
by H. Lieberman
T. Selker

Thereis a growingrealizationthatcomputer
systemswillneedto be increasinglysensitiveto
theircontext.Traditionally,hardwareand
softwarewereconceptualizedas input/output
systems:systemsthattook input,explicitlygiven
to themby a human,and acteduponthatinput
aloneto producean explicitoutput.Now, this
viewis seenas beingtoo restrictive.Smart
computers,intelligentagentsoftware,and digital
devicesof thefuturewillhaveto operateon data
thatare not explicitlygivento them,datathat
theyobserveor gatherfor themselves.These
operationsmay be dependenton time,place,
weather,userpreferences,or thehistoryof
interaction.In otherwords,context.Butwhat,
exactly,is context?We lookat perspectivesfrom
softwareagents,sensors,and embedded
devices,and alsocontrasttraditional
mathematicaland formalapproaches.We see
how eachtreatstheproblemof contextand
discussthe implicationsfordesignof context-
sensitivehardwareand software.

We are in the middle of many revolutions in
computers and communication technologies:

ever faster and cheaper computers, software with
more and more functionality, and embedded com-
puting in everyday devices. Yet much about the com-
puter revolution is still unsatisfactory. Faster com-
puters do not necessarily mean more productivity.
More capable software is not necessarily easier to
use. More gadgets sometimes cause more compli-
cations. What can we do to make sure that the in-
creased capability of our artifacts actually improves
people’s lives?

Several subfields of computer science propose paths
to a solution. The field of artificial intelligence tells

us that making computers more intelligent will help.
The field of human-computer interaction tells us that
more careful user-centered design and testing of di-
rect-manipulation interfaces will help. And indeed
they will. But in order for these solutions to be re-
alized, we believe that they will have to grapple with
a problem that has previously been given short shrift
in these and other fields: the problem of context.

We propose that a considerable portion of what we
call intelligence in artificial intelligence or good
design in human-computer interaction actually
amounts to being sensitive to the context in which
the artifacts are used. Doing “the right thing” en-
tails that it be right given the user’s current context.
Many of the frustrations of today’s software—cryp-
tic error messages, tedious procedures, and brittle
behavior—are often due to the program taking ac-
tions that may be right given the software’s assump-
tions, but wrong for the user’s actual context. The
only way out is to have the software know more
about, and be more sensitive to, context.

Many aspects of the physical and conceptual envi-
ronment can be included in the notion of context.
Time and place are some obvious elements of con-
text. Personal information about the user is part of
context: Who is the user? What does he or she like
or dislike? What does he or she know or not know?

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 0018-8670/00/$5.00 © 2000 IBM LIEBERMAN AND SELKER 617

Out of context:
Computer systems
that adapt to, and learn
from, context

History is part of context. What has the user done
in the past? How should that affect what happens in
the future? Information about the computer system
and connected networks can also be part of context.
We might hope that future computer systems will
be self-knowledgeable—aware of their own context.

Notice how little of today’s software takes any sig-
nificant account of context. Most of today’s software
acts exactly the same, regardless of when and where
and who you are, whether you are new to it or have
used it in the past, whether you are a beginner or
an expert, whether you are using it alone or with

friends. But what you may want the computer to do
could be different under all those circumstances. No
wonder our systems are brittle.

What is context? Beyond the “black box”

Why is it so hard for computer systems to take ac-
count of context? One reason is that, traditionally,
the field of computer science has taken a position
that is antithetical to the context problem: the search
for context-independence.

Many of the abstractions that computer science and
mathematics rely on—functions, predicates, subrou-
tines, I/O systems, and networks—treat the systems
of interest as black boxes. Something goes in one side,
something comes out the other side, and the output
is completely determined by the input. This is shown
in Figure 1. We would like to expand that view to
take account of context as an implicit input and out-
put to the application. That is, the application can
decide what to do, based not only on the explicitly
presented input, but also on the context, and its re-
sult can affect not only the explicit output, but also
the context. Context can be considered to be every-
thing that affects the computation except the explicit
input and output, as shown in Figure 2.

And, in fact, even this diagram is too simple. To be
more accurate, we should actually close the loop,
bringing the output back to the input. This acknowl-
edges the fact that the process is actually an itera-
tive one, and a state that is both input to and gen-
erated by the application persists over time and
constitutes a feedback loop.

One consequence of this definition of context is that
what you consider context depends on where you
draw the boundary around the system you are con-
sidering. This affects what you will consider explicit
and what you will consider implicit in the system.
When talking about human-computer interfaces, the
boundary seems relatively clear, because the bound-
ary between human and computer action is sharp.
Explicit input given to the system requires explicit
user interface actions—typing or menu or icon se-
lection in response to a prompt, or at the time the
user expects the system’s actions to occur. Anything
else counts as context—history, the system’s use of
file and network resources, time and place if they
matter, etc.

If we are talking about an internal software module,
or the software interface between two modules, it

Figure 1 The traditional computer science “black box”

INPUT OUTPUT
APPLICATION

Figure 2 Context is everything but the explicit input and
output

CONTEXT-AWARE
APPLICATION

EXPLICIT
OUTPUT

EXPLICIT
INPUT

CONTEXT IS:
• STATE OF THE USER
• STATE OF THE PHYSICAL

ENVIRONMENT
• STATE OF THE COMPUTATIONAL

ENVIRONMENT
• HISTORY OF USER-COMPUTER-

ENVIRONMENT INTERACTION

LIEBERMAN AND SELKER IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000618

becomes less clear what counts as context, because
that depends on what we consider “external” to that
particular module. Indeed, one way that computer
scientists sometimes deal with troublesome aspects
of context is through “reification”—redrawing the
boundaries so that what was formerly external to a
system becomes internal. We must always be clear
about where the boundaries of a system are. Any-
thing outside is context, and it can never be made
to go away completely.

The context-abstraction trade-off. The temptation
to stick to the traditional black-box view comes from
the desire for abstraction. Mathematical functions
derive their power precisely from the fact that they
ignore context, so they are assumed to work correctly
in all possible contexts. Context-free grammars, for
example, are simpler than context-sensitive gram-
mars and so are preferable if they can be used to
describe a language. Side effects in programming lan-
guages are changes to or dependencies on context,
and they are shunned because they thwart repeat-
ability of computation.

Thus, there is a trade-off between the desire for ab-
straction and the desire for context sensitivity. We
believe that the pendulum has now swung too far in
the direction of abstraction, and work in the near
future should concentrate more on reintroducing
context sensitivity where it is appropriate. Since the
world is complex, we often adopt a divide-and-con-
quer strategy at first, assuming the divided pieces are
independent of each other. But a time comes when
it is necessary to move on to understanding how each
piece fits in its context.

The reason to move away from the black-box model
is that we would like to challenge several of the as-
sumptions that underlie this model. First is the as-
sumption of explicit input. In user interfaces, explicit
input from the user is expensive; it slows down the
interaction, interrupts the user’s train of thought, and
raises the possibility of mistakes. The user may be
uncertain about what input to provide, and may not
be able to provide it all at once. Most of us are fa-
miliar with the hassle of entering the same informa-
tion many times into forms on the Web. If the sys-
tem can get the information it needs from context
(stored somewhere else, remembered from a past
interaction), why does it ask for it again? Devices
that sense the environment and use speech recog-
nition or visual recognition may act on input that they
sense—input that may or may not be explicitly in-
dicated by the user. Therefore, in many user inter-

face situations, the goal is to minimize input explic-
itly provided by the user.

Similarly, explicit output from a computational pro-
cess is not always desirable, particularly when it
places immediate demands on the user’s attention.

Hiroshi Ishii1 and others have worked on “ambient
interfaces” where the output is a subtle changing of
barely noticeable environmental factors such as lights
and sounds, the goal being to establish a background
awareness rather than force the user’s attention to
the system’s output.

Finally, there is the implicit assumption that the
input/output loop is sequential. In practice in many
user interface situations, input and output may be
going on simultaneously, or several separate I/O in-
teractions may be overlapped. While traditional com-
mand-line interfaces adhered to a strict sequential
conversational metaphor between the user and the
machine, graphical interfaces and virtual reality in-
terfaces could have many user and system elements
active at once. Multiple agent programs, groupware,
and multiprocessor machines can all lead to paral-
lel activity that goes well beyond the sequential as-
sumptions of the explicit I/O model.

Putting context in context. So, given the above de-
scription of the context problem, how do we make
our systems more context-aware? Two parallel trends
in the hardware and software worlds make this trans-
formation increasingly urgent. On the hardware side,
smaller computation and communication hardware
and less expensive sensors and perceptual technol-
ogies make embedded computing in everyday devices
more and more practical. This gives the devices the
ability to sense the world around them and to act on
that information. But how? Devices can easily be
overwhelmed with sensory data, so they must deter-
mine what is worth acting on or reporting to the user.
That is the challenge that we intend to meet with
context-aware computing.

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 LIEBERMAN AND SELKER 619

There is a trade-off between
the desire for

abstraction and the desire
for context sensitivity.

On the software side, we view the movement toward
software agents2,3 as an attempt to reduce the com-
plexity of direct-manipulation screen-keyboard-and-
mouse interfaces by shifting some of the burden of
dealing with context from the human user to a soft-
ware agent. As these agent interfaces move off the
desktop, and small hardware devices take on pro-
active decision-making roles, we see the convergence
of these two trends.

Discussion of aspects of context-aware systems as an
industrial design stance can be found in a related pa-
per,4 which also details some additional projects in
augmenting everyday household objects with con-
text-aware computing.

In the next sections of this paper, we describe sev-
eral of our projects in these areas for which we be-
lieve the context problem to be a motivating force.
These projects show case studies dealing with the
context problem on a practical application level and
provide illustrations of the techniques and problems
that arise.

We then broaden our view to very quickly survey
some views that other fields have taken on the con-
text problem, particularly traditional approaches in
artificial intelligence and mathematical logic. Soci-
ology, linguistics, and other fields have also dealt with
the context problem, and although we cannot exhaus-
tively treat these fields here, an overview of the var-
ious perspectives is helpful.

Context for user interface agents

The context problem has special relevance for the
new generation of software agents that will soon be
both augmenting and replacing today’s interaction
paradigm of direct-manipulation interfaces. We tend
to conceptualize a computer system as being like a
box of tools, with each tool specialized to do a par-
ticular job when it is called on by the user. Each menu
operation, icon, or typed command can be thought
of as being a tool. Computer systems are now or-
ganized around so-called “applications,” or collec-
tions of these tools that operate on a structured ob-
ject, such as a spreadsheet, drawing, or collection of
e-mail messages.

Each application can be thought of as establishing
a context for user action. The application determines
what actions are available to the user and what ob-
jects can be operated on. Leaving one application
and entering another means changing contexts—the

user gets a different set of actions and a different set
of objects. Each tool works in only a single context
and only when that particular application is active.
Any communication of data between one applica-
tion and another requires a stereotypical set of ac-
tions on the part of the user (copy, switch applica-
tion, paste).

One problem with this style of organization is that
many things the user wishes to accomplish are not
completely implementable within a single applica-
tion. For example, the user may think of “arrange
a trip” as a single task, but it might involve use of
an e-mail editor, a Web browser, a spreadsheet, and
other applications. Switching between them, trans-
ferring relevant data, worrying about things getting
“out of sync,” differences in command sets and ca-
pabilities between different applications, remember-
ing what has already been done, etc., soon becomes
overwhelming and makes the interface more and
more complex. If we insist on maintaining the sep-
aration of applications, there is no way out of this
dilemma.

How do we deal with this in the real world? We might
delegate the task of arranging a trip to a human as-
sistant, such as a secretary or a travel agent. It then
becomes the job of the agent to decide what context
is appropriate and what tools are necessary to op-
erate in each context, and to determine what ele-
ments of the context are relevant at any moment.
The travel agent knows that we prefer an aisle seat
and how to select it using the airline’s reservation
system, whether we have been cleared for a wait-
listed seat, how to lower the price by changing air-
line or departure time, etc. It is this kind of job that
we will have to delegate more and more to software
agents if we want to maintain simplicity of interac-
tion in the face of the desire to apply computers to
ever more complex tasks.

Agents and user intent. The primary job of the agent
is to understand the intent of the user. There are
only two choices: either the agent can ask the user,
or the agent can infer the user’s intent from context.
Asking the user is fine in many situations, but mak-
ing explicit queries for everything soon exhausts the
user. We rely on our human agents to learn from
past experience and to be able to pick up informa-
tion they need from context. We expect human
agents to be able to piece together partial informa-
tion that comes from different sources at different
times in order to solve a problem. Today’s software
does not learn from past interactions, always asks

LIEBERMAN AND SELKER IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000620

explicit questions, and can deal with information ex-
plicitly presented to it only when it is ready to re-
ceive it. This will have to change if we are to make
computers ever more useful.

Getting context sensitivity right is no easy task. It is
particularly risky because if you get it wrong, it be-
comes very noticeable and annoying to the user. As
in any first-generation technology, there will be oc-
casional mistakes. As an example, the feature in Mi-
crosoft Word** that automatically capitalizes the first
word of a sentence can occasionally get it wrong when
you type a word following an abbreviation. The first
time is not so bad. But this becomes even more frus-
trating as the user tries to undo the “correction” and
is repeatedly “recorrected.” One can take this as an
argument not to do the correction at all. But per-
haps the cure is more context sensitivity, rather than
less. The system could notice that its suggestion was
rejected by the user, and possibly also note the ab-
breviation so that its performance improves in the
future.

Instructibility and generalization from context. All
we have to start with, for humans as well as machines,
is concrete experience in specific situations. For that
knowledge to be of any use, it has to be generalized,
and so generalization is key for the agent to infer
the intent of the user. Generalization means remem-
bering what the user did, and removing some of the
details of the particular context so that the same or
analogous experience will be applicable in different
situations.

This involves an essential trade-off. A conservative
approach sticks closely to the concrete experience,
and so achieves increased accuracy at the expense
of restricting applicability to only those situations that
are very similar to the original. A liberal approach
tries to do as much abstraction as possible, so that
the result will be widely applicable, but at the in-
creased risk of not being faithful to the user’s orig-
inal intentions.

We illustrate this relationship between generaliza-
tion and context by talking about several projects that
try to make software agents instructible, using the
technique of “programming by example,”5 some-
times also called “programming by demonstration.”
This technique couples a learning agent with a con-
ventional direct-manipulation graphical interface,
such as a text or graphic editor. The agent records
the actions performed by the user in the interface

and produces a generalized program that can later
be applied to analogous examples.

Authors in this field have noted the “data descrip-
tion problem,” which is the problem of how to use
context in deciding how much to generalize the re-
corded program. The system often has to make the
choice of using extensional descriptions (describing
the object according to its own properties) or inten-
tional descriptions (describing the object according
to its role or relationships with other objects).

Sometimes, knowledge of the application domain
provides enough context to disambiguate actions. In
the programming-by-example graphical editor Mon-
drian,6 the system describes objects selected by the
user according to a set of graphical properties and
relations. These relations are determined by exten-
sional graphical properties (top, bottom, left, right,
color) and by intentional properties of the object’s
role in the demonstration (an object designated as
an example might be described as “the first argument
to the function being defined”).

We provide the user with two different ways to in-
teractively establish a context: graphically, via attach-
ing graphical annotations to selected parts of the pic-
ture,6 or by speech input commands that advise the
software agent “what to pay attention to”7 (see Fig-
ure 3).

Note that neither the user’s verbal instruction alone
nor the graphical action alone makes sense out of
context. It is only when the system interprets the ac-
tion in the context of the demonstration and the con-
text of the user’s advice that the software agent has
enough information to generalize the action.

User advice to a system thus forms an important as-
pect of context. It can be given either during a dem-
onstration, as in Mondrian, or afterward. Future sys-
tems will necessarily have to give the user the ability
to critique the system’s performance after the fact.
User critiques will serve to debug the system’s per-
formance, and serve as a primary mechanism for con-
trolling the learning behavior of the system. The abil-
ity to accept critiques will also increase user
satisfaction with systems, since there will be less pres-
sure to get it right the first time. Notice that making
use of critiques also involves a generalization step.
When the user says “do not do that again,” it is the
responsibility of the system to figure out what “that”
refers to, by deciding which aspects of the context
are relevant. The ability to modify behavior based

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 LIEBERMAN AND SELKER 621

on critiques is an essential difference between gen-
uine human dialog and the rigid dialog boxes offered
by today’s computer interfaces.

A different kind of use of user context is illustrated
by the software agent Letizia.8 Letizia implements
a kind of observational learning, in that it records
and analyzes user actions to heuristically compute
a profile of user interests. That user profile is then
used as context in a proactive search for informa-
tion of interest to the user.

Letizia tracks a user’s selections in a Web browser
and does a “reconnaissance” search to find interest-
ing pages in the neighborhood of the currently
viewed page (see Figure 4). In this agent, it is anal-
ysis of the user’s history that provides the context
for anticipating what the user is likely to want next.
Letizia shows that there is a valuable role for a soft-
ware agent in helping the user to identify intersec-
tions of past context (browsing history) with current
context (the currently viewed Web page and other
pages a few links away from it).

Letizia illustrates a role for software agents in help-
ing the user deal with “context overload.” In situ-
ations such as browsing the Web, so much infor-
mation is potentially relevant that the user is

overwhelmed by the task of finding out what ele-
ments of the context are actually relevant. It is here
that the software agent can step in, heuristically try
to guess which of the available resources might be
relevant, and put the resources most likely to be rel-
evant at the user’s fingertips.

A simple way to deal with the profusion of possible
interpretations of context is for the system to com-
pute a set of plausible interpretations and let the user
choose among them. It is therefore a way for the user
to give advice about context to the system.

In Grammex (“Grammars by Example”),9 the user
can teach the system to recognize text patterns by
presenting examples, letting the system try to parse
them, and then interacting with the system to explain
the meaning of each part. Text patterns such as e-
mail addresses, chemical formulas, or stock ticker
symbols are often found in free text. Apple’s Data
Detectors10 provides an agent that uses a parser to
pick such patterns out of their embedded textual con-
text and apply a set of predetermined actions appro-
priate to the type of object found. For each text frag-
ment, Grammex heuristically produces a menu
containing all the plausible interpretations of that
string in its context. An example string “media.mit.
edu” could mean either exactly that string, a string

Figure 3 Mondrian generalizes according to graphical context, user advice context, and demonstration context

Remember-Action

CONTEXT OF
GRAPHICAL OBJECTS

MOUSE INPUT

Click at (27,52)
Click at (112,52)
and drag to (149,217)

Remember-Point
Remember-Point

“Maintain height”

SPEECH
INPUT

Draw a rectangle
from the left top corner of the first argument, to
a point 1/3 of the width of the first argument,
and whose height is 165 pixels

RECTANGLE

LIEBERMAN AND SELKER IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000622

of words separated by periods, or a recursive def-
inition of a host name. Grammex illustrates how a
software agent can assist a user by computing a set
of plausible contexts, then asking the user to con-
firm which one is correct (see Figure 5).

Emacs Menus11 is a programming environment that
sits in a text editor and analyzes the surrounding text
to infer a context in which a pop-up menu can sug-
gest plausible completions. If the user is in a context
where it is plausible to type a variable, the system
can read the program and supply the names of all
the variables that would make sense at that point.
This expands the notion of context to mean not just
“what is in the neighborhood right now” but, more
generally, “what is typically in a neighborhood like
this.” That significantly improves the system’s use-
fulness and perceived intelligence.

Models of context: User, task, and system models.
All computer systems have some model of context,
even if it is only implicit. The computer “knows” what
instructions it can process at each stage, knows what
input it expects in what order, knows what error mes-
sages to give when there is a problem. Historically
these have been static descriptions, represented by
files or internal data structures, or encoded proce-
durally and used only for a single purpose. The com-
puter’s models take the form of a description of the
system itself, a system model, the user’s state, history
and preferences, a user model, and the goals and ac-
tions intended to be performed by the user, a task
model. To create context-aware applications, user,
task and system models should best be dynamic and
have the ability to explain themselves.

Computer users always hold ideas of what the sys-
tem is, and what they can do with it. Part of the usual
system model is “if I start the right programs and
type the right things, the computer will do things for
me.” Some users understand advanced concepts like
client/server systems, or disk swap space; others do
not. The system’s model may change (for example,
a new version of a browser might integrate e-mail).
The user may or may not be aware of this integra-
tion.

Historically, computer system models are implicitly
held in function calls that expect other parts of the
system to be there. Better for contextual computing
are systems that represent a system model explic-
itly, and try to detect and correct differences between
the user’s system model and what the system can ac-
tually do. This is analogous to “naı̈ve physics” in phys-

ics education, where we help people understand how
what they think they know, wrong as it may be, af-
fects their ability to reason about the system. A dy-
namic system model could be queried about what
the system could do and perhaps even change its re-
sponse as it was crashing or being upgraded.

Norman12 stressed that users frequently have mod-
els of what the system can do that are incomplete,
sometimes intentionally so. They adopt strategies
that are deliberately suboptimal in order to defen-
sively protect themselves against the possibility or
consequences of errors. Discrepancies between a sys-
tem’s assumption that the user has perfect under-
standing of its commands and objects, and the us-
er’s actual partial understanding, can lead to
problems. This further argues for dynamic and ex-

Figure 4 Letizia helps the user intersect past context
(history of browsing concerning investment
brokers) with current context (“Smart Money”)
to find “Broker Ratings.”

AGENT LEARNS
PROFILE OF USER
INTERESTS:
BROKER (17.35),
INVESTMENT (8.5),
MERRILL (7.22)...

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 LIEBERMAN AND SELKER 623

planatory models so that the user and system can
come to a shared understanding of the system’s ca-
pabilities.

A user’s task model is always changing. Perhaps the
user believes he or she needs just a simple calcula-
tion to complete some work. If the result is different
than expected, the user’s task model should change.
The computer also has expectations (e.g., “a user
would never turn me off without shutting down . . . ”).
A typical graphical help system uses a static task
model. “Wizards” typically assume that the user will
always do things in a certain way. The wizards in Mi-
crosoft Windows** take a user through a linear pro-
cedure. Any change from the shown procedure is not
explained. So wizards do not help the user learn to
generalize from a specific situation. Better ap-
proaches can actually use the context to teach con-
cepts that improve user understanding and future
performance.

The COgnitive Adaptive Computer Help (COACH)
system (discussed later) has a taxonomy of user tasks.
This taxonomy allows the system to have a dynamic
task model. Sunil Vemuri13 is building a system called
“What Was I Thinking?” that records segments of
speech, and, without necessarily completely under-
standing the speech, maps the current segment onto
a similar segment that occurred in the recent past.
This system expects that users have different tasks.

Computer programs that anticipate changing uses
are more context-aware.

The computer has a model of what it thinks the user
can do: the user model. In most cases this model is
that the user knows all of its commands and should
enter them correctly. Explicit user models have been
proposed and used for some time. The Grundy sys-
tem14 used a stereotype, a list of user attributes such
as age, sex, and nationality, to help choose books in
a library. Such a stereotype is an example of a user
model that allows a computer to take user context
into account.

“Do What I Mean” or DWIM15 incorporated a sys-
tem model that would change as a person wrote a
program, tracking the program variables and func-
tions. DWIM would notice when a person typed a
function name that had not been defined. It would
act as though it believed the person’s intended task
was to type a known function name and would look
for a similar defined name. DWIM used a dynamic
user model to search through user-defined words for
possible spelling analogs that might be intended. Un-
fortunately, DWIM also made some bad decisions.
This has been corrected in modern successors, which
interactively display suggested corrections and per-
mit easy recovery in case of wrong guesses. Early in
the 1990s Charles River Analytics’ Open Sesame**
tracked user actions in Apple’s Macintosh** oper-
ating system and offered predictive completion of
operation sequences, such as opening certain win-
dows after opening a particular application.

However, just having a user model does not ensure
an improved system. In the 1970s and 80s, Sophie16

and other systems attempted to drive an electronic
teaching system from an expert user model. It was
found that novice users could not be modeled sim-
ply as experts with some missing knowledge. The
things that a user needs to know have more to do with
the user than with the expert he or she might be-
come.17

The COgnitive Adaptive Computer Help (COACH)
system18 uses adaptive task user and system models
to improve the kind of help that can be given. This
system was shown to help users actually improve their
ability to learn to program. As well as incorporating
a dynamic system model, COACH tracked user expe-
rience and expertise and used it to decide what help
to give. The system recorded which constructs were
used, how often, and whether the user’s command
was accepted by the computer, adding usage exam-

Figure 5 Picking an e-mail address out of context and
applying an action to it (top); teaching the
system how to recognize an e-mail address
using Grammex (bottom)

LIEBERMAN AND SELKER IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000624

ples and error examples from other users’ experi-
ences. COACH also added user-defined constructs to
the system model, so that the user can explicitly teach
the computer.

Context-dependent help is help that is relevant to the
commands and knowledge currently active. Relative
to our notions of context, such help systems are us-
ing a system model to make help appropriate to the
situation at the time of the query. Not surprisingly,
such context-dependent or integrated help has been
shown to improve users’ ability to utilize it.19

COACH is a proactive, adaptive help system that ex-
plains procedures in terms of the user’s own con-
text. In contrast to help systems or wizards that use
one example for one problem, COACH explains its
procedures using the present context. COACH was
implemented first for teaching any programming lan-
guage that could be typed through an Emacs-like ed-
itor or C shell command line. A user study demon-
strated that COACH’s adaptive contextual help could
improve LISP students’ ability to learn and write LISP.
COACH models each task at the novice, intermedi-
ate, professional, and expert levels.

Later versions of COACH were deployed as OS/2* (Op-
erating System/2*) Smart Guides. This used graph-
ical, animated, and audio commentary to teach users
about many of the important GUI (graphical user in-
terface) interaction techniques. Figure 6 shows
COACH demonstrating a drag interaction. We call this
image a slug trail, which marks the important visual
context surrounding when to press, move, and lift
up on the mouse. Another technique developed for
COACH is the mask, a graphical annotation creating
a see-through grid that highlights important select-
able items in the context. COACH adaptively creates
the mask on the user interface.

Context for embedded computing

The toilet flushes when the user walks away. The
clock tells us it is time to get up. These are examples
of context awareness with no user typing into a com-
puter. When computers can sense the physical world,
we might dispense with much of what is done with
keyboards and mice. Using knowledge of what we
do, what we have done, where we are, and how we
feel about our actions and environment is becoming
a major part of the user interface research agenda.

People say many things: It is what they do that
counts. One of the obvious advantages of context-

aware computing is that it does not rely on sym-
bols. Symbolic communication must be interpreted
through language; communication through context
focuses on what we actually do and where we are.

Individuals often communicate multiple messages
simultaneously that might be hard to separate. Mes-
sages often communicate things about us (age,
health, sleepiness, social interest in each other, state
of mind, priority of this communication, level of or-
ganization, level in the organization, social back-
ground, etc.) as well as their ostensible content.

Human speech tends to be full of errors. We com-
municate what we think should be interpretable, but
often underspecify in the utterance. Speech is by na-
ture unrelated to its physical subject (persons, places,
things); without feedback it is hard to know how our

Figure 6 COACH explains operations in terms of the
user model (“Level 1” at bottom), system model
(masking disabled text at top), and task model
(icon acted upon and state of mouse at bottom)

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 LIEBERMAN AND SELKER 625

speech is perceived. Our logic, or the correspondence
of what we are saying with the thing we are talking
about, is often flawed.

The modality of verbal communication is often less
dense than direct observation of physical acts. De-
scribing what part of something should be observed
or manipulated in a particular way can be quite cum-
bersome compared to actually doing it and having
an observer watch. Some things are easier done than
said.

Things in your head become things in your life. With
the advent of ever smaller, faster, and cheaper com-
puting and communications, computing devices will

become embedded in everyday devices: clothing,
walls, furniture, kitchen utensils, cars, and many dif-
ferent kinds of handheld gadgets that we will carry
around with us. Efforts such as the MIT Media Lab-
oratory’s Things That Think and Wearable Comput-
ing projects, Xerox Parc’s Ubiquitous Computing,20

Motorola’s Digital DNA, and others, are aimed
toward this future. It is our hope that these devices
will enhance our lives and not be an annoyance, but
that will depend on whether or not the devices can
take the action that is appropriate to the context in
which they will be used.

Everyone finds cell phones a convenience until they
ring inappropriately at a restaurant. Phone compa-
nies bristle at the fact that people habitually keep
cell phones turned off to guard against just this sort
of intrusion. Of course, phones that vibrate, rather
than ring, are one simple solution that does not re-
quire context understanding and illustrates how
sometimes a simple context-free design can work.
But even the vibration puts you in a dilemma about
whether to answer or not. Potentially, a smarter cell
phone of the future could have a GPS (Global Po-
sitioning System), know that it is in a restaurant, and
take a message. Or the phone could respond differ-

ently to each caller, know which callers should im-
mediately be put through, and which could be de-
ferred.

Context will be useful in cutting down the interface
clutter that might otherwise result from having too
many small devices, each with its own interface. Al-
ready, the touch-tone interface to a common office
phone is getting so overloaded with features that
most users have difficulty. Specializing “information
appliance” devices to a particular task, as recom-
mended by Norman,21 simplifies each device, but
leaves the poor user with a proliferation of devices,
each with its own set of buttons, display, power sup-
ply, user manual, and warranty card. As we have
noted, context can be a powerful factor in reducing
user input, in embedded computing devices as well
as desktop interfaces.

Interfaces for physical devices put different con-
straints on user interaction than do screen interfaces.
Display space is small, if any exists, and space for
buttons or other interaction elements is also re-
stricted or may not exist. Users need to keep atten-
tion focused on the real-world task, not on interact-
ing with the device.

Transcription: Translating context into action. Per-
haps the greatest potential in embedded sensory and
distributed computing is the possibility of eliminat-
ing many of the transcription tasks that are other-
wise foisted on users. Transcription occurs when the
user must manually provide, as input, some data that
could be collected or inferred from the environment.
Transcription relies on the user to perform the trans-
lation. This simple act frequently introduces errors.
Ergonomic realities mean that explicit transcription
is bound to be more stressful than transferring in-
formation implicitly. Mitch Stein has also noted the
centrality of the transcription problem,22 and pro-
moted Krishna Nathan’s work at IBM on the Cross-
Pad** product in response to the handwritten-notes-
to-typing transcription that people often perform.
Transcription can also take the form of translating
a user’s intuitive goal into a formal language that the
computer understands; the most extreme example
is the translation of procedural goals into a program-
ming language. The difficulty of learning new com-
puter interfaces, and of programming itself, is largely
traceable to the cognitive barriers imposed by this
kind of transcription.

“Smart” devices that sense and remember aspects
of the surrounding context are becoming interfaces

LIEBERMAN AND SELKER IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000626

Describing what should be
done can be quite

cumbersome ... some
things are easier done

than said.

to computational elements, improving human-com-
puter relationships. These devices will be able to lis-
ten to and recognize speech input, perform simple
visual recognition, and perhaps even sense the emo-
tional state of the user, via sensors being developed
in Rosalind Picard’s Affective Computing project.23

Within a very short time, all desktop software, in-
cluding Internet accessors, will record parts of their
human interface; sensors will record workers’ actions
in offices, labs, and other environments. The chal-
lenge for the software will be to determine what parts
of the context are relevant.

At the MIT Media Lab’s Context-Aware Computing
Lab, we have developed several interfaces that il-
lustrate the power of automatically sensing context
to eliminate unnecessary transcription tasks. These
fall into two categories. The first is context-aware
devices that augment the static environment, such
as intelligent furniture with embedded computing
and interaction capabilities. The second is wearable,
portable, or attachable devices that augment the
users themselves.

The simplest project in the area of intelligent fur-
niture is the Talking Couch, developed at IBM Al-
maden’s USER group. A couch positioned in a lobby
often serves the purpose of inviting the user to take
a break to wait for something to happen. Usually
magazines are on the tabletop; a TV might be on in
the corner. The digital couch does more—it orients
the visitor, suggesting what he or she could do dur-
ing this break. It speaks as its occupant sits down,
informing the visitor about what is going on, what
time it is, and what he or she might do. It announces
when the scheduled conference has its next break,
when the cafeteria might be open, and who the next
speaker is. If the occupant is wearing a specially de-
signed personal digital assistant (PDA), the couch
goes on to point out specific user information that
could be relevant: “It is always good to take a break;
you have three things you said you wanted to work
on when you had time.” Another message might be:
“In 15 minutes you have to give a talk in the audi-
torium.” The first generic reminder message, and the
more timely talk reminder message, illustrate how
being reminded might be useful or irritating. The
talking couch creates a user model of preferences
and ambitions. Without the net-connected PDA, the
couch works with the dynamic system model of its
surroundings. It creates a task model: a person sit-
ting on the couch would like to be oriented to what
is going on in the area. With the PDA it adds to this
a schedule-based model of the user.

Another project instruments a bed with computing
capabilities. A projection screen is mounted above
the bed (Figure 7). A bed is expected to be the place
for a calm, relaxing break. A projection of a sunrise
on the ceiling might be nice, especially if it could act
as an alarm clock, set to the time you should get up.
How about going to sleep with the stars in the sky,
and a constellation game to put you to sleep? If you
play it too long, the game should ask if you want to
get up at a later time. Projecting pages on the ceil-
ing would allow you to read without propping your-
self up on your elbows or a pillow. A multimedia bed
could provide such contextually appropriate content
as well as gesture recognition and postural correc-
tion and awareness.

Context can augment the mobile, as well as the static
environment. A system consisting of an electronic
oven mitt and trivet (the “talking trivet”) uses con-
text to transform a thermometer into a cooking safety
watchdog. The talking trivet uses task models of tem-
peratures on an oven mitt to decide how to commu-
nicate to a cook.

The talking trivet is a digital enhancement of com-
mon objects (see Figure 8). Sensing and memory in
an oven mitt make it a better tool than a simple ther-
mometer reading. The system uses a computer to
take time and temperature into account in determin-
ing whether food is in need of rewarming (under 90
degrees Fahrenheit), hot and ready to eat, ready to
take out (a temperature hotter than boiling water
will dry food and browning starts soon after), or on
fire (above 454 degrees Fahrenheit). The model is
key to the value of the temperature reading. The goal
concerns the importance of what the mitt is doing—it
could prevent a kitchen fire. The uses of the oven
mitt/trivet combination are simple; the goals of the
user obviously depend on the reported temperature.

The talking trivet could well be in a better position
to know when to take a pizza out of an oven than
a person—it would measure the temperature when
the 72-degree pizza is put in a 550-degree oven, and
using its pizza model, tell the user when the pizza
should be done. If the oven mitt touches the pan and
finds it to be only 100 degrees after 10 minutes, it
should go back to its contextual model and reflect
that this item must be much more massive than a
pizza. It might express alarm to the user: 550 degrees
is too hot for a roast! This example underscores the
value of a task model in a contextual object. The talk-
ing trivet need not be “told” anything explicit. It can
act as a fire alarm, cooking coach, and egg timer,

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 LIEBERMAN AND SELKER 627

based only on what it experiences and its models of
cooking and the kitchen.

The view of context from other fields

Many other fields have treated the problem of con-
text. In what follows, we present a little of our per-
spective on how other fields have viewed the con-
text problem.

Mathematical and formal approaches to AI. Several
areas of mathematics, and formal approaches to ar-
tificial intelligence (AI), have tried to address con-
text in reasoning. When formal axiomatizations of
commonsense knowledge were first used as tools
for reasoning in AI systems, it quickly became clear
that they could not be used blindly. Simple inferenc-
es: “If Tweety is a bird, then conclude that Tweety
can fly” seemed plausible until the possibility that
Tweety might be a penguin or an ostrich, a stuffed
bird, an injured bird, a dead bird, etc., was consid-
ered. It would be impossible to enumerate all the
contingencies that would make the statement defin-
itive.

McCarthy24 introduced the idea of circumscription
as a way to contextualize axiomatic statements. Like
many of the formal approaches that try to deal with
the problem, this technique gives to each logical
predicate an extra argument to represent the con-
text. The notation tries to make this extra argument
implicit to avoid complicating proofs that use the
technique. Then we could say, using commonsense
reasoning, “If X is a bird, then assume X can fly, un-
less something in the context explicitly prevents it.”
This is quite a hedge!

In artificial intelligence, researchers have identified
the so-called “frame problem.” In planning and ro-
botics systems that deal with sequences of actions,
each action is typically represented as a function
transforming the state of the world before the ac-
tion to the state after the action. The frame prob-
lem is to determine which statements that were true
before the action remain true after the action, or how
the action affects and is affected by its context. Solv-
ing the frame problem requires making inferences
about relevance and causal chains.

In traditional mathematical logic, statements proven
true remain true forever, a property called mono-
tonicity. However, the addition of context changes
that, since if we learn more about the context (for
example, we learn that Tweety recently died), we

Figure 7 The electronic bed

Figure 8 Talking trivet

LIEBERMAN AND SELKER IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000628

might change our minds. Nonmonotonic logic stud-
ies this phenomenon. A standard method for deal-
ing with nonmonotonicity in AI systems is the so-
called “truth maintenance system,” which records
dependencies among inferences and can retract as-
sertions if all the assumptions on which they rest be-
come invalid.

Even traditional modal logics can be seen as a re-
action to the context problem. Modal logics intro-
duce quantifiers for “necessary” and “possible”
truths, and are typically explained in terms of pos-
sible world semantics. Something is necessary if and
only if it is true in every possible world, and possible
in case it is true in at least one world. Each possible
world represents a context, thus modal logics enable
reasoning about the dependence of statements on
context.

A continuing issue in AI is also the role of background
knowledge or “commonsense” knowledge as context.
A controversial position, probably best exemplified
by Doug Lenat’s CYC project,25 maintains that in-
telligence in systems stems primarily from knowing
a large number of simple facts, such as “water flows
downhill” or “if someone shouts at you, she is prob-
ably angry with you.” The intuition is that even sim-
ple queries depend on understanding a large amount
of context: commonsense knowledge that remains
unstated, but is shared among most people with a
common language and culture. The CYC project has
attempted for more than ten years to codify such
knowledge, and has achieved the world’s largest
knowledge base, containing more than a million facts.
However, the usability of such a large knowledge
base for interactive applications such as Web brows-
ing, retrieval of news stories, or user interface as-
sistants has yet to be proven. You can get knowledge
in, but it is not so easy to get it out.

The CYC approach could be labeled the “size mat-
ters” position. It could also be considered an out-
growth of the expert systems movement of the 1980s,
where systems of rules for expert problem-solving
behavior were created by interviewing domain ex-
perts, and the rule base matched to new situations
to try to determine what to do. Expert systems were
brittle; since there was no explicit representation of
the context in which the expertise was situated, small
changes in context would cause previously entered
rules to become inapplicable. Many researchers at
Stanford, including John McCarthy and Mike Gen-
esereth, worked on axiomatic representations of

commonsense knowledge and theorem-proving tech-
niques to make these representations usable.

AI is now turning toward approaches in which large
amounts of context are analyzed, both through
knowledge-based methods and statistically, to detect
patterns or regularities that would enable better un-
derstanding of context. Data mining techniques can
be viewed in this light. Data mining is a knowledge
discovery technique that analyzes large amounts of
data and proposes hypothetical abstractions that are
then tested against the data. The Web has also en-
couraged the rise of information extraction26 tech-
niques, where Web pages are analyzed with parsers
that stop short of complete natural language under-
standing. The parsers approximate inference using
techniques such as TFIDF (term frequency times in-
verse document frequency) keyword analysis, latent
semantic indexing, lexical affinity (inferring seman-
tic relations from proximity of keywords), part-of-
speech tagging and partial parsers. The availability
of semantic knowledge bases such as WordNet27 also
encourages partial understanding of context ex-
pressed in natural language text.

Finally it is worth noting that there is a dissenting
current in AI that decries the use of any sort of rep-
resentation, and therefore denies the need for con-
text-aware computing. This position is best repre-
sented in its most extreme form by Rodney Brooks,28

who maintained that intelligence could be achieved
in a purely reactive mode, without any need for main-
taining a declarative representation. Abstraction is
built up only by a subsumption architecture, where
sets of reactive behaviors are successively subsumed
by other reactive behaviors with greater scope.

It should be clear from the previous discussion that
our position on context places emphasis on shared
understanding of context between humans and ma-
chines, growing as both the computer and the user
observe and understand mutual interaction. We be-
lieve that even though some knowledge may be cod-
ified in advance, it is impossible to assume, as CYC
and the Stanford axiomatic theoreticians do, that
most or all can be codified in advance. We also re-
ject the Brooks position that representation and con-
text is unnecessary for intelligence. We would like
to structure an interaction so that users teach the
system just a little bit of context with each interac-
tion, and the system feeds back a little bit of its un-
derstanding at each step. We believe that in this way,
representations of both commonsense and personal
context can be built up slowly over time.

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 LIEBERMAN AND SELKER 629

Context in the human-computer interface field. Con-
text plays a big role in information visualization and
visual design in general. Tufte29 and other authors
have noted that the choice of visual appearance of
an interface element should depend on its context,
since human perception tends to pick up similarities
of color, shape, or alignment of objects. Visual sim-
ilarity in a design implies semantic similarity, whether
it is intentional or not. A visual language of inter-
face design needs to consider these relationships, and
tools can be designed that automatically map seman-
tic relationships into visual design choices.30,31

Introductory texts on user interface design stress the
importance of interaction with end users. Designers
are admonished to ask users what they want, testing
preliminary mock-ups or low-fidelity prototypes early
in the design process. User-centered and participa-
tory design practices have been especially widespread
in Scandinavia. This gives the interface designers the
best understanding of the users’ context in order to
minimize mismatches between the designers’ and the
users’ expectation.

Context in sociology and behavioral studies. Ap-
proaches in sociology have stressed the importance
of context in observing how people behave and in
understanding their cognitive abilities. Lucy Such-
man and colleagues32 have championed what they
call the situated action approach33 that stresses the
effect of shared social context on human behavior.
However, the situated critique focuses on getting sys-
tem designers to adapt designs to context, and not
on having the system itself dynamically adapt to con-
text.

Another relevant field is the activity theory ap-
proach,34 growing out of a Russian psychology move-
ment. Other related fields, such as industrial systems
engineering, ecological psychology, ethology, and
cognitive psychology, also study context. They inves-
tigate how the contexts of behavior are critical for
determining both what constitutes successful behav-
ior and what strategies an agent must employ to gen-
erate that behavior.

Probably the most striking work in understanding
how context affects human interaction with comput-
ers is Clifford Nass and Byron Reeves’ Media Equa-
tion.35 Ingeniously designed experiments dramati-
cally demonstrate how individuals transfer human
social context into interaction with machines, vol-
untarily or not.

Simplifying interfaces without “dumbing
them down”

Using computers takes too much concentration. It
takes significant time to learn and deal with com-
puter interaction, rather than the task one is attempt-
ing. Individuals must switch contexts, from thinking
about what they are interested in to thinking explic-
itly about what commands will have the effects they
intend. The danger is that the presence of comput-
ers may distract from direct experience. It is similar
to an eager relative, so engrossed in taking pictures
at a beach party that we wonder if they are truly ex-
periencing the beach.

Context-aware computing gives us a way out of this
dilemma. Tools can get in the way of tasks, and con-
text-aware computing gives us the potential for tak-
ing the tool out of the task. When computers or de-
vices sense automatically, remember history, and
adapt to changing situations, the amount of unnec-
essary explicit interaction can be reduced, and our
systems will be more responsive as a result.

We want simpler interfaces. But if the only way we
can get simpler interfaces is to reduce functionality,
we “dumb down” our interfaces. Reduced function-
ality works well in simple situations, but can be in-
appropriate or even dangerous when the situation
becomes more complex. Context-aware agents and
context-sensitive devices can give us the sophisticated
behavior we need from our artifacts without burden-
ing the users with complex interfaces.

We have seen how software agents that record and
generalize user interactions, and sensor-based de-
vices that provide context-appropriate behavior, hold
the potential for getting us off the treadmill of added
features. It is now time to integrate what we have
learned about context, both from the mathematical
and sociological fields in which it has been tradition-
ally studied, and from the new perspective that comes
from AI and human-computer interfaces, to work
toward the effortless success we always dream of.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft Corporation,
Allaire Corporation, Apple Computer, Inc., or A. T. Cross Com-
pany.

Cited references

1. C. Wisneski, H. Ishii, A. Dahley, M. Gorbet, S. Brave, B. Ull-
mer, and P. Yarin, “Ambient Displays: Turning Architectural

LIEBERMAN AND SELKER IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000630

Space into an Interface Between People and Digital Infor-
mation,” Proceedings of First International Workshop on Co-
operative Buildings (CoBuild ’98), Darmstadt, Germany (Feb-
ruary 25–26, 1998), pp. 22–32.

2. Software Agents, J. Bradshaw, Editor, AAAI Press/MIT Press,
Menlo Park, CA (1997).

3. P. Maes, “Agents That Reduce Work and Information Over-
load,” Communications of the ACM 37, No. 7, 30–40 (July
1994).

4. T. Selker and W. Burleson, “Context-Aware Design and In-
teraction in Computer Systems,” IBM Systems Journal 39, Nos.
3&4, 880–891 (2000, this issue).

5. Watch What I Do: Programming by Demonstration, A. Cypher,
Editor, MIT Press, Cambridge, MA (1993).

6. H. Lieberman, “Mondrian: A Teachable Graphical Editor,”
Watch What I Do: Programming by Demonstration, A. Cypher,
Editor, MIT Press, Cambridge, MA (1993).

7. E. Stoehr and H. Lieberman, “Hearing Aid: Adding Verbal
Hints to a Learning Interface,” Proceedings of the Third ACM
Conference on Multimedia, San Francisco, CA (November 5–9,
1995).

8. H. Lieberman, “Autonomous Interface Agents,” ACM Con-
ference on Human Factors in Computer Systems, Atlanta, GA
(March 22–27, 1997), pp. 67–74.

9. H. Lieberman, B. Nardi, and D. Wright, “Training Agents
to Recognize Text by Example,” ACM Conference on Auton-
omous Agents, Seattle, WA (May 1–5, 1999). Also to appear
in the Journal of Autonomous Agents and Multi-Agent Systems
(2000).

10. B. Nardi, J. Miller, and D. Wright, “Collaborative, Program-
mable Intelligent Agents,” Communications of the ACM 41,
No. 3, 96–104 (March 1998).

11. C. Fry, “Programming on an Already Full Brain,” Commu-
nications of the ACM 40, No. 4, 55–64 (April 1997).

12. D. A. Norman, “Some Observations on Mental Models,” Men-
tal Models, D. Gentner and A. L. Stevens, Editors, Lawrence
Erlbaum Associates, Hillsdale, NJ (1983), pp. 15–34.

13. S. Vemuri, personal communication (1999). Also see http://
context99.www.media.mit.edu/courses/context99/.

14. E. Rich, “Users Are Individuals: Individualizing User Mod-
els,” International Journal of Man-Machine Studies 18, 199–
214 (1983).

15. C. Lewis and D. A. Norman, “Designing for Error,” Read-
ings in Human-Computer Interaction: A Multi-Disciplinary Ap-
proach, R. M. Baecker and W. A. S. Buxton, Editors, Mor-
gan Kaufmann Publishers, Inc., Los Altos, CA (1987), pp.
621–626.

16. J. Brown, R. Burton, and A. G. Bell, “Sophie: A Step Toward
a Reactive Environment,” International Journal of Man Ma-
chine Studies 7 (1975).

17. D. H. Sleeman and J. S. Brown, “Introduction: Intelligent
Tutoring Systems: An Overview,” Intelligent Tutoring Systems,
D. H. Sleeman and J. S. Brown, Editors, Academic Press,
Burlington, MA (1982), pp. 1–11.

18. T. Selker, “COACH: A Teaching Agent That Learns,” Com-
munications of the ACM 37, No. 7, 92–99 (July 1994).

19. N. S. Borenstein, “Help Texts vs Help Mechanisms: A New
Mandate for Documentation Writers,” Proceedings of the
Fourth International Conference on Systems Documentation,
Ithaca, NY, (June 18–21, 1985), pp. 78–83.

20. M. Weiser, “The Computer for the 21st Century,” Scientific
American 265, No. 3, 94–104 (September 1991).

21. D. Norman, The Invisible Computer, MIT Press, Cambridge,
MA (1998).

22. J. Landay and R. C. Davis, “Making Sharing Pervasive: Ubiq-

uitous Computing for Shared Note Taking,” IBM Systems
Journal 38, No. 4, 531–550 (1999).

23. R. Picard, Affective Computing, MIT Press, Cambridge, MA
(1997).

24. J. McCarthy, “Circumscription—A Form of Non-Monotonic
Reasoning,” Artificial Intelligence Journal 13, 27–39 (1980).

25. D. B. Lenat and R. V. Guha, Building Large Knowledge Based
Systems, Addison-Wesley Publishing Co., Reading, MA
(1990), pp. 38–48.

26. W. G. Lehnert, “Cognition, Computers and Car Bombs: How
Yale Prepared Me for the 90’s,” Beliefs, Reasoning, and De-
cision Making: Psycho-Logic in Honor of Bob Abelson, R. C.
Schank and E. Langer, Editors, Lawrence Erlbaum Associ-
ates, Hillsdale, NJ (1994), pp. 143–173.

27. C. Fellbaum, WordNet: An Electronic Lexical Database, MIT
Press, Cambridge, MA (1998).

28. R. A. Brooks, “Intelligence Without Representation,” Arti-
ficial Intelligence Journal 47, 139–159 (1991).

29. E. Tufte, Visual Explanation, Graphics Press, Hopkinton, MA
(1996).

30. M. Cooper, “Computers and Design,” Design Quarterly 142,
22–31 (1989).

31. H. Lieberman, “Intelligent Graphics,” Communications of the
ACM 39, No. 8, 38–48 (August 1996).

32. L. Suchman, Plans and Situated Actions, Cambridge Univer-
sity Press, Cambridge, UK (1987).

33. J. Barwise and J. Perry, Situations and Attitudes, MIT Press,
Cambridge, MA (1983).

34. Context and Consciousness: Activity Theory and Human-Com-
puter Interaction, B. Nardi, Editor, MIT Press, Cambridge,
MA (1995).

35. B. Reeves and C. Nass, The Media Equation: How People Treat
Computers, Television, and New Media Like Real People and
Places, Cambridge University Press, Cambridge, MA (1996).

General references

The Art of Human-Computer Interface Design, B. Laurel, Editor,
Addison-Wesley Publishing Co., NY (1989).
P. Langley, Elements of Machine Learning, Morgan Kaufmann,
San Francisco, CA (1996).
H. Lieberman and D. Maulsby, “Software That Just Keeps Get-
ting Better,” IBM Systems Journal 35, Nos. 3&4, 539–556 (1996).
H. Yan and T. Selker, “A Context-Aware Office Assistant,” ACM
International Conference on Intelligent User Interfaces (IUI-2000),
New Orleans, LA (January 9–12, 2000).

Accepted for publication May 9, 2000.

Henry Lieberman MIT Media Laboratory, 20 Ames Street, Cam-
bridge, Massachusetts 02139-4307 (electronic mail: lieber@media.
mit.edu). Dr. Lieberman has been a research scientist at the MIT
Media Laboratory since 1987. His interests are in the intersec-
tion of computer graphics, human interface, and artificial intel-
ligence. His current projects involve media interfaces that learn
from examples presented by the user. He is a member of the Soft-
ware Agents Group, which works on interface agents, intelligent
assistants for interactive media applications. He has also worked
with the Visible Language Workshop, which is concerned with
visual design issues. From 1972 to 1987 he was a researcher at
the MIT Artificial Intelligence Laboratory, where he worked on
parallel object-oriented programming, knowledge representation,
programming environments, machine learning, and computer sys-

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 LIEBERMAN AND SELKER 631

tems for education. He holds a doctoral-equivalent degree (Ha-
bilitation) from the University of Paris and was a visiting pro-
fessor there.

Ted Selker MIT Media Laboratory, 20 Ames Street, Cambridge,
Massachusetts 02139-4307 (electronic mail: selker@media.mit.edu).
Dr. Selker is an MIT professor focusing on context-aware com-
puting. Before joining the MIT faculty he worked at IBM for over
a decade, created the User System Ergonomic Laboratory, and
was named an IBM Fellow. During that time he also served on
the faculty of Stanford University. He is recognized for the de-
sign of the “TrackPointt III” in-keyboard pointing device, for
creating the “COACH” adaptive agent that improves user per-
formance (Warp Guides in OS/2), and for the design of the Think-
Padt 755CV notebook computer that doubles as a liquid crystal
display projector. Dr. Selker obtained his B.S. degree from Brown
University, his M.S. degree from the University of Massachusetts,
and his Ph.D. degrees from the City University of New York in
computer science and information sciences and applied math-
ematics. Prior to joining IBM Research in 1985, he worked at the
Xerox Palo Alto Research Center, Atari Research Labs, and Stan-
ford University, and was also a Stanford consulting professor. He
is Chief Scientist for Vert Corporation, is on the Board of Di-
rectors for GetGoMail.com, and is on the Board of Advisors of
FindTheDot.com and Xift.

LIEBERMAN AND SELKER IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000632

