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ABSTRACT
We present redshift-zero synthetic dust-aware observations for the 45 Milky Way-mass simulated galaxies of the ARTEMIS
project, calculated with the SKIRT radiative transfer code. The post-processing procedure includes components for star-forming
regions, stellar sources, and diffuse dust. We produce and publicly release realistic high-resolution images for 50 commonly-used
broadband filters from ultraviolet to sub-millimetre wavelengths and for 18 different viewing angles. We compare the simulated
ARTEMIS galaxies to observed galaxies in the DustPedia database with similar stellar mass and star formation rate, and to
synthetic observations of the simulated galaxies of the Auriga project produced in previous work using a similar post-processing
technique. In all cases, global galaxy properties are derived using SED fitting. We find that, similar to Auriga, the post-processed
ARTEMIS galaxies generally reproduce the observed scaling relations for global fluxes and physical properties, although dust
extinction at FUV/UVwavelengths is underestimated and representative dust temperatures are lower than observed. At a resolved
scale, we compare multi-wavelength non-parametric morphological properties of selected disc galaxies across the data sets. We
find that the ARTEMIS galaxies largely reproduce the observed morphological trends as a function of wavelength, although they
appear to be more clumpy and less symmetrical than observed. We note that the ARTEMIS and Auriga galaxies occupy adjacent
regions in the specific star formation versus stellar mass plane, so that the synthetic observation data sets supplement each other.
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1 INTRODUCTION

The plethora of data produced by current and planned earth-based ob-
servatories and space missions enable an exceedingly detailed study
of cosmic structure, and in particular of the assembly and evolution
of galaxies. One important method that helps us uncover and make
sense of the physical mechanisms underlying galaxy formation is to
emulate those processes in computer simulations. The most compre-
hensive simulations evolve dark and baryonic matter in a cosmolog-
ically relevant volume from initial conditions at high redshift to the
present day (for a review, see Vogelsberger et al. 2020a), employ-
ing subgrid recipes for unresolved processes such as star formation,
stellar feedback, and chemical evolution. Recent examples include
EAGLE (Crain et al. 2015; Schaye et al. 2015), MassiveBlack-II
(Khandai et al. 2015), Romulus25 (Tremmel et al. 2017), SIMBA
(Davé et al. 2019), and Illustris-TNG50 (Pillepich et al. 2019; Nel-
son et al. 2019). These simulations succeed in reproducing many
observed global galaxy properties to a fair degree, including for ex-
ample stellarmass functions, galaxy sizes,mass-metallicity relations,
star formation relations, passive fractions, and gas contents (see the
references listed above for each simulation project).
The resolution of cosmological simulations is necessarily lim-
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ited by the available computational resources. Smaller simulation
volumes allow a somewhat better resolution but reproduce fewer
massive structures and rare objects. Using an alternate approach,
cosmological zoom simulations focus on a limited portion of a larger
simulation volume, for example the contents of a single dark matter
halo, to achieve baryon mass resolutions down to around 104 M� .
Recent examples include NIHAO (Wang et al. 2015), APOSTLE
(Sawala et al. 2016), Latte (Wetzel et al. 2016), Auriga (Grand et al.
2017), RomulusC (Tremmel et al. 2019), and ARTEMIS (Font et al.
2020, 2021). Each resolution element now has a mass at the upper
end of the observed molecular cloud mass range, implying that fur-
ther resolution improvements will likely need to be accompanied by
enhanced subgrid recipes to better capture the physical processes on
these smaller scales.

To increase the accuracy of future simulation efforts, and thus
improve our understanding of the emulated physics, a detailed com-
parison of simulation results to observations is required. Comparing
simulation results to observations, however, is often tricky. Simula-
tions yield intrinsic galaxy properties such as mass, age, metallicity,
or star formation rate (SFR) by aggregating the corresponding prop-
erties of the particles or cells used to represent physical constituents.
Observations, on the other hand, yield multi-wavelength fluxes and
spectra which are integrated along the line of sight and thus provide a
two-dimensional projection of the galaxy under study. The observed
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2 Camps et al.

radiation is often significantly altered by the effects of dust grains in
the interstellar medium (ISM) (e.g., Viaene et al. 2016) and depends
non-linearly on the complex geometry of the galaxy (e.g., Saftly et al.
2015). As a result, deriving intrinsic properties from the observed
data always involves some form of conversion that relies on approx-
imating assumptions (e.g., Kennicutt & Evans 2012; Courteau et al.
2014).
Alternatively, one can bring the simulation output into the obser-

vational realm through forward modelling. In addition to assigning
appropriate emission spectra, this requires simulating transport of
the radiation through the ISM, including the scattering, absorption
and re-emission by dust grains. This can be accomplished using ra-
diative transfer (RT) codes such as Grasil3D (Domínguez-Tenreiro
et al. 2014), Hyperion/Powderday (Robitaille 2011; Narayanan et al.
2021), or SKIRT (Baes et al. 2011; Camps & Baes 2015, 2020).
While this approach obviously also relies on approximations, it offers
important benefits. It allows incorporation of a wide range of physics
into themodel, including for example the detailed distribution of stars
and dust in the simulated galaxy. The synthetic observables resulting
from the model can be directly compared to observed data and can
be processed or visualised using any of the tools commonly used
to interpret observations. This includes deriving estimates for the
physical properties from the synthetic observations, which can help
evaluate the employed recipes by comparison to the known intrinsic
properties of the simulated galaxies.
In the past decade, many authors have taken this route to gener-

ate synthetic observables for cosmological (zoom) simulations (e.g.,
Jonsson et al. 2010; Lanz et al. 2014; Granato et al. 2015; Bignone
et al. 2016; Camps et al. 2016; Trayford et al. 2017; Santos-Santos
et al. 2017; Lahén et al. 2018; Gjergo et al. 2018; Barber et al. 2018;
Narayanan et al. 2018; Rodriguez-Gomez et al. 2019; Ma et al. 2019;
Cochrane et al. 2019; Liang et al. 2019; Vogelsberger et al. 2020b;
Parsotan et al. 2021; Lovell et al. 2021; Granato et al. 2021). Some
also prepare data sets for public use. For example, Camps et al.
(2018) publish spatially integrated UV to submm broadband fluxes
for nearly half a million of EAGLE galaxies up to redshift 6. More
recently, Trčka et al. (2021) offer a similar data set for the Illustris-
TNG50 galaxies, and Kapoor et al. (2021) provide high-resolution
broadband images for 30 present-day Auriga zoom galaxies.
In this work we consider the recent ARTEMIS project (Font et al.

2020, 2021), encompassing 45 zoom simulations ofMilkyWay-mass
dark matter mass haloes performed using the EAGLE cosmological
simulation code (Crain et al. 2015; Schaye et al. 2015).We use SKIRT
version 9 (Camps & Baes 2020) to produce synthetic observations at
redshift zero for the main galaxy in each of the haloes, with a stellar
mass ranging from 1 to 9 × 1010 M� . We calibrate our RT post-
processing scheme by comparing to observed galaxies with similar
stellar mass and SFR from the DustPedia data set (Clark et al. 2018),
a large sample of nearby galaxies with matched aperture photometry
in more than 40 bands from UV to millimetre wavelengths. For each
ARTEMIS galaxy, we publish highly resolved images (50 × 50 pc
pixels) observed for 18 sight lines through 50 commonly used broad-
band filters spanning ultraviolet (UV) to sub-millimetre (submm)
wavelengths.
Our setup and procedures are nearly identical to those employed

by Kapoor et al. (2021) for producing synthetic observations of
the galaxies in the Auriga project (Grand et al. 2017). The latter
project comprises 30 zoom simulations of isolated Milky Way-mass
dark matter haloes, selected from a dark-matter-only simulation and
evolved to redshift zero in a full cosmological context including
baryon physics. The main galaxy in each halo has a stellar mass in
a range of 3 to 11 × 1010 M� . Although the Auriga and ARTEMIS

mass ranges are similar, the Auriga galaxies are more massive on
average and nearly all of them are spiral galaxies because of the em-
ployed selection criteria. The ARTEMIS galaxies show a much more
diverse morphology and occupy a different region in the specific star
formation rate (sSFR) versus stellar mass plane.
As a result, the data set for ARTEMIS prepared in this work com-

plements and augments the data set prepared by Kapoor et al. (2021)
for Auriga in several ways. The number of simulated galaxies for
which high-resolution and multi-wavelength synthetic observables
are made available is more than doubled, from 30 to 75. The stellar
mass range is extended downwards and more diverse morphology
types are included, so that the combined data set allows studying
simulated galaxy properties, scaling relations and dust heating on
resolved scales for a wide range of Milky Way-mass galaxies. It
thus becomes possible to compare spatially resolved properties of
the ARTEMIS and the Auriga galaxies with observations and among
each other, leading to a better understanding of how well each simu-
lation reproduces reality and why.
In Sect. 2 we briefly describe the cosmological simulations, the

observed data, and the software codes used in this work. In Sect. 3
we review our RT post-processing procedure, discuss the calibra-
tion of the associated parameters, and list the data products being
made available as a result. In Sect. 4 we then offer an initial analysis
of these synthetic observables, including global physical properties
derived by SED fitting using CIGALE (Boquien et al. 2019) and
non-parametric morphology properties calculated from the spatially
resolved images at several wavelengths using StatMorph (Rodriguez-
Gomez et al. 2019). We compare these properties to those of similar
observed DustPedia galaxies and simulated Auriga galaxies, and dis-
cuss the implications. In Sect. 5 we summarise and conclude.

2 BACKGROUND

2.1 ARTEMIS

The ARTEMIS project includes a set of 45 zoomed-in, high-
resolution hydrodynamical simulations of galaxies residing in haloes
of Milky Way mass, 42 of them presented by Font et al. (2020) and
3 more by Font et al. (2021). The baryon mass resolution is about
3× 104 M� . The simulations are performed with the EAGLE galaxy
formation code (Crain et al. 2015; Schaye et al. 2015) using the same
solvers and subgrid physics except for a re-calibrated stellar feedback
recipe. The simulation setup is fully described by Font et al. (2020)
and references therein; we provide just a brief summary here.
The MUSIC code (Hahn & Abel 2011) is used to generate initial

conditions at redshift 127 for a flat ΛCDM WMAP9 cosmology
(Hinshaw et al. 2013) in a periodic box 25Mpc on a side. This volume
is then evolved to redshift zero using collisionless dynamics. From
the completed simulation a volume-limited sample is selected of all
63 haloes within a mass range of 8 × 1011 < 𝑀200/M� < 2 × 1012,
where 𝑀200 is the mass enclosing a mean density of 200 times the
critical density at redshift zero. The selection is based solely on halo
mass with no conditions on the merger history or environment.
For 45 of the selected haloes, hydrodynamic zoom simulations

are performed using full baryonic physics at high resolution within
a region enclosing twice the halo radius, and using dark-matter-only
dynamics at lower resolution in the remainder of the volume. The
EAGLE code employed to run the zoom simulations is a modified
version of the N-body smoothed particle hydrodynamics (SPH) code
GADGET-3 (Springel 2005). It provides subgrid models of impor-
tant processes that cannot be resolved directly in the simulations,
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Synthetic UV-submm images for ARTEMIS 3

including metal-dependent radiative cooling, star formation, stellar
evolution and chemodynamics, black hole formation and growth,
stellar feedback, and active galactic nucleus (AGN) feedback. Star
formation assumes the Chabrier (2003) initial mass function (IMF).
The efficiency of the stellar feedback in the main EAGLE runs

presented in Schaye et al. (2015) was fine-tuned to approximately
reproduce the local galaxy stellar mass function and the size-stellar
mass relation of disc galaxies. However, with increased numerical
resolution, the efficiency of stellar feedback needs to be re-adjusted
to recover the good match to the calibration observables. Because
the resolution of the ARTEMIS simulations is about 7 times better
than the finest mass resolution in the main EAGLE runs, stellar
feedback efficiency was recalibrated by increasing the value of the
density where the efficiency of stellar feedback transitions to its
maximal value. In the EAGLE stellar feedback model, the fraction of
available stellar energy used for feedback is modelled with a sigmoid
function of density (and metallicity). This function asymptotes to
fixed values at low and high densities, such that a higher fraction
of the available energy is used at high densities in order to offset
spurious (numerical) radiative cooling losses. As we increase the
resolution of the simulations, the density scale at which numerical
losses become important increases, motivating an increase in the
transition density scale used for stellar feedback in ARTEMIS. The
transition density scale was adjusted by hand so that the simulations
reproduce the amplitude of the stellar mass – halo mass relation at a
halo mass scale of about 1012 M� (see Fig. 2 of Font et al. 2020). In
addition, the observed sizes and star formation rates of these systems
were also reproduced, without any explicit calibration to match those
quantities (see the same figure).
In this work, we consider the central galaxy (i.e. the most massive

object) in the redshift-zero snapshot for each of the 45 ARTEMIS
haloes, excluding any satellites or other secondary objects. Where
applicable, we indicate particular galaxies using the same identifiers
as introduced by Font et al. (2020, G1–G42) and Font et al. (2021,
G43–G45).

2.2 Auriga

The Auriga project (Grand et al. 2017) includes a set of cosmologi-
cal magneto-hydrodynamical zoom simulations of the formation of
galaxies in isolated Milky Way mass dark haloes. The baryon mass
resolution for the 30 simulations at the standard (level 4) resolution
considered here is about 5 × 104 M� . The simulation setup is fully
described by Grand et al. (2017) and references therein; we provide
just a brief summary here.
The starting point for the zoom simulations is a dark-matter-only

counterpart to the 100 Mpc-box Eagle simulation (L100N1504) in-
troduced in (Schaye et al. 2015) and adopting ΛCDM cosmological
parameters taken fromPlanck Collaboration et al. (2014). This parent
simulation is evolved from redshift 127 to the present day. The linear
phases for the parent simulation, and for all of the zoom simulations,
are taken from the public Gaussian white noise field realisation,
PANPHASIA (Jenkins 2013).
Host haloes are selected from the parent simulation through amass

cut criterion of 1×1012 < 𝑀200/M� < 2×1012 and the requirement
that each candidate halo be relatively isolated at redshift zero. The
degree of isolation is estimated, roughly speaking, by the distance
to other haloes in the simulation relative to the virial radius of each
candidate halo. From the total of 697 haloes in the chosenmass range,
174 are in the most isolated quartile, and 30 of those are randomly
selected for re-simulation.
The zoom simulations are performed with the N-body, magneto-

hydrodynamics (MHD) moving mesh code AREPO (Springel 2010),
equipped with a comprehensive physics model containing subgrid
recipes for processes that cannot be resolved. These recipes are sim-
ilar to those employed in ARTEMIS, also assuming the Chabrier
(2003) IMF, but differ in many details. We summarise the more rel-
evant ones. (1) The cold gas is not modelled in either simulation. To
prevent spurious fragmentation, ARTEMIS imposes a temperature
floor corresponding to the equation of state 𝑃 ∝ 𝜌4/3. Auriga im-
plements the two phase model introduced by Hernquist & Springel
(2003). (2) ARTEMIS uses a metallicity-dependent star formation
threshold, while Auriga employs a fixed threshold. (3) ARTEMIS
implements stochastic thermal feedback from core-collapse super-
novae; the feedback efficiency is mediated using metallicity and
density-dependent factors. Auriga implements core-collapse super-
novae feedback by launching wind particles that travel away from
the originating site with a given velocity. The energy is deposited
once certain criteria are met (Marinacci et al. 2015). (4) ARTEMIS
provides a single mode of AGN feedback with a fixed efficiency. The
energy is injected thermally at the location of the black hole at a rate
that is proportional to the gas accretion rate. This is similar to Au-
riga’s quasarmode. Auriga includes separate quasar and radiomodes.
For the quasar mode, the thermal energy is injected isotropically into
neighboring gas cells. For the radio mode, bubbles of gas are gently
heated at randomly placed at locations following an inverse square
distance profile around the black hole.
In addition, the Auriga simulations include prescriptions for mag-

netic field evolution. In the halo investigated by van de Voort et al.
(2021), the central galaxy is more disc-dominated and the central
black hole is more massive when magnetic fields are included. Also,
the physical properties of the circumgalactic medium (CGM) change
significantly. On the other hand, the global galaxy properties includ-
ing stellar mass and SFR remain essentially unaffected.
In this work, we indirectly use the Auriga simulation results

through the synthetic observations prepared by Kapoor et al. (2021)
for the main galaxy in each of the 30 haloes.

2.3 DustPedia

The DustPedia project (Davies et al. 2017) combines observations
from the Herschel and Planck missions and several other sources to
study dust and dust-related processes in local galaxies. One outcome
of the project is a public data set providingmatched aperture photom-
etry in more than 40 bands from UV to millimeter wavelengths for
a sample of 875 nearby galaxies at distances up to ≈40 Mpc (Clark
et al. 2018).
Casasola et al. (2020) study ISM scaling relations for the galaxies

in the DustPedia data set. They report that the selection and uniform
treatment of the DustPedia data leads to a complete and homoge-
neous galaxy sample covering a broad dynamic range of various
physical properties, including stellar mass, SFR, and morphological
stage. This makes the DustPedia data set ideally suited to put con-
straints on cosmological simulations predicting ISM properties and
scaling relations. For example, Trčka et al. (2020) compare the global
properties and scaling relations of galaxies produced by the EAGLE
simulations to those observed for the DustPedia galaxies.
Kapoor et al. (2021) use the DustPedia data set to calibrate their

RT post-processing recipe for the simulated Auriga galaxies, and
subsequently compare selected scaling relations and morphological
properties between simulations and observations. In this work, we
follow in their path for the RT post-processing of the ARTEMIS
galaxies.

MNRAS 000, 1–23 (2021)
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2.4 SKIRT

The SKIRT code1 (Baes et al. 2011; Camps & Baes 2015, 2020) is
a fully three-dimensional Monte Carlo dust RT code equipped with
a library of flexible input models (Baes & Camps 2015), routines to
import the output from various kinds of hydrodynamical simulations
(Camps & Baes 2015), a module handling stochastic heating and
emission of dust grains (Camps et al. 2015), and a hybrid paralleliza-
tion strategy (Verstocken et al. 2017; Camps & Baes 2020). A range
of advanced spatial grids for discretizing the medium is implemented
in SKIRT, including methods to efficiently traverse photons through
these grids (Camps et al. 2013; Saftly et al. 2013, 2014).
SKIRT has been extensively used to generate synthetic UV to

submm broadband images, spectral energy distributions and polari-
sationmaps for idealised galaxies (e.g., Baes et al. 2003; Gadotti et al.
2010; De Geyter et al. 2014; Lee et al. 2016; Peest et al. 2017), for
high-resolution 3D galaxy models (e.g., De Looze et al. 2014; Ver-
stocken et al. 2020; Nersesian et al. 2020a,b; Viaene et al. 2020), and
for galaxies extracted from cosmological simulations (e.g., Saftly
et al. 2015; Camps et al. 2016, 2018; Trayford et al. 2017; Liang
et al. 2018; Behrens et al. 2018; Lahén et al. 2018; Barber et al.
2018; Rodriguez-Gomez et al. 2019; Ma et al. 2019; Vogelsberger
et al. 2020b; Parsotan et al. 2021; Granato et al. 2021; Kapoor et al.
2021).
In this work we use SKIRT version 92 to produce synthetic ob-

servations for the ARTEMIS galaxies, after extracting the relevant
information from the simulation snapshots through straightforward
Python procedures. The full procedure and configuration details are
discussed in Sect. 3.

2.5 CIGALE

The CIGALE SED fitting code (Noll et al. 2009; Boquien et al. 2019)
incorporates stellar, nebular, dust emission and dust attenuation. It
contains an implementation of a delayed and truncated star-formation
history (SFH) (Ciesla et al. 2016), Bruzual & Charlot (2003) simple
stellar population (SSP) libraries, the modified Calzetti et al. (2000)
attenuation law, and several dust models.
In this work we use CIGALE version 0.12.1 to estimate global

physical properties such as stellar mass, dust mass and SFR from
the available broadband fluxes for the various data sets under study,
i.e. the ARTEMIS, Auriga and DustPedia galaxies. This allows us to
compare the properties of simulated and observed galaxies on equal
footing. We therefore use the same parameter settings in all cases.
Specifically, followingKapoor et al. (2021), we employ the settings

used by Bianchi et al. (2018), Nersesian et al. (2019) and Trčka et al.
(2020), including the THEMIS dust model (Jones et al. 2017) which
we also use in our RT post-processing procedure (see Sect. 3), except
that we specify the Chabrier (2003) IMF for SSPs, consistent with
the IMF used in the ARTEMIS and Auriga simulations. For our
analysis, we always use the properties corresponding to the most
probable ‘Bayes’ model determined by CIGALE.

1 The open-source SKIRT code is registered at the ASCL with the code
entry ascl:1109.003. Documentation and other information can be found at
www.skirt.ugent.be.
2 Specifically, git commit c70b6ef06ca5 in the master branch of the SKIRT
code hosted at www.github.com/SKIRT/SKIRT9

2.6 StatMorph

StatMorph (Rodriguez-Gomez et al. 2019) is a Python package
for calculating many commonly used non-parametric morphologi-
cal statistics of galaxy images, including the Gini-M20 (Lotz et al.
2004) and concentration-asymmetry-smoothness (CAS, Conselice
2003) statistics, and for fitting 2D Sérsic profiles. The code can han-
dle images with a single source each, which is the mode used in this
work, as well as large mosaic images with hundreds or thousands of
sources.
In this work we use the exact same procedure as Kapoor et al.

(2021) to obtain multi-wavelength sets of the elliptical half-light
radii and of the CAS indices for a subset of ARTEMIS disc galaxies.
This allows us to compare these morphological properties with those
already calculated by Kapoor et al. (2021) for similarly selected
Auriga galaxies and by Baes et al. (2020) for a set of well-resolved
DustPedia spiral galaxies.
The four statistics studied in this work are described in detail by

Rodriguez-Gomez et al. (2019) and references therein. We limit the
discussion here to a very brief summary.

• Half light radius (𝑅half/𝑅
opt
80 ): The half-light radius 𝑅half is

calculated as the elliptical radius of the isophote that contains half of
the light in the galaxy image. We normalise it with 𝑅opt80 , the radius of
a circular aperture containing 80% of the galaxy’s light in the Sloan
Digital Sky Survey (SDSS) 𝑔 band image.

• Concentration (C): The concentration index is defined as 5 ×
log10 (𝑅80/𝑅20), where 𝑅20 and 𝑅80 are the radii of circular apertures
containing 20% and 80% of the galaxy’s light, respectively. The index
is a measure of how concentrated the central region or bulge is with
respect to the total flux of the galaxy.

• Asymmetry (A): The asymmetry index is obtained by subtracting
the galaxy image rotated by 180◦ from the original image. Asym-
metry indicates merger events and interactions, or, in regular star-
forming galaxies, structures such as spiral arms.

• Smoothness (S): The smoothness index is computed by subtract-
ing a lower resolution version of the galaxy image from the original
galaxy image. It measures the presence of high spatial frequency
features; the index value increases with clumpiness.

3 METHODS

Our procedure for preparing synthetic observables of the simu-
lated ARTEMIS galaxies closely follows the procedure employed
by Kapoor et al. (2021) for the simulated Auriga galaxies, which is
in turn based on the procedure employed by Camps et al. (2016)
and Trayford et al. (2017) for the simulated EAGLE galaxies. This
similarity in approach makes the results comparable and allows the
combined Auriga and ARTEMIS results to be considered as a single,
consistent data set.

3.1 Extraction and choice of aperture

For each of the 45 ARTEMIS redshift-zero simulation snapshots, we
locate the dominant halo, i.e. the halo with the largest stellar mass
in its dominant sub-halo, and extract all star and gas particles from
that dominant sub-halo. This represents the galaxy of interest in the
zoom-in simulation. We do not include the other sub-halo’s of the
dominant halo, representing secondary structures bound to the main
galaxy, because these would only interfere with the analysis of the
main galaxy. We then transform the particle coordinates so that the
origin is in the stellar centre of mass and the 𝑧-axis coincides with the

MNRAS 000, 1–23 (2021)
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Synthetic UV-submm images for ARTEMIS 5

Table 1. The optimal global dust-to-metal ratio 𝑓dust found by Camps et al.
(2016) for the EAGLE simulations, by Kapoor et al. (2021) for the Auriga
simulations, and in Sect. 3.3 of this work for the ARTEMIS simulations, for
the two diffuse dust allocation recipes described in Sect. 3.2.3.

Allocation 𝑓dust 𝑓dust 𝑓dust
recipe EAGLE Auriga ARTEMIS

dC16 0.300 0.225 0.300
dT12 – 0.140 0.275

stellar rotation axis. As a sanity check, we verify that the intrinsic3
stellar masses within a spherical aperture of 30 kpc match the stellar
masses listed in Table 1 of Font et al. (2020).
We subsequently preserve only those particles with a position in-

side a spherical aperture with the largest of the following radii: the
30 kpc radius commonly used for EAGLE (Schaye et al. 2015), the
radius at which the face-on stellar surface density within ±10 kpc
of the mid-plane in the vertical direction falls to 2 × 105M� kpc−2
(following Kapoor et al. 2021), and 5 times the half-stellar-mass ra-
dius or 5RM50 (for optimal comparison with DustPedia observables;
see below). We call the largest of these radii the extraction aperture.
The spatial domain of the SKIRT simulation and the field of view
of the generated images are adjusted for each galaxy to enclose its
extraction aperture.
This approach allows calculating spatially integrated fluxes from

the generated images for any of the apertures listed above, or in fact
for any aperture up to the extraction aperture. However, the surface
brightness for each pixel, and thus the spatially integrated fluxes,
will always reflect the line-of-sight radiation across the complete
extraction volume. In other words, the smaller apertures are circular
(or cylindrical) rather than spherical.
Tests reported by Trčka et al. (2021) indicate that the 5RM50 ra-

dius offers the best match to the apertures in the DustPedia galaxy
sample. Therefore, all spatially integrated quantities shown and dis-
cussed in this work are calculated for that aperture. This includes
the luminosities used for recipe calibration, although the choice of
aperture does not seem to have a significant effect on the compar-
isons. Nevertheless, producing and publishing images with the full
extraction aperture (see Sect. 3.4.1) enables other studies, such as the
morphology calculations in Sect. 4.2, to compare with data sets that
use a different aperture definition.

3.2 Post-processing recipes

During the calibration phase, we explore and fine-tune several vari-
ations of our RT post-processing recipe, before finally settling on a
single fiducial recipe. We describe the recipe and its variations in
this section and report on the calibration results in Sect. 3.3.

3.2.1 Common procedures

In all cases, following Camps et al. (2016); Trayford et al. (2017);
Trčka et al. (2020); Kapoor et al. (2021), regular stellar particles
are assigned an SED from the Bruzual & Charlot (2003) template
library based on metallicity and age. Also, star-forming region (SF
region) particles (as defined in Sect. 3.2.2 below) are assigned an
SED from the MAPPINGS III (Groves et al. 2008) template library,

3 We use the adjective intrinsic to indicate a quantity obtained by simply
aggregating particle properties.
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Figure 1. SFR (top) and sSFR (bottom) versus stellar mass for the observed
DustPedia galaxies (physical properties obtained through SED fitting) and the
simulated ARTEMIS galaxies (intrinsic properties from snapshot particles)
used for calibrating our RT post-processing recipe. The selection criteria for
the calibration sample are discussed in Sect. 3.3.1.

which models the dust enveloping the core Hii region in addition to
the emission from the young stellar objects. Next to the metallicity,
this library requires parameters (ambient pressure, compactness and
dust covering fraction) that cannot be directly obtained from the
snapshot particle properties and thus require an appropriate heuristic
as described in Sect. 3.2.2.
Following recent work, including e.g. Nersesian et al. (2019,

2020a,b); Verstocken et al. (2020) for constructing 3D models of
nearby face-on galaxies and Kapoor et al. (2021) for post-processing
the Auriga galaxies, the diffuse dust in our RT simulations is in all
cases represented by the THEMIS dust model (Jones et al. 2017)
as opposed to the Zubko dust model (Zubko et al. 2004) used in
earlier work (e.g., Camps et al. 2016; Trayford et al. 2017). Where
Zubko et al. (2004) explicitlymodel polycyclic aromatic hydrocarbon
(PAH) molecules next to non-composite graphite and silicate grains,
the more recent THEMIS model is based on a mixture of amor-
phous hydrocarbons and amorphous silicates. Our tests indicate that,
compared to the Zubko model, for an otherwise fixed recipe, the
THEMIS model reduces the discrepancies between simulation and
observation in some wavelength regimes but introduces extra ten-
sion in other regimes. We explore these differences in more detail in
Appendix A.
An important part of our post-processing procedure is the trans-

formation from the sets of stellar and gas particles extracted from
an ARTEMIS snapshot to three distinct sets of particles presented to
the SKIRT code: SF regions, regular stellar particles, and particles
representing dust. We implement two distinct recipes for handling
SF regions, dubbed sC16 and sK21 (see Sect. 3.2.2), and two distinct
recipes for allocating the diffuse dust density distribution, dubbed
dC16 and dT12 (see Sect 3.2.3). We combine these into three differ-
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ent complete recipes for further calibration: sC16/dC16, sC16/dT12,
and sK21/dT12 (see Sect. 3.2.4).

3.2.2 Recipes for SF regions (sC16, sK21)

The sC16 recipe follows the procedure prescribed by Camps et al.
(2016); Trayford et al. (2017) for the EAGLE simulations; see Fig. 2
of Camps et al. (2016). Young star particles (up to 100 Myr) and gas
particles with a nonzero SFR are placed in a temporary bin of can-
didate SF region particles. These particles are randomly resampled
to sub-particles with smaller masses following a power-law molecu-
lar cloud mass function with 𝑀 ∈ [700, 106]M� . The sub-particles
also receive a random formation time. Sub-particles that have not
yet formed join the gas particle bin (which will later be used to allo-
cate dust); infant sub-particles (up to 10 Myr) go into the SF region
particle bin, and the remaining sub-particles join the regular stellar
particle bin. The SF region sub-particles are also randomly relocated
within a small region, increasing the realism of the images.
As the final step, the sC16 recipe determines the values of the

extra parameters needed for theMAPPINGS III templates assigned to
the SF region sub-particles. The ambient pressure and compactness
are estimated from snapshot particle properties; the dust covering
fraction in the photodissociative region (PDR) is set to the fixed
value of 𝑓PDR = 0.1.
The sK21 recipe is the same as the one prescribed by Kapoor

et al. (2021) for the Auriga simulations. These authors note that the
resolution of modern zoom-in simulations brings the mass of the
baryon particles well within the range of the molecular cloud mass
function so that it is no longer necessary to resample them to smaller
masses, even for SF regions. The sK21 recipe thus simply moves all
infant stellar particles to the SF region bin, without involving the
star-forming gas particles. This also avoids the need for ‘converting’
between gas and star particles.
The sK21 recipe determines the MAPPINGS III template parame-

ter values through an alternate approach. The compactness parameter,
which essentially controls the temperature of the dust in the SF re-
gion, is randomly assigned from a Gaussian distribution motivated
by observations (Utomo et al. 2019) and previous studies (Kannan
et al. 2020). The ambient pressure, which has only a limited effect on
the continuum spectrum, is then derived from the compactness and
snapshot particle properties. The dust covering fraction is calculated
from the age of the SF region (i.e. the infant stellar particle) assuming
a fixed molecular cloud dissipation time of 𝜏clear = 1Myr.

3.2.3 Recipes for allocating dust (dC16, dT12)

Both recipes for allocating diffuse dust first determine the subset of
gas particles deemed to carry dust, and then assign dust to these
particles using a fixed dust-to-metal ratio, i.e. 𝑀dust = 𝑓dust𝑍𝑀gas.
The gas mass 𝑀gas and the metallicity 𝑍 are taken from snapshot
particle properties, and the dust fraction 𝑓dust is set to a fixed, global
value. The two recipes differ in the heuristic for selecting ‘dusty’ gas
particles and the value of 𝑓dust. The latter should be re-calibrated for
each recipe through comparison with observations.
The dC16 recipe again follows Camps et al. (2016); Trayford

et al. (2017) and is used by Kapoor et al. (2021) under the name
recSF8000. This recipe allocates diffuse dust to all gas particles
with a nonzero SFR or a gas temperature under 8000 K (or both).
The dT12 recipe follows Torrey et al. (2015) and is used by Kapoor

et al. (2021) under the name recT12. This recipe allocates dust to gas
particles that are considered to be rotationally supported according

to their position in temperature-density phase space; see Fig. 2 and
Eq. (3) of Kapoor et al. (2021). Compared to dC16, dT12 assigns dust
to a larger subset of gas particles, extending the dust density distri-
bution to larger radii and causing it to be less compact and somewhat
less clumpy. To compensate for the larger amount of ‘dusty’ gas, the
optimal dust-to-metal ratio will be lower than for the dC16 recipe.
Table 1 lists the optimal values for 𝑓dust obtained by Camps et al.

(2016) for the EAGLE simulations and by Kapoor et al. (2021) for
the Auriga simulations. The last column lists the values obtained in
this work for the ARTEMIS simulations as described in Sect. 3.3.
We will also discuss the similarities and differences in these results
at the end of that section.

3.2.4 Combined recipes

The procedures for handling SF regions and for handling dust are in-
dependent of each other and thus the recipes discussed in Sects. 3.2.2
and 3.2.3 can be combined at will. We will explore the following
combinations:

• sC16/dC16: resampled SF regions and basic dust allocation.
• sC16/dT12: resampled SF regions and extended dust allocation.
• sK21/dT12: plain SF regions and extended dust allocation.

We do not explore the fourth possible combination, sK21/dC16, be-
cause Kapoor et al. (2021) found this combination to be slightly less
optimal than sK21/dT12 when comparing morphology parameters
to observations.

3.3 Calibration

3.3.1 Sample selection

When comparing simulation results with observed data, it is impor-
tant to approximately match the overall properties of the set of galax-
ies on both sides. Following Kapoor et al. (2021), we use stellar mass
and SFR criteria for this purpose. For the DustPedia galaxies, we use
the physical properties obtained from the observed fluxes through
CIGALE SED fitting as described in Sect. 2.5. For the ARTEMIS
galaxies, we use the intrinsic quantities obtained by accumulating
the stellar mass and SFR of the stellar and gas particles, respectively.
This is inconsistent in the sense that we are mixing quantities inferred
from observed fluxes with intrinsic quantities. Using fluxes for the
ARTEMIS galaxies would be circular, however, as we do not yet have
a calibrated recipe to produce such fluxes. Moreover, we are using
these quantities just to construct approximately matched samples, not
to perform the calibration.
It makes no sense to calibrate recipes for handling SF regions and

the effects of dust using passive galaxies. We thus eliminate galaxies
with sSFR < 10−11 yr−1 from both the ARTEMIS and DustPedia
data sets. Note that we do produce data products for the omitted
ARTEMIS galaxies;we just exclude them from the calibration subset.
We further limit the DustPedia data set to galaxies with observed
stellar mass and SFR in the range of the corresponding intrinsic
properties for the ARTEMIS galaxies: 10.30 < log10 (𝑀∗/M�) <

10.92 and −1.35 < log10 (SFR/M� yr−1) < 1.25.
Fig. 1 shows the SFR and sSFR versus stellar mass for the remain-

ing 38 ARTEMIS and 42 DustPedia galaxies. The two populations
seem to be similarly distributed and sample the selected parameter
space fairlywell, demonstrating that the samples are sufficiently com-
parable for calibrating our post-processing recipe. We note again that
Fig. 1 mixes physical and intrinsic properties. In Sect. 4.1 we will
investigate how the physical properties derived for the ARTEMIS

MNRAS 000, 1–23 (2021)



Synthetic UV-submm images for ARTEMIS 7

9.4 9.6 9.8 10.0 10.2
log(L3.4 [L ])

8.5

9.0

9.5

10.0

10.5

lo
g(

L F
UV

[L
])

(a) Optimal dust fraction

9.4 9.6 9.8 10.0 10.2
log(L3.4 [L ])

8.5

9.0

9.5

10.0

10.5

lo
g(

L N
UV

[L
])

(b)

9.4 9.6 9.8 10.0 10.2
log(L3.4 [L ])

9.8

10.0

10.2

10.4

10.6

10.8

lo
g(

L r
[L

])

(c)

9.4 9.6 9.8 10.0 10.2
log(L3.4 [L ])

8.50

8.75

9.00

9.25

9.50

9.75

10.00

10.25

10.50

lo
g(

L 2
2

[L
])

(d)

9.4 9.6 9.8 10.0 10.2
log(L3.4 [L ])

8.8

9.0

9.2

9.4

9.6

9.8

10.0

10.2
lo

g(
L 2

50
[L

])
(e)

9.4 9.6 9.8 10.0 10.2
log(L3.4 [L ])

7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.2

lo
g(

L 5
00

[L
])

(f)

1.75 1.50 1.25 1.00 0.75 0.50 0.25
log(LNUV / Lr)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

lo
g(

L 1
00

/L
3.

4)

(g)

0.2 0.0 0.2 0.4 0.6 0.8 1.0
log(L70 / L22)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

lo
g(

L 2
50

/L
50

0)

(h)

0.50 0.55 0.60 0.65
log(L350 / L500)

0.35

0.40

0.45

0.50

0.55
lo

g(
L 2

50
/L

35
0)

(i)

DustPedia
K21/T12
C16/C16
C16/T12

Figure 2. Scaling relations for the synthetic ARTEMIS luminosities calculated for a random viewing angle using our three recipes (Sect. 3.2.4) sK21/dT12
(orange), sC16/dC16 (purple), and sC16/dT12 (green), each with their optimal dust fraction 𝑓dust (see Table 1), versus those for the observed DustPedia
luminosities (blue). The solid lines connect the median 𝑦-axis values in a limited number of 𝑥-axis bins. The data sets are limited as defined in Sect. 3.3.1 and,
for DustPedia, to the galaxies for which the broadband fluxes under consideration in a given panel have been observed.

galaxies through SED fitting relate to their corresponding intrinsic
properties.

3.3.2 Synthetic observations

Calibrating our RT post-processing recipe requires performing a sig-
nificant number of SKIRT simulations for the ARTEMIS galaxies.
Therefore, we limit the number of viewing angles and broadbands
in this phase. We include an edge-on, a face-on and a random view,
where the latter corresponds to a sight line looking down from the

𝑧-axis in the original cosmological coordinate frame (i.e., before the
galaxy was rotated). For each of these sight lines, we have SKIRT
produce flux densities convolved with the response curve for each of
20 common broadbands ranging from FUV to submm wavelengths
and limited to the 5RM50 aperture. We then determine the corre-
sponding absolute luminosities 𝐿 = a𝐿a = _𝐿_ taking into account
the configured model-instrument distance.

We subsequently verify numerical convergence of these values
with regards to discretization choicesmade for the simulation, includ-
ing the resolution of the spatial and spectral grids and the number
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G15 G31 G33

Figure 3. Face-on (top row) and edge-on (bottom row) colour-composite views of selected ARTEMIS galaxies using the synthetic SDSS 𝑖, 𝑟 , and 𝑔 observations
produced in this work for the red, green, and blue channels, respectively. The field-of view is 60 kpc.

of photon packets launched, and taking into account the random-
ness inherent to the Monte Carlo radiative transfer procedure. Our
tests confirm that variations in the calculated luminosities caused
by numerical issues are always below 8 per cent (0.033 dex) and
substantially smaller in most cases.

3.3.3 Scaling relations

We employ a select set of luminosity scaling relations for comparing
the synthetic ARTEMIS results to the observed DustPedia data, as
shown in Fig. 2. The topmost six panels of this figure relate the
luminosity for various bands to the 3.4 `m band luminosity, which
can be seen as a proxy for stellarmass. Panels (a), (b), and (c) show the
effects of dust attenuation at FUV, NUV, and optical wavelengths,
while panels (d), (e), and (f) trace dust emission at infrared and
submm wavelengths. The NUV (b) and the 22 `m (d) luminosities
can also be interpreted as a proxy for SFR.
The three panels in the bottom row of Fig. 2 show colour-colour

relations in various wavelength regimes. Panel (g) shows a proxy
for specific dust mass versus a proxy for specific dust attenuation.
Panels (h) and (i) show infrared and submm colour-colour relations
indicative of representative dust temperature. In panel (h), a larger
contribution of warm dust leads to a lower 70 `m luminosity rela-
tive to 22 `m and to a lower 500 `m luminosity relative to 250 `m.
Consequently, data points towards the upper left indicate warmer rep-
resentative dust temperatures. In panel (i), a similar reasoning leads
to the conclusion that data points towards the upper right indicate
warmer representative dust temperatures.
In Appendix B we explore the variations in the ARTEMIS scaling

relations for different sight lines and we determine the optimal value
of the dust-to-metal fraction 𝑓dust for each of the recipes sK21/dT12,
sC16/dC16, and sC16/dT12 defined in Sect. 3.2.4. These values are
listed in Table 1. In Fig. 2 and in the discussion here we focus on the
ARTEMIS luminosities calculated for a random viewing angle using
our three recipes with optimal 𝑓dust.

There is reasonable agreement between the synthetic results and
the observed data, with some significant exceptions. In the shorter
wavelength regime, the FUV (a) andUV (b) luminosities are overesti-
mated by≈ 0.5 dex,while the optical luminosities are underestimated
by ≈ 0.15 dex. These opposing differences cause a correspondingly
substantial deviation in the 𝐿NUV/𝐿𝑟 colour (g). This attenuation
discrepancy is in line with the findings of previous work using a sim-
ilar post-processing recipe (e.g., Baes et al. 2019; Trčka et al. 2020;
Kapoor et al. 2021). It cannot be resolved by a straightforward scaling
of the stellar emission or of the dust mass. It appears that our pro-
cedure insufficiently captures the subgrid extinction processes in the
compact and clumpy SF regions. In the infrared wavelength regime,
the 22 `m luminosity (d) is underestimated by≈ 0.25 dex, depending
on the recipe. This is possibly related to the same limitations in our
handling of SF regions.
The 100 `m luminosity (g), more or less at the top of the dust

continuum emission peak, is also underestimated by ≈ 0.25 dex.
Luminosities on the long side of the continuumpeak (e, f), whichmay
be considered basic proxies for dust mass, seem to be predicted fairly
accurately, howeverwith opposing discrepancies along the downward
slope. We note ≈ 0.05 dex underestimation for 250 `m and up to
≈ 0.15 dex overestimation for 500 `m, depending on the recipe. This
indicates that the emission peak is shifted to longer wavelengths,
corresponding to a larger body of colder dust. This effect is also
apparent in the submm-submm colour-colour relation (i) and in the
submm-FIR colour-colour relation (h). In both panels, the ARTEMIS
data points are significantly shifted toward colder representative dust
temperatures compared to the DustPedia observations. Again, as has
been noted by Camps et al. (2016) and Kapoor et al. (2021), our
procedure seems to insufficiently capture the subgrid dust heating
processes within and in the immediate neighbourhood of the SF
regions.
The differences in the scaling relations for our three recipes are

generally small, and most prominent for the longer wavelengths.
The sK21/dT12 recipe heats the dust somewhat more efficiently than
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NUVG15 g W3.4 S250
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NUVG15 g W3.4 S250
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Figure 4. Face-on (top half) and edge-on (bottom half) views of the ARTEMIS galaxy G15 in four bands; from left to right GALEX NUV, SDSS 𝑔, WISE
3.4 `m, and Herschel SPIRE 250 `m. G15 has an intrinsic stellar mass of 3.57 × 1010 M� inside the 30 kpc radius indicated by the white circle. The 5RM50
aperture radius is 36 kpc and the extraction aperture is 43 kpc corresponding to the 86 kpc field of view of the images. The top row in each half shows the
synthetic observations produced by SKIRT using a logarithmic colour scale; the transition between red and blue marks 1/100 of the maximum surface brightness.
The other two rows in each half show the corresponding convergence statistics indicating reliable (green), questionable (orange) and unreliable (red) image areas
assuming 50 pc pixels (𝑏 = 1) and binned 100 pc pixels (𝑏 = 2), as discussed in Sect. 3.4.2.
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the other recipes (e,f,h,i) and also performs better in the 22 `m
band (d). Both changes can be attributed to the improved handling
of SF regions in the sK21 scheme. Using the metrics discussed in
Appendix B to evaluate the three recipes, the sK21/dT12 recipe also
robustly emerges as the best recipe. We therefore use this recipe for
calculating the final data products of this work.

3.4 Synthetic data products

3.4.1 Description

We use the sK21/dT12 recipe (see Sect. 3.2.4) with optimal dust frac-
tion 𝑓dust = 0.275 (see Appendix B) to produce broadband images
with a spatial resolution of 50× 50 pc per pixel for the 45 ARTEMIS
galaxies, for 50 bands ranging from UV to submm wavelengths, and
for 18 sight lines with varying inclination and azimuth. The lists
of broadbands and sight lines match those of the synthetic Auriga
observables produced by Kapoor et al. (2021).
Specifically, we include the 50 broadbands listed in Table 4 of

Camps et al. (2018), including transmission curves for the most
commonly used instruments and observatories across theUV-submm
wavelength range. Following the specifications in Sect. 4 of Kapoor
et al. (2021), we use 11 inclinations uniformly sampled in cos 𝑖, with
𝑖 the angle between the angular momentum vector of the galaxy and
the line of sight, leading to a finer grid close to edge-on positions. For
the three inclinations closest to edge-on, we place observers at three
different azimuths. For the remaining eight inclinations, we use just
a single azimuthal position. We also consider an additional ‘random’
viewpoint corresponding to a sight line looking down from the 𝑧-axis
in the original cosmological coordinate frame (i.e., before the galaxy
was rotated).
All observers are placed at a distance of 20 Mpc from the sim-

ulated galaxy. To determine the field of view (in galaxy size units
as opposed to angular units) of the images for a given galaxy, we
use the extraction aperture defined in Sect. 3.1, which encloses all
stellar and gas particles extracted from the corresponding ARTEMIS
simulation snapshot. More precisely, the field of view in each image
direction is given by twice the extraction aperture radius, rounded up
to 64 × 50 pc = 3.2 kpc. This choice ensures that both the 5RM50
aperture used to calibrate our results against DustPedia observations
in Sect. 3.3 and the surface density-based aperture used by Kapoor
et al. (2021) are covered by each image. Furthermore, the round-
ing ensures that the number of pixels in each direction is always a
multiple of 64, which may facilitate binning of the images in later
processing steps.
These image data are available for public download at https://
www.astro.ljmu.ac.uk/Artemis. As an illustration, Fig. 3 offers
face-on and edge-on optical views for selected ARTEMIS galaxies,
composited from the public data set.

3.4.2 Convergence

To avoid artefacts caused by the simulation dust grid and limit the
noise level in the image pixels, we substantially increase the grid
resolution and the number of photon packets compared to the cal-
ibration simulation parameters discussed in Sect. 3.3.2. Depending
on the dust distribution in the galaxy, the number of spatial grid cells
ranges from 2 to 13 million, with the cells in the densest diffuse dust
regions reaching down to 5 pc on a side – far below the 50 pc image
pixel size. The number of photon packets launched for both primary
and secondary emission ranges from 5 to 25 × 109 and is determined

for each galaxy using a heuristic as a function of the number of in-
put particles and the number of pixels in the output images. These
discretization settings cause a high level of convergence for spatially
integrated quantities calculated from the images. Our tests confirm
that variations on integrated luminosities caused by numerical issues
are well below one per cent for all wavelengths and sight lines as
long as the employed aperture is not exceedingly small.
More importantly, we need to evaluate convergence on a pixel by

pixel basis. Following Kapoor et al. (2021), we calculate the rela-
tive error 𝑅 based on Monte Carlo statistics recorded for each pixel
(Camps & Baes 2020) in a representative set of broadband images
at selected viewing angles for all ARTEMIS galaxies. According to
Camps & Baes (2020), the pixel value can be considered to be re-
liable for 𝑅 < 0.1, it is questionable in the range 0.1 < 𝑅 < 0.2,
and it is unreliable for 𝑅 > 0.2. Fig. 4 shows these statistics for
the face-on (top half) and edge-on (bottom half) views of a single
representative ARTEMIS galaxy in four selected bands from UV to
submm wavelengths.
The synthetic surface brightness maps in the top row of each half

of the figure use a logarithmic colour scale; the transition between
red and blue marks 1/100 of the maximum surface brightness. Each
of the underlying data frames has 17282 50 × 50 pc pixels, corre-
sponding to the 86 kpc field of view (rounded up to a multiple of
64 pixels). The second row in each half of the figure (𝑏 = 1) shows
the corresponding 𝑅 value for each of these pixels indicating reliable
(green), questionable (orange) and unreliable (red) image areas. The
third row in each half of the figure (𝑏 = 2) shows the same statistic
after 2×2 binning into 100×100 pc pixels. As expected, this binning
results in a substantial increase in reliability at the cost of lower reso-
lution. At the binned 𝑏 = 2 level, the reliable area (green) essentially
covers all pixels with a value down to 1/100 of the maximum surface
brightness (yellow and red). At the original 𝑏 = 1 level, one needs to
include the questionable area (orange) to achieve a similar coverage.
Inspection of the 𝑅 values in representative broadbands for the

face-on, edge-on and random viewing angles confirms that conver-
gence for the other ARTEMIS galaxies is similar to the results shown
in Fig. 4. We note that the FUV/NUV bands tend to show somewhat
poorer statistics because of the relatively lower fluxes and higher
extinction involved in that wavelength range.

4 ANALYSIS

4.1 Global physical properties

Given the synthetic images described in Sect. 3.4, we now derive
global physical properties for the ARTEMIS galaxies and compare
those to observations. As a first step, we calculate global fluxes by
integrating the surface brightness maps within the 5RM50 aperture
of the galaxy and convert these to luminosities taking into account
the assumedmodel-instrument distance. This yields results similar to
those employed during calibration (see Sect. 3.3.2), but now we can
calculate luminosities for the full complement of 18 sight lines and
50 broadbands. Subsequently, we use the CIGALE SED fitting code
(Noll et al. 2009; Boquien et al. 2019) to estimate stellar mass, SFR,
and dust mass from a relevant subset of 25 of these broadband lumi-
nosities spanning the UV-submm wavelength range. As described in
Sect. 2.5, we use the same parameter settings as those used to obtain
physical properties of the DustPedia galaxies so that we can compare
simulated and observed galaxies on equal footing.
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Figure 5. Global physical properties of the ARTEMIS galaxies derived from synthetic observations (vertical axis) for three sight lines (see legend) versus the
corresponding intrinsic properties (horizontal axis). From left to right: stellar mass, SFR, and dust mass. The solid line indicates the one-to-one relation. The
dustless galaxies G21 and G37 are not shown.
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Figure 6. Inferred stellar mass of each ARTEMIS galaxy as a function of the
inclination of the synthetic observation from which it has been derived. The
curves are colour-coded for the intrinsic stellar mass of the corresponding
galaxy, as indicated by the colour bar. The dustless galaxies G21 and G37 are
not shown.

4.1.1 Inferred versus intrinsic properties

As an initial sanity check, Fig. 5 compares these inferred physical
properties to the corresponding intrinsic properties for theARTEMIS
galaxies. The stellar mass (left panel) is estimated accurately within
±0.1 dex from the face-on view but is underestimated by up to 0.4
dex from the edge-on view. We will further investigate the inclina-
tion dependence of the stellar mass estimate later in this subsection.
The SFR (middle panel) is also estimated well (±0.25 dex except
for one outlier) with a much smaller inclination dependence. For
both stellar mass and SFR there is an increasing underestimation for
lower stellar mass/SFR values, even for the face-on results. Kapoor
et al. (2021) do not see such a trend for the Auriga galaxies (private
communication), but this is not really in conflict because the Au-
riga intrinsic stellar masses are & 1010.5 M� . Trčka et al. (2020) do
not find a significant trend with stellar mass in their analysis of the
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Figure 7. Variation in the inferred stellar mass for various inclinations of
the ARTEMIS galaxies (relative to the face-on value), as a function of the
corresponding variation in SDSS 𝑟 luminosity (also relative to the face-
on value). The dots are colour-coded for the intrinsic stellar mass of the
corresponding galaxy using the same colour scheme as in Fig. 6. The solid
line indicates the one-to-one relation. The dustless galaxies G21 and G37 are
not shown.

EAGLE galaxies, although their Fig. 4 does show some outliers in
the same stellar mass/SFR range. The origin of this discrepancy is
unclear. One possible cause is related to the sampling of SF regions.
The sC16 recipe employed for EAGLE splits SF region particles into
smaller sub-particles, while the sK21 recipe employed for both the
Auriga and our ARTEMIS results does not. Galaxies with lower stel-
lar mass/SFR necessarily have fewer SF particles, causing a poorer
statistical sampling that may lead to systematic effects.
The dust mass (right panel of Fig. 5) is systematically underes-

timated by 0.20 ± 0.15 dex. As expected, there is no significant
inclination dependence because thermal dust emission is essentially
isotropic. Kapoor et al. (2021) find a similar systematic underestima-
tion of the dust mass for the Auriga galaxies. Hunt et al. (2019) com-
pare methods for fitting SEDs to the most recent photometry (Dale
et al. 2017) of the nearby star-forming galaxies in the KINGFISH
survey (Kennicutt et al. 2011). The methods under study include the
SED fitting codes CIGALE and MAGPHYS (da Cunha et al. 2008)
and a method employing a library of SEDs produced from spheroidal
GRASIL models (Silva et al. 1998) through a RT process. The au-
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Figure 8. Specific SFR versus stellar mass for the ARTEMIS (red) and
Auriga (orange) galaxies over-plotted on the DustPedia observations (blue).
The galaxy properties are inferred through SED fitting from synthetic ob-
servations for edge-on and face-on sight lines (ARTEMIS and Auriga, using
the sK21/dT12 recipe) or from actual observations (DustPedia). The non-
star-forming ARTEMIS galaxies G21 and G37 are not shown. The dotted
rectangle indicates the galaxy selection used for the bottom row of Fig. 9.

thors note that GRASIL tends to report dust masses larger than those
of CIGALE or MAGPHYS by ≈0.3 dex. They subsequently con-
clude that, because GRASIL is the only method that performs RT
in realistic geometries, this may indicate that the other methods are
underestimating dust mass.
Dudzevičiūtė et al. (2020) perform an analysis similar to ours for

the 9431 galaxies at redshift 𝑧 > 0.25 and with SFR > 10 M� yr−1
in the reference EAGLE simulation (Schaye et al. 2015). The authors
use MAGPHYS (da Cunha et al. 2008) to derive physical properties
from synthetic SEDs produced via SKIRT (Camps et al. 2018) and
then compare these inferred properties to the intrinsic properties in
their supplemental Fig. A2. Although the galaxies in their analysis
are at nonzero redshift and have, on average, a much higher SFR
than the galaxies in our study, it is interesting to note a number
of differences and similarities. The inferred stellar mass in their
analysis is systematically underestimated by ≈0.3 dex and the SFR
by ≈0.1 dex. These systematic deviations might be caused in part by
inclination effects (see our Fig. 5, left and middle panel; the authors
presumably used a random inclination), in addition to different model
assumptions in both the radiation transfer (e.g., the dust model) and
the SED fitting (e.g., the IMF). On the other hand, the scatter of
the inferred properties around the best fitting line is very similar
to the scatter in our results, and there is a noticeable trend towards
larger stellar mass underestimation for lower-mass galaxies similar
to our findings (Fig. 5, left panel). The dust mass in their analysis is
systematically underestimated by ≈0.2 dex, which is very similar to
our results (Fig. 5, right panel).
We now come back to the inclination dependence of the stellar

mass estimate mentioned earlier in this subsection. Fig. 6 shows
the inferred stellar mass of the ARTEMIS galaxies as a function
of inclination. The curves are colour-coded for the intrinsic stellar
mass of the corresponding galaxy as indicated by the colour bar.
Although for some galaxies the estimated mass seems to dip and rise

almost arbitrarily with inclination, most galaxies show a systematic
underestimation at high inclinations. Previous studies (e.g., Małek
et al. 2018; Trčka et al. 2020; Trayford et al. 2020) have found that
adopting an attenuation curve with a slope that is more shallow than
typically assumed observationally can lead to underestimation of
the attenuation at optical wavelengths and therefore underestimation
of the stellar mass. Kapoor et al. (2021) find a similar trend of
underestimation at high inclinations for the Auriga galaxies. They
also show that the attenuation curve fitted by the CIGALE code to
the Auriga galaxies is significantly more shallow than the attenuation
curves observed for the DustPedia galaxies, supporting the above
reasoning.
The question remains why this effect is more prominent at high

inclinations. Many SED fitting codes, including CIGALE, assume
energy balance between the stellar light absorbed by dust and the
thermal radiation emitted by dust. However, while the thermal emis-
sion at long wavelengths is virtually isotropic, the observed stellar
light depends significantly on the dust attenuation experienced along
a given sight line, breaking energy balance for that particular line of
sight. We can thus intuitively expect the accuracy of SED fitting to
depend on the optical attenuation.
To investigate this further, Fig. 7 shows the variation in the in-

ferred stellar mass for the ARTEMIS galaxies as a function of the
corresponding variation in SDSS 𝑟 luminosity, in both cases relative
to the face-on value. Each galaxy is represented by 18 dots, one for
each of the simulated sight lines, and these dots are coloured for the
galaxy’s intrinsic stellar mass as in Fig. 6. The luminosity variation
has a zero or negative value in virtually all cases. In other words, as
expected, the face-on view used as a reference usually has the highest
luminosity, and we can interpret the values on the horizontal axis as
a proxy for attenuation at optical wavelengths. Similarly, because the
face-on inferred stellar mass correlates well with the intrinsic stellar
mass (Fig. 5, left panel) we can interpret the values on the vertical
axis as a proxy for stellar mass underestimation. With this in mind,
Fig. 7 shows a clear overall correlation between the stellar mass un-
derestimation by the SED fitting algorithm and the attenuation for a
given sight line. Many individual galaxies show the same trend, with
multiple dots forming an approximate line, often with a similar slope
as the overall trend. On the other hand, there is a significant amount
of scatter on the relation (≈ 0.3 dex). This is not surprising, given
that the observed attenuation will depend substantially on the precise
star-dust geometry, especially in near-edge-on configurations.

4.1.2 Dust scaling relations

Wenowcompare simulated and observed data sets using galaxy prop-
erties inferred through SEDfitting of synthetic fluxes (ARTEMIS and
Auriga) or observed fluxes (DustPedia). Fig. 8 presents our three data
sets in the sSFR–𝑀∗ plane. The figure shows all galaxies with sSFR
and𝑀∗ above the lower axis limits. This excludes just a few low-mass
DustPedia galaxies, two non-star-forming ARTEMIS galaxies, and
no Auriga galaxies.
The Auriga zoom simulations are selected using a halo mass cutoff

of 1 × 1012 < 𝑀200/M� < 2 × 1012 in addition to a requirement of
relative environmental isolation (see Sect 2.2). The resulting galaxies
consequently occupy a fairly limited region in the upper right corner
of the sSFR–𝑀∗ plane (Fig. 8). The ARTEMIS zoom simulations
use a more relaxed halo mass cutoff of 8 × 1011 < 𝑀200/M� < 2 ×
1012 without any environmental criteria (see Sect 2.1). The resulting
ARTEMIS data set includes galaxies in a lower stellar mass range.
Considering only active galaxies with sSFR > 10−11 yr−1, the low
end of the stellar mass range is decreased from ≈ 3 × 1010 M� to
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Figure 9. Dust scaling relations for the ARTEMIS (red), AURIGA (orange) and DustPedia (blue) galaxies. The top row compares the matched ARTEMIS and
DustPedia samples defined in Sect. 3.3.1. The bottom row compares the combined set of ARTEMIS and Auriga galaxies to the DustPedia galaxy subset with
sSFR–𝑀∗ values inside the dotted rectangle shown in Fig. 8. The running median curves trace the combine data sets. The galaxy properties are inferred through
SED fitting from synthetic observations for edge-on and face-on sight lines (ARTEMIS and Auriga, using the sK21/dT12 recipe) or from actual observations
(DustPedia). The first two columns show the specific dust mass versus stellar mass and versus sSFR, respectively. The third column shows the fraction of energy
absorbed by dust as a function of bolometric luminosity.

≈ 1 × 1010 M� . It is evident from Fig. 8 that the ARTEMIS data set
supplements the Auriga data set in this manner. Although there are
also a few passive ARTEMIS galaxies with sSFR < 10−11 yr−1, this
region of the sSFR–𝑀∗ plane remains largely under-sampled.

Fig. 9 shows dust scaling relations for our data sets. The top row
compares the matched ARTEMIS and DustPedia samples defined in
Sect. 3.3.1. The bottom row compares the combined set of ARTEMIS
andAuriga galaxies to a DustPedia galaxy subset defined by the sSFR
and 𝑀∗ limits indicated by the dotted rectangle in Fig. 8. These
limits have been chosen to enclose the DustPedia galaxies in the
sample matching ARTEMIS (defined in Sect. 3.3.1) and those in the
sample matching Auriga (defined by Kapoor et al. 2021, DPD45).
These panels again illustrate how the ARTEMIS and Auriga data
sets supplement each other, although we do need to keep in mind
that they originate from simulations with different assumptions and
subgrid physics. Generally speaking, the synthetic galaxy scaling
relations correspond to the observations fairly well. We now discuss
each column in turn.

The first column of Fig. 9 shows specific dust mass versus stellar
mass. We recall from Sect. 3.3.1 that the DustPedia sample in panel
(a) has been selected using the intrinsicARTEMIS stellarmass range.
As discussed in Sect. 4.1.1 and illustrated in Fig. 5, the CIGALE
SED fitting procedure underestimates the intrinsic stellar mass by
0.20±0.15 dex. This causes a corresponding shift to lower masses of
the ARTEMIS galaxies compared to the DustPedia sample in panel
(a) of Fig. 9. Furthermore, for a given stellar mass, the ARTEMIS
specific dust mass is higher than that observed for DustPedia by ≈
0.3 dex. The expected decrease of specific dust mass with increasing
stellar mass is not seen in this panel, possibly because of the narrow
stellar mass range and the restricted sSFR range (limiting the effect

of an increasing passive fraction with stellar mass). The downward
trend in the relation is recovered when combining the ARTEMIS
and Auriga galaxies as shown in panel (b), although the specific dust
mass for the synthetic galaxies generally remains too high. Kapoor
et al. (2021) argue that this discrepancy might be caused by a high
gas content of the simulated galaxies compared to observations rather
than by issues in the post-processing procedure.
The second column of Fig. 9 shows specific dust mass versus

sSFR. The observedDustPedia relation is reproducedwell by both the
ARTEMIS (panel c and d) and theAuriga galaxies (panel d), although
there is a slight discrepancy in the slope. Compared to observations,
the synthetic galaxies show a slightly more rapid increase in specific
dust mass with increasing sSFR. In any case, the panels confirm a
clear correlation between (specific) dust mass and (specific) SFR.
The third columnof Fig. 9 shows the fraction of energy absorbed by

dust, defined as 𝑓abs = 𝐿dust/𝐿bol, versus bolometric luminosity. The
observed DustPedia relation and scatter are reproduced excellently
by both the ARTEMIS (panel e and f) and the Auriga galaxies (panel
f). The Auriga galaxies are, on average, more luminous than the
ARTEMISgalaxies, so that the two simulated data sets occupy largely
distinct regions in the 𝑓abs–𝐿bol plane (panel f). Still, the slope of the
𝑓abs–𝐿bol relation for the combined simulated data set very closely
follows the observed slope across the full luminosity range.

4.2 Morphology on resolved scales

In this section we investigate selected non-parametric morpholog-
ical parameters of the ARTEMIS disc galaxies as a function of
wavelength, comparing the results to DustPedia observations and
to the simulated Auriga galaxies. We use the StatMorph package
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Figure 10. Morphological indices (half light radius, concentration, asymmetry, and smoothness; see Sect. 2.6 for definitions) as a function of wavelength for
three sets of disc galaxies. The 9 DustPedia galaxies (blue) correspond to those studied by Baes et al. (2020). The Auriga data set (orange) corresponds to the 14
galaxies studied by Kapoor et al. (2021), and the ARTEMIS data represent the 11 ARTEMIS galaxies with a disc-to-total stellar mass ratio ofD/T > 0.45, using
the sK21/dT12 recipe for 5 inclinations ranging from face-on to 𝑖 = 73◦ in both cases. The circular markers represent the median values for each set; the error
bars (DustPedia) or shaded areas (synthetic data sets) indicate the ±1𝜎 interval. The dashed lines show individual DustPedia galaxies. The small sub-panels
under each panel show the K–S test distance 𝑑 as a function of wavelength, quantifying the dissimilarity between synthetic and observed data sets, i.e. Auriga
versus DustPedia (orange) and i.e. ARTEMIS versus DustPedia (red).

(Rodriguez-Gomez et al. 2019) to derive the CAS indices (concen-
tration, asymmetry, smoothness) and the normalised elliptical half
light radius (𝑅half/𝑅

opt
80 ) from the ARTEMIS images in 14 broad-

bands ranging from UV to submm wavelengths. Sect. 2.6 offers
some background on the StatMorph code and a concise definition of
the morphological indices used here.
We use the samewavelength bands as those employed byBaes et al.

(2020) to study the morphology of 9 well-resolved spiral galaxies in
the DustPedia database and by Kapoor et al. (2021) to study a set of
14 disc galaxies from theAuriga simulations. FollowingKapoor et al.
(2021), we select ARTEMIS galaxies with a disc-to-total stellar mass
ratio of D/T > 0.45, using the intrinsic stellar mass values listed by
Font et al. (2020, Table 1). This yields a set of 11 galaxies. Just as
was done for the Auriga galaxies, we employ synthetic images for 5
inclinations ranging from face-on to 𝑖 = 73◦ for each galaxy, leading
to 5 × 11 data points for each wavelength. For both synthetic data
sets, the images have been produced using the sK21/dT12 recipe
(see Sect. 3.2.4). The ARTEMIS image field of view encloses the
galaxy’s full extraction aperture (see Sect. 3.1 which always includes
the stellar surface density-based aperture used byKapoor et al. (2021)
for Auriga.
Fig. 10 shows the four morphological indices under study as a

function of wavelength for these three sets of disc galaxies. The

circular markers represent the median values for each set; the error
bars (DustPedia) or shaded areas (ARTEMIS, Auriga) indicate the
±1𝜎 interval. The dashed lines show individual DustPedia galaxies.
The small sub-panels under each panel show a metric 𝑑 quantifying
the ‘distance’ between synthetic and observed data sets as a function
of wavelength. This metric is calculated using the 1D two-sample
Kolmogorov-Smirnov test (K–S test, Kolmogorov 1933; Smirnov
1948).
The observed normalised half light radius 𝑅half/𝑅

opt
80 (upper left

panel of Fig. 10) shows a characteristic trend as a function of wave-
length, with large values in the FUV and a gradual decrease over the
optical regime to the NIR, followed by a small increase in the MIR
and another dip before a final increase towards FIR and submmwave-
lengths. Both the Auriga and the ARTEMIS simulations reproduce
the observed DustPedia trend well, although the median ARTEMIS
radii are consistently smaller than the corresponding Auriga values
and, for wavelengths longer than optical, also smaller than the Dust-
Pedia values. The difference is most notable in the FIR wavelength
range corresponding to dust emission, implying that ARTEMIS dust
discs are smaller relative to their stellar discs than those in the Auriga
simulations and the DustPedia galaxies.
The observed concentration index (upper right panel of Fig. 10)

shows a characteristic trendwith high concentration for NIR andMIR
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wavelengths, tracing older stellar populations, and substantially lower
concentration for shorter and longer wavelengths, tracing younger
stellar populations and dust. The ARTEMIS and Auriga simulations
reproduce the observed DustPedia trend fairly well for wavelengths
shorter than ≈ 10 `m. For longer wavelengths, both simulations
show substantially higher concentration than observed. Despite this
discrepancy, the ARTEMIS concentration values are consistently
closer to the DustPedia values than the Auriga results, particularly
in wavelength regimes that trace dust either through extinction (UV
and optical) or emission (FIR and submm). Because the same dust
allocation scheme has been used for post-processing ARTEMIS and
Auriga galaxies, and given the constant dust-to-metal ratio in this
recipe, this seems to indicate that the ARTEMIS simulations include
a slightly better prediction of the metal distribution in the galaxy,
although still falling short of observations (at longer wavelengths,
the two simulations are much closer to each other than to the data).
Because there are many differences between the subgrid recipes of
the two simulations, it is hard to pin down the precise cause. Most
likely, differences in the stellar and AGN feedback mechanisms play
a significant role, as these processes affect the metal distribution in
various ways (e.g., for the effect of AGN feedback on the resolved
distribution of metals in the EAGLE simulations, see Trayford &
Schaye 2019).
In the UV and optical wavelength range, the asymmetry and

smoothness indices (bottom row of Fig. 10) for both ARTEMIS
and Auriga are very similar to each other and both are substantially
higher than observed for DustPedia. These high values are probably
caused by the SF regions, which are prominent at those wavelengths
(see Fig. 4 for two examples). As noted by Kapoor et al. (2021), these
index values may improve in case the SF regions would be resam-
pled during post-processing as in recipe sC16 (see Sect. 3.2.2). At
longer wavelengths, starting from the NIR, the ARTEMIS galaxies
continue to show asymmetry and smoothness values well above the
DustPedia reference values, while the Auriga galaxies are very close
to observations. Notably, for wavelengths longer than ≈ 100 `m,
the ARTEMIS galaxies continue to over-predict while the Auriga
galaxies under-predict by roughly the same amount. This discrep-
ancy might be related to differences in the merger histories for the
two simulated galaxy sets. ARTEMIS includes histories with more
recent mergers, whereas Auriga has a criterion for isolation.
All in all, the morphology of our ARTEMIS galaxy sample fol-

lows the same overall trends as a similar DustPedia galaxy sample,
with some notable discrepancies. Using the same post-processing
recipe, the ARTEMIS simulations provide better predictions for the
concentration index than the Auriga simulations but falls short for
the other indices under study, at least in some wavelength regimes.

5 SUMMARY AND CONCLUSIONS

In this work, we produce and publish multi-wavelength, spatially
resolved synthetic observations for the 45 simulated galaxies of the
ARTEMIS project (Font et al. 2020, 2021). These galaxies were
selected to have a Milky Way-like halo mass and were re-evolved
to redshift zero at high resolution including full (subgrid) baryonic
physics. We extract stellar and gas properties from the present-day
galaxy snapshots with the purpose of calculating synthetic observ-
ables with our RT code SKIRT (Camps & Baes 2015, 2020). We
assign emission spectra and dust characteristics following a com-
bination of previously developed prescriptions (Camps et al. 2016;
Trayford et al. 2017; Kapoor et al. 2021). Stellar populations are
modelled through the Bruzual & Charlot (2003) template library. We

include a subgrid treatment of SF regions using the MAPPINGS III
template library (Groves et al. 2008) to help capture the dust RT
processes in their dense and clumpy cores. We allocate diffuse inter-
stellar dust to the galaxy’s cold gas using a fixed dust-to-metal ratio,
𝑓dust, which is treated as a free parameter. The dust properties are
taken from the THEMIS dust model (Jones et al. 2017). We explore
variations of the recipe with or without re-sampling of the SF re-
gions and with a more concentrated or more extended dust allocation
scheme.
We calibrate the value of 𝑓dust for each recipe variation by com-

parison with observed galaxies in the DustPedia database (Davies
et al. 2017). We construct mutually matched samples including the
38 star-forming ARTEMIS galaxies on the one hand and 42 Dust-
Pedia galaxies in the same stellar mass and SFR range on the other
hand. We then compare these samples through luminosity scaling
relations in wavelength bands from UV to submm (Fig. 2). The re-
sulting optimal 𝑓dust values for each of our dust allocation recipes are
listed in Table 1.We furthermore conclude that the sK21/dT12 recipe
optimally reproduces the observed luminosity scaling relations, con-
firming the findings by Kapoor et al. (2021) for the simulated Auriga
galaxies, albeit with a different value for 𝑓dust (see Table 1).
Evenwith the optimal recipe, dust extinction is significantly under-

estimated at FUV/UV wavelengths and representative dust tempera-
tures are lower than those observed. We attribute these discrepancies
to limitations in the treatment of SF regions and their immediate
environment, similar to the findings in previous studies (e.g., Camps
et al. 2016; Trčka et al. 2020; Kapoor et al. 2021). These symptoms
therefore seem to be a characteristic of all state-of-the-art cosmo-
logical simulation UV-submm post-processing efforts using similar
SF region recipes. Resolving these issues will likely require im-
provements both in the modelling of the cold interstellar medium
in hydrodynamical simulations of galaxy evolution and in the sub-
grid treatment of SF regions in the RT post-processing procedure.
Concerning the latter, a crucial step is to develop an enhanced SF
region model that is designed specifically for incorporation in RT
simulations. Ideally, key characteristics of the model such as the SSP
or dust grain properties should be configurable, and the parameters
of the resulting SED template library should be easily derivable from
the particle properties in the hydrodynamical simulation. More fun-
damentally, the model should, on average, allow more UV radiation
to escape into the diffuse ISM without adversely affecting the shape
of the SED at other wavelengths.
Using the optimal sK21/dT12 recipe, we produce images of all

ARTEMIS galaxies at 50 pc resolution for 50 commonly-used broad-
band filters from UV to submm wavelengths and for 18 different
viewing angles. We spatially integrate these images to obtain global
fluxes and use the SED fitting code CIGALE (Noll et al. 2009; Bo-
quien et al. 2019) to derive physical galaxy properties. The inferred
properties recover the known intrinsic values fairly well, except that
stellar mass is often significantly underestimated for near-edge-on
configurations (Figs. 5 and 6). We argue that this discrepancy is
related to the stronger optical dust attenuation at high inclinations
(Fig. 7), which disturbs the energy balance for those sight lines, in
turn confusing the SED fitting algorithm.
We use selected dust scaling relations (Fig. 9) to compare the in-

ferred ARTEMIS galaxy properties to similarly derived properties of
the DustPedia galaxies and of the simulated Auriga galaxies (Kapoor
et al. 2021). We find that the ARTEMIS galaxies tend to contain
more dust than comparable DustPedia galaxies, but otherwise follow
the observed dust scaling relations very well. The Auriga galaxies
follow the same relations but often occupy an adjacent region of the
parameter space.
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We subsequently use the high-resolution images at multiple wave-
lengths to perform a basic morphological study of the 11 ARTEMIS
galaxies with a disc-to-total stellar mass ratio of D/T > 0.45. We
use the StatMorph package (Rodriguez-Gomez et al. 2019) to calcu-
late four non-parametric morphological properties as a function of
wavelength. We compare these results (Fig. 10) to similarly derived
values for 9 well-resolved spiral galaxies in the DustPedia database
and 14 simulated Auriga galaxies. We find that the ARTEMIS galax-
ies largely reproduce the observed trends as a function of wavelength,
except that they appear to be more clumpy and less symmetrical than
observed.We also highlight some differences between theARTEMIS
and Auriga data sets.
Kapoor et al. (2021) cite various types of studies of the dust-related

properties of simulated Milky Way-like galaxies at redshift zero that
are enabled by the availability of dust-aware high resolution images
of these galaxies at multiple wavelengths. Their examples include
spatially resolved SED fitting, local energy balance studies, spatially
resolved dust scaling relations, dust mass maps, and the contribution
to dust heating by different stellar components in various regions of
a galaxy.
We similarly invite any interested party to use our ARTEMIS re-

sults in such studies (see Sect. 3.4). In fact, the Auriga andARTEMIS
galaxies occupy adjacent regions in the sSFR versus stellar mass
plane (Fig. 8) and hence also in the dust scaling relations (bottom
row of Fig. 9). This means that the data products resulting from this
work are supplemental to those produced by Kapoor et al. (2021)
for Auriga. Both data sets are publicly available, and because the
same post-processing recipe has been used in both cases, they can
be combined to achieve a wider coverage of galaxy types and/or to
increase statistical significance.
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Figure A1.Ratio of the total extinction (solid red) and absorption (dashed red)
mass coefficients for the THEMIS (Jones et al. 2017) dust model over those
for the Zubko et al. (2004) dust model in the UV-optical wavelength range.
The bottom panel shows the transmission curves (blue) for the broadbands
used in the scaling relations of Fig. A3.

APPENDIX A: COMPARING DUST MODELS

As stated in Sect. 3.2.1, we use a more recent dust model for repre-
senting the diffuse dust in our RT post-processing procedure than the
dust model employed by Camps et al. (2016); Trayford et al. (2017)
and Camps et al. (2018) for producing synthetic observables for the
EAGLE galaxies. In this appendix we study the effects of this new
dust model on the scaling relations shown in Fig. 2, which we use to
calibrate and compare variations of the recipes in Sect. 3.3.
The earlier EAGLE work used the dust model presented by Zubko

et al. (2004), called Zubko in this appendix. This model includes a
mixture of non-composite graphite and silicate grains and neutral
and ionised polycyclic aromatic hydrocarbon (PAH) molecules, de-
signed so that the global dust properties reproduce the extinction,
emission and abundance constraints of the Milky Way. The optical
and calorimetric properties follow the prescriptions of Draine & Li
(2001) and Li & Draine (2001). In this work, we use the THEMIS
dust model described by Jones et al. (2017) and references therein.
This model was developed in the context of the DustPedia project
to explain the dust extinction and emission in the diffuse interstellar
medium, and to self-consistently include the effects of dust evolution
in the transition to denser regions. It includes amixture of amorphous
hydrocarbons and amorphous silicates. For the latter, it is assumed
that half of the mass is amorphous enstatite and the remaining half
is amorphous forsterite.
Fig. A1 shows the ratio of the extinction and absorption mass

coefficients for the THEMIS dust model over those for the Zubko
dust model in the UV-optical wavelength range. Fig. A2 compares
the emissivity of a THEMIS and Zubko dust grain population of
the same mass in response to an interstellar radiation field of vary-
ing strength. In each figure, the bottom panel shows the transmission
curves for the broadbands used in our scaling relations. From the first
figure we conclude that a THEMIS dust grain population exhibits 10
to 25 per cent more extinction than a Zubko grain population in the
UV and optical bands under consideration. In the second figure, it
is immediately obvious that the aromatic features, on average, are
more luminous for the THEMIS dust than for the Zubko dust. This
significantly boosts the 3.4 `m band luminosity, while the 22 `m
band luminosity is somewhat tempered. Furthermore, the dust con-
tinuum emission peak for weaker input fields shifts slightly to longer
wavelengths for the THEMIS model, corresponding to lower rep-
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Figure A2. Emissivity of a dust grain population with properties of the
THEMIS (Jones et al. 2017, orange) and Zubko et al. (2004, green) dust
models in response to a typical interstellar radiation field (Mathis et al. 1983)
with various strengths𝑈 = 0.01, 1, 100. Details on the emission calculation,
including non-equilibrium heating of smaller dust grains, are provided by
Camps et al. (2015) and references therein. The bottom panel shows the
transmission curves (blue) for the broadbands used in the scaling relations of
Fig. A3.

resentative dust temperatures. Also, the slopes on both sides of the
continuum emission peak differ between the dust models.
With this information we can interpret Fig. A3, which shows the

scaling relations first presented in Fig. 2 for each of the two dust
models. The top and middle row panels all have the 3.4 `m band
luminosity on the horizontal axis. The THEMIS data points in these
panels are therefore shifted to the right in accordance with the extra
aromatic feature emission modelled in this band (by up to 0.15 dex
for the most dust-luminous galaxy). The top row panels have a UV
or optical band on the vertical axis, causing the THEMIS data points
to shift downward reflecting the increased dust attenuation in that
model. The combined result in these panels is a diagonal shift more
or less orthogonal to the scaling relation. As discussed in Sect. 3.3.3,
our fiducial recipe underestimates attenuation at UV wavelengths.
We see here that the THEMIS dust mix helps decreasing this dis-
crepancy. Unfortunately, because its extinction coefficient increases
more distinctly for optical wavelengths than for UVwavelengths (see
Fig. A1), the THEMIS model instead overestimates the attenuation
in the optical regime.
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Figure A3. The same scaling relations as in Fig. 2, now showing ARTEMIS luminosities calculated for a random viewing angle using the sC16/dC16 recipe
at optimal dust fraction 𝑓dust (see Table 1) with THEMIS (Jones et al. 2017, orange) and Zubko et al. (2004, green) dust models in comparison with observed
DustPedia luminosities (blue).

The THEMIS 22 `m data points in panel (d) are also shifted
downward, resulting in a diagonal shift similar to that in the UV and
optical regimes, but now caused by the decreased aromatic feature
emission in this band. The 250 `m and 500 `m bands are on the
downward slope of the dust continuum peak and thus both see en-
hanced emission for the THEMIS dust model (see Fig. A2). As a
result, the THEMIS data points in panels (e) and (f) shift essentially
along the observed scaling relation. The shifts in the colour-colour
relations on the bottom row can be similarly interpreted. Notably,
panel (i) clearly shows a lower representative dust temperature for

the THEMIS dust mix (the dust temperature rises diagonally to the
upper right in this panel; see, e.g., Fig. 11 of Camps et al. 2016).
In summary, compared to the Zubko dust model, and for an other-

wise fixed recipe, the THEMIS dust model reduces the discrepancies
between our simulations and the DustPedia observations in some
wavelength regimes but introduces extra tension in other regimes.

APPENDIX B: CALIBRATING DUST FRACTIONS

As described in Sect. 3.2.3, the recipes for handling diffuse dust in our
RT simulations have a free parameter, the dust-to-metal fraction 𝑓dust,
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Figure B1. The same scaling relations as in Fig. 2, now showing ARTEMIS luminosities calculated for three different sight lines (random – orange, face-on –
green, edge-on – purple) using the sK21/dT12 recipe at optimal dust fraction 𝑓dust (see Table 1) in comparison with observed DustPedia luminosities (blue).

which must be determined through comparison with observations.
We have chosen the luminosity scaling relations shown in Fig. 2
to accomplish this comparison, because they trace the key physical
galaxy properties including stellar mass, SFR, sSFR, dust mass, and
dust temperature. In principle, selecting an ‘optimal’ 𝑓dust value is
a straightforward optimisation process. In practice, however, it is
substantially complicated by several factors.

The numerical error on the ARTEMIS luminosities caused by
discretization effects in the RT simulation is below 8 per cent or 0.033
dex (see Sect. 3.3.2). The calibration error on the DustPedia fluxes
for the broadbands used in our scaling relations is of the same order
(see Table 1 of Clark et al. 2018), although these numbers probably

do not capture all observational uncertainties. For our purposes, we
can assume that these variations constitute a minor factor.

Another factor is the effect of the sight line on the observed lu-
minosities. While the DustPedia galaxies are obviously observed at
some fixed sight line, we can control the viewing angle for our simu-
latedARTEMIS galaxies. The effect on our scaling relations is shown
in Fig. B1. As expected, there is a significant discrepancy between
the face-on and edge-on luminosities at shorter wavelengths, up to
0.37 dex in the 𝑟 band and up to 0.48 dex in the FUV band, while the
effect is minimal at longer wavelengths. We mitigate the sight line
factor by using a random viewing angle for the ARTEMIS galaxies
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Figure B2. The same scaling relations as in Fig. 2, now showing ARTEMIS luminosities calculated for a random viewing angle using the sK21/dT12 recipe
with three values for the dust fraction 𝑓dust = 0.250 (green), 0.275 (orange), and 0.300 (purple) near or at the optimal value (see Table 1) in comparison with
observed DustPedia luminosities (blue).

in our calibration process, which probably corresponds most closely
to the observed data set.

We need to quantify how well a given set of ARTEMIS data points
corresponds to the observed DustPedia data points in the scaling
relations. Following Camps et al. (2016) and Kapoor et al. (2021), we
employ a generalisation of the Kolmogorov-Smirnov test (K–S test,
Kolmogorov 1933; Smirnov 1948) to two-dimensional distributions
(Peacock 1983; Fasano & Franceschini 1987; Press et al. 2007). The
2DK–S test computes a metric which can be interpreted as a measure
of the ‘distance’ between two sets of two-dimensional data points.
The metric may not be perfectly suited for our purposes because, for

example, a shift away from the scaling relation is generally penalised
in the same way as a more acceptable shift along the scaling relation.
More importantly, to obtain a single overall measure for a given
recipe, the metric for each of the relations must be aggregated. The
final measure, and thus the ranking of different recipes, depends on
the selection of scaling relations included in the metric and on the
relative weights assigned to them.

As an example that is representative for the three recipes described
in Sect. 3.2.4, Fig. B2 shows our scaling relations for results using the
sK21/dT12 recipe with different dust fraction values: 𝑓dust = 0.250,
0.275, and 0.300. The shifts in the scaling relations are much smaller
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than those shown for different sight lines in Fig. B1.Also, the shift can
be toward or away from the observed DustPedia relation depending
on the wavelength regime. For example, increasing the dust fraction
and thus the attenuation at shorter wavelengths improves the tension
with observations in the UV (panels a and b) but worsens it in the
optical (panel c). Similarly, a shift towards colder dust temperatures
(panel i) causes opposing shifts in the infrared relations (e.g., panel
e versus panel f). Any aggregated metric based on these relations
therefore depends significantly on the employed relative weights.
We experimented with various averaging schemes, always mixing

results in UV, optical, and infrared wavelength regimes, and came to
the following conclusions (see Table 1). For the sC16/dC16 recipe,
𝑓dust = 0.300 is a robust optimal value, i.e. it comes out on top
regardless of the averaging scheme. This corresponds to the optimal
value found by Camps et al. (2016) for the EAGLE simulations,
which is comforting because both the hydrodynamical simulation
and RT post-processing recipes are very similar. By the same token,
for the sC16/dT12 recipe, 𝑓dust = 0.275 is a robust optimal value.
The decrease in dust-to-metal ratio compared to the sC16/dC16 recipe
can be understood by noting that the dT12 scheme assigns dust to a
broader set of gas particles than the dC16 scheme (see Sect. 3.2.3).
For the ARTEMIS galaxies, this results in a ‘dusty’ ISM mass that
is 5 to 15 per cent higher. This increase is roughly compensated by
the 9 per cent decrease in dust fraction. We do note, however, that
the emitted radiation will also vary between the two recipes because
of the changed relative dust/star geometry.
For the sK21/dT12 recipe, the values 𝑓dust = 0.275 and 0.300

result in very comparable statistics so that the ‘optimal’ value sen-
sitively depends on the chosen averaging scheme. We take this to
mean that the actual optimal value lies between 0.275 and 0.300.
This slight increase from the sC16/dT12 recipe must be related to
the different handling of SF regions, which affects the dust-related
emission modelled as part of the MAPPINGS III SED templates (see
Sects. 3.2.1 and 3.2.2). We choose to employ 𝑓dust = 0.275 as the
‘optimal’ value because the differences are small (see Fig. B2) and
we then have a consistent value for the dT12 dust allocation scheme
regardless of the recipe for handling SF regions. Also, Kapoor et al.
(2021) find a fairly large difference in optimal dust fraction between
the two dust allocation schemes (see Table 1).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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