.

Simulations were also performed for a longer time duration
for the parameters set number 2 in Table 1. The results are
shown in Fig. 6. Here we only show the top of the pulse pro-
file for clear visibility (as in Fig. 5 for parameter set no.1).
The top figure shows the long time period modulation (the
second modulation) with time scale of few thousand seconds.
We had estimated time scale for the second modulation for
this case to be few hundred seconds. As discussed above for
Fig. 5, longer time period for second modulation is reason-
able to expect. Note, flux profile is perfectly smooth in the
entire time domain. The apparent kink which appears at time
around 435 seconds becomes smooth with an improved reso-
lution as shown in the bottom left plot showing expanded plot
in that region. The characteristic time scale for the first flux
modulation is clearly observed in this zoomed plot and is of
order one second, which agrees with our analytical estimate
of TΩ for this parameter set.

Table 1. Values of various parameters used in our calculations are

listed below. The parameter η characterizes the deformation of the
pulsar, and ε is the fractional change of MI arising due to density

fluctuations. The angular width of the assumed Gaussian shape

pulse profile is denoted by w. θr and θe are the polar angles of the
magnetic axis, and the line of sight pointing towards earth w.r.t.

the rotation axis, respectively.

Set number η ε w θr θe

1 10−2 10−5 15◦ 45◦ 40◦

2 10−3 10−8 15◦ 45◦ 40◦

5 VARIOUS OBSERVATIONAL ASPECTS OF
OUR RESULTS

It is important to realize that the pulse modulations discussed
here resulting from wobbling of pulsar due to density fluctua-
tion will be necessarily transient. As the density fluctuations
dissipate away, the pulsar will restore its original state of ro-
tation (apart from any effects of free energy changes to the
new uniform phase as discussed above). This should help in
disentangling the phase transition induced modulation from
any other modulations present for the pulsar (e.g. due to any
permanent non-uniformities in the pulsar). One should look
for transient changes in pulse profile for any signal of phase
transitions. We should mention that by no means we imply
that these two modulations are the only possible features of
the effects of phase transition induced density fluctuations on
the pulses. We have identified these two modulations as clear
and distinct features. It will be interesting to find any other
possible hidden patterns in these modified pulses. For exam-
ple, Jones & Andersson (2001) (see also (Wasserman 2003;
Akgun et al. 2006)) have studied the effects of precession on
various aspects of electromagnetic signal, such as arrival time
residuals, pulse polarisation etc., arising from the electromag-
netic spin-down torque. It will be interesting to quantify such
effects in our model, where the pulsar precession is induced
by density perturbations.

In our present study, the time scale of the first modula-
tion, with a shorter time scale should be possible to see in
the pulsar data easily. The observation of longer time mod-
ulation may be much more difficult. It will depend on the
entire time scale of the completion of the phase transition. If
the transition is completed (to a uniform new phase with no
density fluctuations present any more) in a relatively short
period (compared to the expected time scale of the second
modulation), then only small part of the modulation may be
visible, and not the whole cycle. This also brings in another
important feature of these modulations. As we have seen, the
modulation time periods, as well as the amplitude of modula-
tion are proportional to the magnitude of density fluctuations
(characterized by ε here). The manner in which the density
fluctuations decay away after a phase transition depends cru-
cially on the nature of the transition. For example, during a
first order phase transition, density fluctuations typically de-
cay away with the time scale of coalescence of bubbles. For a
continuous transition, density fluctuations show scaling pat-
tern with universal scaling exponents. Very interesting possi-
bilities arise when there are topological defects produced in
a phase transition. Coarsening of domain wall defects, string
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defects etc. have been very well studied in literature (see for
example the review (Brandenberger 1994)) and it is known
that density fluctuations due to these have specific scaling ex-
ponents, with energy density scaling with time as t−b . An-
alytical calculations, as well as numerical simulations show
that b = 1 for string defects (see (Toyoki & Honda 1987) and
(Nishimori & Nukii 1989)). Thus, by making detailed obser-
vation of the changes in the pulse modulation amplitude as
well as modulation period, one should be able to identify
the source of density fluctuation, and hence the specific sym-
metry breaking pattern associated with the phase transition
occurring inside the pulsar. We again remind the reader that
high density QCD transitions can lead to variety of topologi-
cal defects. For example, transition to CFL phase, as well as
the nucleonic superfluid transition can lead to string defects.

One important implication of our analysis points to a sort
of memory effect in the pulsar signal. As we mentioned, af-
ter all density fluctuations fade away and uniform phase is
achieved, the original state of rotation will be restored, with-
out any wobbling effects. So no modulation of pulse profile
will survive (assuming negligible effects on pulsar frequency
due to free energy difference between the two phases). How-
ever, original state of rotation only means original angular
velocities about the original, unperturbed, principal axes. It
does not mean that one will get exactly same angular coor-
dinates (say, of the radiation emitting region) in later stages,
as one would have obtained in the absence of any phase tran-
sition. With intermediate change in the state of rotation (an-
gular velocities as well as new rotated principal axes), the
location of the angular coordinates at the complete end of
phase transition will depend on various details of the inter-
mediate stage, along with the duration and rate of restoration
of the original state of rotation. In fact, in general one will
expect a shift in the angular position of the emitting region.
Thus, there should be a residual time shift in the pulsar signal
for any time after the end of the phase transition. Presence
of any such residual time shift in the pulsar signal can thus
be attributed to an earlier phase transition stage which could
have been missed in direct detection (say, by the modulation
of pulses as discussed in this paper). Of course, as discussed
in (Jones & Andersson 2001) a residual time shift can have
different origins as well.

6 CONCLUSION

We have calculated detailed modification of pulses from a pul-
sar arising from the effects of phase transition induced density
fluctuations on the pulsar moment of inertia. To represent a
general situation of such statistical density fluctuations, we
have used a simple model where the initial moment of inertia
tensor I0

ij of the pulsar is assumed to get a random addi-
tional contribution δIij for each of its component where δIij
is taken to be Gaussian distributed with width σ = εI0. Us-
ing sample values of ε and the pulsar deformation parameter
η, we numerically calculate detailed pulse modifications by
solving Euler’s equations for the rotational dynamics of the
pulsar. We also give analytical estimates which can be used
for arbitrary values of ε, though for very small values, the
resulting pulse modifications may be beyond current obser-
vations. We show that there are very specific patterns in the
perturbed pulses which are observable in terms of modula-

tions of pulses over large time periods. In view of the fact that
density fluctuations fade away eventually leading to a uniform
phase in the interior of pulsar, the off-diagonal components
of MI tensor also vanish eventually. Thus, the modification
of pulses due to induced wobbling (from the off-diagonal MI
components) will also die away eventually. This allows one to
distinguish these pulse modulations from the effects of any
wobbling originally present. Though, even at such late stages
when all density fluctuations die away and no pulse modula-
tion survives, one will expect, in general, a residual time shift
of the pulses as restoration of original angular velocities does
not imply restoration of the angular orientations as per the
original pulses. Such a residual time shift in a pulsar signal
could thus be attributed to an earlier phase transition.

We emphasize that in representing the effect of density
fluctuations on MI tensor in terms of Gaussian distributed
components δIij with a single parameter ε, we have ignored
details of characteristic statistics of the density fluctuations
which could differentiate between different types of phase
transitions. Thus, the present study is meant to focus on the
gross features of the pulse modification, such as the period
and amplitude of pulse modification. We plan to consider de-
tailed modification of the MI tensor depending on specific
phase transition, and see if observations of the perturbed
signal are capable of distinguishing between different phase
transitions. In the present analysis also, some information of
the details of phase transition is contained in the manner
in which density fluctuations decay away. In particular for a
continuous transition, or for topological defect induced den-
sity fluctuations, density fluctuations decay away with spe-
cific universal exponents, which may be observable by making
details analysis of pulse modulations.
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