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Observational studies of oseltamivir use and inf luenza complications could suffer from residual confounding.
Using negative control risk periods and a negative control outcome, we examined confounding control in a health-
insurance-claims–based study of oseltamivir and inf luenza complications (pneumonia, all-cause hospitalization,
and dispensing of an antibiotic). Within the Food and Drug Administration’s Sentinel System, we identified
individuals aged ≥18 years who initiated oseltamivir use on the inf luenza diagnosis date versus those who did
not, during 3 inf luenza seasons (2014–2017). We evaluated primary outcomes within the following 1–30 days
(the primary risk period) and 61–90 days (the negative control period) and nonvertebral fractures (the negative
control outcome) within days 1–30. We estimated propensity-score–matched risk ratios (RRs) per season. During
the 2014–2015 inf luenza season, oseltamivir use was associated with a reduction in the risk of pneumonia
(RR = 0.72, 95% confidence interval (CI): 0.70, 0.75) and all-cause hospitalization (RR = 0.54, 95% CI: 0.53,
0.55) in days 1–30. During days 61–90, estimates were near-null for pneumonia (RR = 1.04, 95% CI: 0.95, 1.15)
and hospitalization (RR = 0.94, 95% CI: 0.91, 0.98) but slightly increased for antibiotic dispensing (RR = 1.14,
95% CI: 1.08, 1.21). The RR for fractures was near-null (RR = 1.09, 95% CI: 0.99, 1.20). Estimates for the 2016–
2017 inf luenza season were comparable, while the 2015–2016 season had conf licting results. Our study suggests
minimal residual confounding for specific outcomes, but results differed by season.

antiviral agents; bias; confounding factors; epidemiologic methods; health-care administrative claims; human
inf luenza; oseltamivir; pneumonia

Abbreviations: CI, confidence interval; ICD-9-CM, International Classification of Diseases,Ninth Revision,Clinical Modification;
ICD-10-CM, International Classification of Diseases, Tenth Revision, Clinical Modification; PS, propensity score; RR, risk ratio.

Oseltamivir is an antiviral agent recommended for influ-
enza types A and B and has been shown to reduce time to
symptom relief (<1–1.5 days) (1–4). Its effects on influenza
complications are less certain. In observational studies, re-
searchers evaluating the association between oseltamivir use
and influenza complications have reported conflicting find-
ings (5–14), and these studies probably suffered from con-
founding by indication, in which oseltamivir users are at an
earlier disease stage than non–oseltamivir users and therefore
appear to have better outcomes (15). Underlying health status
(frailty or functional limitation) could also explain these
findings, since oseltamivir users are more likely to be health-
ier than nonusers, potentially explaining the reduction in risk
of influenza complications with oseltamivir use (16, 17).

Influenza vaccine studies in older adults have been shown
to suffer from residual confounding due to underlying frailty
(18–21). Evidence of residual confounding has not been
evaluated in observational studies of influenza antiviral
treatment. We aimed to examine evidence of residual con-
founding in the association between oseltamivir and influ-
enza complications (hospitalized pneumonia, all-cause
hospitalization, and dispensing of antibiotics as an indicator
of secondary bacterial infection) and determine whether we
could adequately adjust for confounding.

We assessed windows of time in which oseltamivir is
expected to have no biological effects on these compli-
cations as negative control risk periods, since initiation
of oseltamivir is indicated within 2 days after symptom
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onset and its effectiveness is short-lived (22). We evaluated
nonvertebral fractures as a negative control outcome (i.e.,
an outcome not directly affected by oseltamivir) (23). We
expected that if our confounding control was sufficient, we
would observe null associations in these negative control
analyses, with the assumption that such negative control risk
periods and outcomes shared similar sources of bias with our
primary risk periods and outcomes (17, 23–25). We studied
3 separate influenza seasons with varying degrees of severity
and vaccine effectiveness to assess whether findings varied
by these attributes.

METHODS

We developed a propensity score (PS)-matched, new-user
cohort study.

Data source

We conducted this project within the Sentinel System, an
active surveillance system funded by the Food and Drug
Administration to monitor regulated medical products (26).
The Sentinel System is a network of data partners who store
curated health insurance claims and electronic health record
data within their individual sites using a standardized and
quality-checked data format, the Sentinel Common Data
Model. Analyses were carried out using the Cohort Iden-
tification and Descriptive Analysis tool, version 7.3.4 (27,
28). We included 13 Sentinel Data Partners: national health
plans, 100% Medicare fee-for-service data, and integrated
health-care delivery systems.

Study cohorts

We examined 3 influenza seasons (October 1–April 30)
separately: one that was relatively severe (2014–2015), one
that was mild (2015–2016), and one that was moderate
(2016–2017), per the Centers for Disease Control and
Prevention’s definition of severity, which is based on volume
of outpatient care, hospitalization rates, and mortality
(29). Within each season, we identified new influenza
diagnoses using influenza-specific diagnosis codes in the
outpatient, emergency, or ambulatory-care setting, after
a 90-day washout in which no influenza diagnosis was
documented (International Classification of Diseases,
Ninth Revision, Clinical Modification (ICD-9-CM) and
International Classification of Diseases, Tenth Revision,
Clinical Modification (ICD-10-CM); see Web Table 1,
available at https://doi.org/10.1093/aje/kwac020, for codes).
Individuals with more than 1 eligible influenza diagnosis per
season contributed only the first diagnosis to the analysis.
We identified persons who began using oseltamivir on the
date of influenza diagnosis, with no history of influenza
antiviral use in the prior 90 days, via National Drug Codes
in the outpatient or ambulatory-care setting. Those who did
not fill oseltamivir prescriptions on the diagnosis date were
defined as noninitiators.

We restricted the study to persons aged 18 years or more
at the time of influenza diagnosis who had at least 365

90-Day Baseline
Exclusion Criteria

Index Date
(Influenza
Diagnosis)

30th
Day

60th
Day

90th
Day

Primary Risk Period:
Days 1–30

Negative Control Risk
Period: Days 61–90

Outcome
Primary
Negative Control

Figure 1. Study design for new inf luenza patients in the Sentinel
System, 2014–2017. Exclusion criteria were applied in the prior 90
days unless otherwise specified. The criteria included an inf luenza
diagnosis in any health-care setting, no use of inf luenza antiviral
agents, no inf luenza vaccine on the index date, no pneumonia diag-
noses (any care setting) or hospitalizations, and no acute respiratory
infections for −14 to 0 days from the index date. The analyses for
the antibiotic dispensing outcome also excluded persons with such a
dispensing in the prior 90 days; the analyses for the fracture outcome
also excluded those with a fracture diagnosis in the prior 90 days.

days of medical and pharmacy insurance coverage prior to
that, with a 45-day allowable coverage gap. We excluded
individuals with any of the following during the 90 days
prior to influenza diagnosis: dispensing of any outpatient
influenza antiviral medication (National Drug Codes for
oseltamivir, zanamivir, peramivir, amantadine, or rimanta-
dine and Healthcare Common Procedure Coding System
codes for peramivir (codes C9451 and J2547)); a pneumonia
diagnosis in any care setting; a diagnosis code indicating
severe chronic kidney disease, end-stage renal disease, or
cirrhosis of the liver; and any inpatient encounters. For the
respiratory antibiotic outcome and nonvertebral fractures,
we also excluded patients who had these occurrences within
the 90-day baseline window, ensuring that the outcomes
were incident (see Web Table 2 for codes).

Since we did not have laboratory data with which to iden-
tify confirmed influenza infection, to reduce misclassifica-
tion of influenza we excluded persons with season-specific
influenza vaccination codes on the influenza diagnosis date
(to exclude those with likely rule-out diagnosis codes) and
those with select acute respiratory tract symptoms (e.g.,
bronchitis, sinusitis, otitis media) in any care setting within
the 14 days prior to influenza diagnosis or on the day of
influenza diagnosis (to ensure that influenza diagnoses were
incident and not a differential diagnosis). The study design
is depicted graphically in Figure 1.

Outcome assessment

We assessed the following influenza complications: pneu-
monia hospitalization, all-cause hospitalization, and out-
patient dispensing of antibiotics for respiratory infection.
We defined pneumonia hospitalization on the basis of any
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pneumonia-related ICD-9-CM or ICD-10-CM codes in the
inpatient setting (principal or secondary discharge diag-
noses; see Web Table 3 for codes). Prior literature shows
high positive predictive values (88%) for inpatient pneumo-
nia diagnosis codes in claims data (30).

To identify respiratory antibiotic dispensings, we used a
combination of a dispensing for cephalosporin, macrolide,
penicillin, tetracycline, quinolone, or sulfonamide (via
National Drug Codes in the outpatient or ambulatory setting;
see Web Table 4) and a diagnosis code for a respiratory com-
plication (i.e., bronchitis, lower respiratory tract infection, or
pneumonia) within (±) 2 days of the dispensing, following
a previously published algorithm (31, 32).

For the negative control outcome during the primary
risk period, we identified nonvertebral and compression-/
osteoporosis-related fractures using ICD-9-CM and ICD-
10-CM diagnosis codes in the emergency or inpatient setting
(inpatient principal or secondary discharge diagnoses; see
Web Table 3 for codes) (33–36). We chose fractures because
they were not expected to be affected by oseltamivir use
but are related to frailty. Therefore, we reasoned that if our
confounding control for frailty was adequate, we should
observe null effect estimates.

Primary and negative control risk periods

Given that oseltamivir is generally recommended for use
within 48 hours of symptom onset, we conducted intention-
to-treat analyses, per season, allowing treatment changes
during follow-up, such that only patients who initiated
oseltamivir use on the date of influenza diagnosis were
considered oseltamivir initiators (i.e., those who began using
oseltamivir after the date of their diagnosis were considered
noninitiators) (37). We conducted sensitivity analyses to
examine the impact of misclassification of our exposure
assignment. The primary risk period for assessing compli-
cations was days 1–30 following influenza diagnosis.

We defined a negative control risk period as one during
which there was no expected biological effect of oseltamivir
on influenza complications. We followed individuals from
the 61st day after the date of influenza diagnosis to the 90th
day after diagnosis, using the same censoring criteria as for
the primary risk period. In the negative control analyses,
individuals with an outcome occurring before day 61 were
included (i.e., allowing recurrent outcomes) so that persons
in the negative control risk period would be as similar as
possible to those in the primary risk period (23), minimizing
selection bias (38). Individuals lost to follow-up prior to
day 61 due to disenrollment from medical or drug cov-
erage or death were excluded from these analyses. If an
individual was diagnosed with influenza towards the end
of each season, follow-up continued past the season’s end
date. We chose a buffer period of 30 days between primary
risk periods (days 1–30) and negative control risk periods
(days 61–90) to avoid potential carryover of oseltamivir
action.

We ended follow-up on the earliest of the following:
the end of the risk period, disenrollment from medical or
pharmacy coverage, or death.

Confounding control

For each seasonal cohort, we estimated propensity scores
separately using multivariable logistic regression, predicting
oseltamivir initiation (versus noninitiation) based on mea-
sured confounders (39). Our aim was to include in the model
conditions that are associated with a high risk of influenza
complications, as defined by the Infectious Diseases Society
of America (22). Covariates we included for the primary and
negative control risk periods were demographic characteris-
tics, calendar year of cohort entry, chronic comorbid con-
ditions, concomitant medications, immunosuppression (use
of steroids or immunosuppressive drugs or human immun-
odeficiency virus/acquired immunodeficiency syndrome),
smoking, obesity, frailty indicators (to account for functional
decline in older adults) (40), score on a Charlson/Elixhauser
combined comorbidity index (41), and measures of health-
care utilization (mean number of ambulatory, emergency
room, inpatient, and non–acute-care institutional encoun-
ters; medication dispensings). We defined these confounders
on the basis of at least 1 relevant diagnosis, procedure, or
dispensing during the 365 days prior to and including the
influenza diagnosis date (see Web Tables 5 and 6).

Statistical analyses

We matched oseltamivir initiators and noninitiators one-
to-one by PS using nearest-neighbor matching within the
specified caliper of 0.01 on the probability scale of the
PS (42). The balance of measured covariates between the
exposed and unexposed was assessed by standardized mean
differences; a value less than 0.1 was considered adequate
balance (42). We examined plots of the PS distributions
between the exposed and unexposed before and after match-
ing.

Crude (unmatched) and PS-matched risk ratios (RR)
comparing oseltamivir initiators with noninitiators were esti-
mated via log-binomial regression. We estimated the cumu-
lative incidence of the outcome from day 1 of follow-up
to day 90, using the Kaplan-Meier estimator within the
PS-matched population.

We studied the potential impact of exposure misclassifi-
cation on our estimates using quantitative bias analysis for
nondifferential and differential misclassification (43, 44).
We estimated expected RRs that would be obtained if mis-
classification error was corrected based on presumed bias
parameters (sensitivity and specificity of misclassification).
We used study data to inform the parameters by examining
the proportion of patients identified as noninitiators who
initiated oseltamivir use after their index date.

To increase the precision of estimates, we examined the
negative control outcome of fracture over 90 days following
influenza diagnosis. We also examined heterogeneity of RRs
by age group (18–49, 50–64, or ≥65 years) and by having
an influenza test (for hospitalization and fracture outcomes
only) within 7 days prior to or on the date of influenza diag-
nosis. In all subgroup analyses, we used the PS estimated
in the whole cohort, but matching was re-performed within
each subgroup (45, 46).
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RESULTS

Before PS matching, we identified 206,238 oseltamivir
initiators and 160,929 noninitiators during the 2014–2015
influenza season for the pneumonia hospitalization out-
come (Table 1). During the later seasons with milder sever-
ity, there were fewer numbers: 95,962 oseltamivir initiators
and 88,246 noninitiators for the 2015–2016 season and
197,632 oseltamivir initiators and 152,848 noninitiators for
the 2016–2017 season. The number of individuals identi-
fied per cohort, per season, varied by outcome because of
differences in eligibility/washout criteria (Tables 2–4). (The
number of Sentinel Data Partners contributing to each season
varied because the PS models did not converge at some sites.
Eleven Data Partners contributed to the 2014–2015 season, 9
to the 2015–2016 season, and 12 to the 2016–2017 season.)

The mean age of individuals in the cohorts was 49–56
years (standard deviations, 14–15) across the seasons. The
proportion of older patients (age ≥65 years) was 32%–40%
before PS matching. Across seasons and risk periods, before
PS matching, oseltamivir initiators (as compared with non-
initiators) tended to be younger, to have a lower burden
of cardiovascular and chronic pulmonary disorders, to have
lower combined comorbidity scores, to have less prior use of
an ambulance service or life support (an indicator of frailty),
and to have more prior vaccination and influenza testing.
Characteristics of the cohorts varied by season before PS
matching. Prior to PS matching, the average age of the
oseltamivir initiators was younger in the later, milder sea-
sons than in 2014–2015. Patients in the later seasons were
also less likely to be White and tended to have lower preva-
lence of selected comorbid conditions (e.g., cardiovascular
disease, diabetes) prior to matching.

Covariate differences were reduced after PS matching,
with all standardized differences being less than 0.1 across
seasons, risk periods, and outcomes. Tables of baseline char-
acteristics were generated for each outcome, season, and risk
period. An example of the baseline characteristics before
and after PS matching for one of the analyses is shown in
Table 1. Distribution patterns of baseline covariates before
and after matching among persons remaining at the start
of the negative control period were similar to those at the
beginning of the primary risk period. Web Figures 1–6
show the standardized differences for the covariates for all
analyses.

Table 2 shows the results for the 2014–2015 influenza
season. We observed a decreased risk of pneumonia among
oseltamivir initiators versus noninitiators in 2014–2015,
with an adjusted RR of 0.72 (95% confidence interval (CI):
0.70, 0.75). During the negative control risk period, the
RR was near-null (RR = 1.04, 95% CI: 0.95, 1.15). We
observed a reduced risk of all-cause hospitalization events
among oseltamivir users versus non–oseltamivir users, with
an adjusted RR of 0.54 (95% CI: 0.53, 0.55), which was null
in the negative control risk period (RR = 0.94, 95% CI: 0.91,
0.98). The adjusted RR for the antibiotics outcome was 1.03
(95% CI: 1.00, 1.05) in the primary risk period, though it was
further from the null in the negative control period (RR =
1.14, 95% CI: 1.08, 1.21). The adjusted RR for fracture in
days 1–30 was 1.09 (95% CI: 0.99, 1.20).

The 2015–2016 season had similar though attenuated
results for the primary risk period (Table 3). The negative
control risk period estimates during this mild season were
generally biased away from the null, though they were based
on smaller numbers: RR = 0.89 (95% CI: 0.66, 1.20) for
pneumonia and RR = 0.70 (95% CI: 0.64, 0.77) for hospital-
ization. The 2016–2017 season results (Table 4) were more
similar to those of 2014–2015 in the primary risk period and
the negative control risk period, with the exception being the
PS-matched RR for pneumonia in the negative control risk
period, which was 0.74 (95% CI: 0.65, 0.85). Associations
for fractures were consistently near the null across all sea-
sons for both the day 1–30 and day 1–90 analyses. Kaplan-
Meier cumulative risk functions were consistent with these
findings for all analyses (Web Figures 7–13).

Results of the subgroup analyses stratified by age varied
according to season and7 outcome (data not shown). The
2014–2015 results were generally similar across age groups.
For fractures, results were null in the oldest age group (≥65
years), which is the subgroup most likely to experience
fractures. For the other 2 seasons, results varied more by age
and outcome.

The subgroup analysis for persons with and without an
influenza test—performed for all-cause hospitalization and
fractures only—also yielded results that varied by season
and outcome and by test status (Web Tables 7–12). We
hypothesized that persons treated with oseltamivir and those
not treated would be more comparable among the untested,
since other investigators have reported that among those
tested for influenza, people who were not treated were
more likely to have tested negative or to have had a later
symptom onset (47). Among persons not tested, the results
were similar to the main analyses for the 2014–2015 and
2016–2017 seasons.

Assuming nondifferential exposure misclassification and
assuming that 15% of the unexposed were in fact exposed,
we estimated expected RRs similar to those originally
observed (Web Table 13). Estimates were similar even when
assuming 10% misclassification among the exposed con-
currently with 15% misclassification among the unexposed
(Web Table 14). When we assumed that such exposure mis-
classification occurred only among persons who developed
the outcomes or those who did not have an outcome—for
example, patients who had such misclassification were at
higher risk of the outcomes than those who did not and vice
versa—some meaningful differences were found between
observed and expected estimates, though they were not
consistently seen across the outcomes by risk window and
season (Web Tables 15 and 16).

DISCUSSION

The negative control results from this study suggested
minimal residual confounding for pneumonia and all-cause
hospitalization outcomes during the relatively severe 2014–
2015 season, while associations during the mildest sea-
son studied, 2015–2016, suggested residual confounding
or potential modification of effect estimates by influenza
season. The negative control outcome of fractures suggested
adequate control of confounding from sources related to
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frailty (16, 17). Associations for antibiotic dispensings, on
the other hand, suggested potential residual confounding by
indication due to respiratory tract infections or influenza
disease severity. The 2016–2017 season results were similar
to those of 2014–2015 except for evidence of residual con-
founding for the pneumonia outcome. Our study highlights
how negative control analyses could be used to evaluate con-
founding control in observational studies based on electronic
health-care data, especially when there is no suitable active
comparator.

Our findings in the primary risk periods were consis-
tent with meta-analyses and pooled analyses of randomized
clinical trials, which reported RR estimates of 0.5–0.7 for
pneumonia and 0.3–0.9 for hospitalization in both total trial
populations and influenza-infected populations of oseltami-
vir use versus placebo (3, 32, 48). The population captured
within Sentinel is more diverse and inclusive of patients
with high-risk conditions and severe comorbidity—patients
typically excluded from clinical trials. Pneumonia and lower
respiratory tract complications in trials were mostly self-
reported and not clinically confirmed, while our claims-
based outcomes were specified on the basis of definitions
with high reported specificity, which reduces misclassifica-
tion bias (44).

Researchers in prior observational, claims-based studies
also reported protective associations between oseltamivir
and these outcomes, although with higher variability: RRs
for pneumonia ranged from 0.5 to 0.8 and those for hospi-
talization ranged from 0.3 to 0.7 (5–11, 13). Several studies
utilized a never-user comparison group and were suscepti-
ble to healthy-user bias or confounding due to underlying
indications or frailty (15–17, 49).

Evaluating confounding control

To our knowledge, our study is the first to have evalu-
ated confounding control in estimation of influenza antiviral
effectiveness by utilizing negative control risk periods. A
study by Jackson et al. (19) showed that influenza vac-
cine studies suffer from confounding due to underlying
frailty/health status, since the vaccine appeared to reduce
mortality risk outside of the influenza seasons, especially in
older adults.

In the negative control period analyses, we conducted
analyses in the same individuals but during periods when the
exposure was not expected to biologically alter the outcome
risk. Therefore, if confounding control in the primary risk
periods was sufficient, we should have observed null esti-
mates in the negative control periods. Given our relatively
young (mean age = 40–50 years) and healthy populations
with outpatient influenza diagnoses, time-varying confound-
ing over 3 months with respect to frailty, behavioral risk
factors, or comorbidity is likely to have been minimal (40,
50, 51).

One potential limitation of the use of negative control risk
periods is the dropout of people prior to the start of the nega-
tive control period due to death or health-plan disenrollment.
We retained people who had an earlier event in our negative
control analyses, since excluding them could have intro-
duced selection bias. Our findings indicated that approxi-
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mately 5% of the original cohort died or disenrolled from
their health plans prior to the beginning of negative control
periods (days 61–90), and the distributions of baseline char-
acteristics of patients at the beginning of the negative control
period were very similar to those in the original cohort. One
downside of including recurrent outcomes (i.e., not exclud-
ing patients with events prior to the negative control period)
is that risk factors for recurrent outcomes versus first-time
outcomes might be different. We used a buffer period of 30
days between the primary (days 1–30) and negative control
(days 61–90) periods to reduce any potential downstream
effect of interventions during the primary risk period.

Seasonal variation in estimates

We adjusted for confounding separately within each sea-
son. During milder influenza seasons, particularly 2015–
2016, the adjusted RRs for pneumonia and hospitalization
did not reach the null in the negative control period,
which could indicate heterogeneity of effect estimates due
to influenza severity or increased potential for bias during
milder seasons. In milder seasons, influenza patients might
be more selectively prescribed oseltamivir, such that under-
lying differences between the cohorts with respect to disease
severity or underlying health status might be greater for
milder seasons (24, 49).

The standardized mean differences prior to matching for
age, White race, and some major comorbid conditions were
indeed larger in the later seasons (Web Figures 1–6). This
larger degree of measured confounding might imply larger
unmeasured confounding, perhaps explaining some of the
negative control estimates in the later seasons’ being away
from the null. Propensity scores were generally higher in the
2014–2015 season, but the degree of overlap between the
prematched cohorts was approximately similar across the
seasons (Web Figures 14–16). Smaller cohort sizes in milder
seasons are yet another factor that could explain the findings.
Alternatively, misclassification of cohort identification may
have been higher during the mild seasons.

Estimates for the antibiotic dispensing outcome showed
less seasonal variation and were consistently near-null
across seasons for the primary risk period. Estimates during
the negative control periods were slightly biased away from
the null, suggesting slight confounding by indication. In a
prior study, Nordstrom et al. (6) reported an RR of 0.9 for the
impact of oseltamivir treatment on antibiotic dispensings,
which was close to our results. We used a combination
algorithm of a symptom for lower respiratory tract infection
and an antibiotic dispensing to define the outcome, though
we may have captured some prophylactic antibiotic use,
since antibiotic dispensings might reflect provider and
patient preferences (17, 49). Results for the negative control
outcome of fracture were consistently near-null, suggesting
that frailty was not likely to be a major source of residual
confounding in our primary outcome estimates.

Other strengths and limitations

Strengths of our large-scale study include the use of real-
world populations from diverse health-care settings and data

sources. We employed multiple negative control analyses to
examine the ability to detect residual confounding in studies
of antiviral drug use in electronic health-care data, which
is especially relevant in times of epidemics and pandemics.
Our utilization of a new-user study design avoided selection
bias due to left-truncation and the healthy user bias that
might occur with other study designs, and restriction to new
influenza diagnoses also probably reduced the potential for
confounding by influenza disease severity (17, 52, 53).

Our findings should be interpreted in the context of the
study’s limitations. Date of symptom onset is not captured
in health insurance claims data (or structured medical record
data). Therefore, the noninitiators may have had a longer
duration of illness prior to the health-care visit at which
they were diagnosed, since oseltamivir initiation is generally
indicated within 2 days after symptom onset. Given that
oseltamivir is most effective within 2 days of symptom
onset, our intention was to identify initiation as close to
symptom onset as possible; we used an intention-to-treat
exposure definition, in which only those who were dispensed
oseltamivir on the day of diagnosis were considered initia-
tors (37). We found that up to 15% of noninitiators eventu-
ally initiated oseltamivir after the index date in our data, and
our bias analyses (Web Tables 13 and 14) showed that the
RRs that were adjusted for this potential exposure misclas-
sification were close to the primary RRs. We additionally
examined the scenarios in which exposure misclassification
was differential: 1) only among patients who developed the
outcome and 2) only among those who did not develop the
outcome. While such scenarios showed different expected
estimates from the observed ones (Web Tables 15 and 16),
these scenarios were relatively extreme and may not have
reflected the real-world scenarios.

We used influenza-specific diagnosis codes to identify
cohorts, and a prior Sentinel study demonstrated that trends
in the dispensing of influenza antiviral agents align well
with Centers for Disease Control and Prevention influenza
surveillance data (54). By relying on diagnosis codes, we
may have captured some people without true influenza infec-
tion and may have missed some who did have true infection.
Perhaps because of the specific nature of the influenza
codes we used, a large proportion (50%–55%) of patients
in our study were prescribed oseltamivir—a much higher
proportion than previously reported (approximately 10%–
30%) (4–6, 8, 10, 11).

We used very specific definitions to identify influenza
complication outcomes, since highly specific outcomes have
been shown to have less biased RR estimates with respect
to misclassification (30, 36, 44). We examined the trends
in ICD-9-CM and ICD-10-CM diagnosis codes over time to
examine whether coding changes affected the validity of out-
come assessment and did not detect any significant changes
in these trends across the coding transition (data not shown).

Conclusion

Our multidatabase cohort study suggests adequate con-
founding control for some but not all outcomes in an evalua-
tion of the association between oseltamivir use and influenza
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complications, with variation by influenza season. Nega-
tive controls should be used to evaluate the presence of
confounding in observational studies of drug safety and
effectiveness when there is a high potential for unmeasured
confounding.
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