
Out-of-Core Bundle Adjustment for Large-Scale 3D Reconstruction

Kai Ni∗, Drew Steedly†, and Frank Dellaert∗

∗College of Computing, Georgia Institute of Technology, Atlanta, GA 30332
†Microsoft Live Labs, Redmond, WA 98052

{nikai,dellaert}@cc.gatech.edu, steedly@microsoft.com

Abstract

Large-scale 3D reconstruction has recently received

much attention from the computer vision community. Bun-

dle adjustment is a key component of 3D reconstruction

problems. However, traditional bundle adjustment algo-

rithms require a considerable amount of memory and com-

putational resources. In this paper, we present an ex-

tremely efficient, inherently out-of-core bundle adjustment

algorithm. We decouple the original problem into several

submaps that have their own local coordinate systems and

can be optimized in parallel. A key contribution to our

algorithm is making as much progress towards optimizing

the global non-linear cost function as possible using the

fragments of the reconstruction that are currently in core

memory. This allows us to converge with very few global

sweeps (often only two) through the entire reconstruction.

We present experimental results on large-scale 3D recon-

struction datasets, both synthetic and real.

1. Introduction

In this paper, we present an approach for generating

large-scale three-dimensional reconstructions from images.

Our algorithm is inherently out-of-core and parallel and

therefore capable of tackling large optimization problems

with fewer computational resources. In addition, high qual-

ity reconstructions of submaps can be computed early on in

the optimization, making the approach well suited for on-

line mapping situations.

1.1. Motivation

Large-scale 3D reconstruction, especially image-based

urban reconstruction, has received considerable attention

recently from the computer vision community [8, 16, 15].

High-quality 3D models are useful in various successful

cartographic and architectural applications, such as Google

Earth or Microsoft Live Local.

Traditional approaches usually build 3D city models

Figure 1. The optimized St. Peters Basilica data set, which con-

tains 142, 453 3D points. Each color represents a certain submap,

optimized independently.

from aerial images. In [8], Fradkin uses stereo reconstruc-

tion to compute a disparity map and an elevation map under

the assumption that the surfaces are planar. Google Earth

and Microsoft Live Local also rely on aerial imagery. These

systems typically suffer from bad texture quality on the

sides of buildings because of the extreme viewing angles.

More accurate and better textured models can be created by

using ground-level images. With ground-level imagery, the

number of images needed to cover an area is significantly

higher. This scheme results in a more challenging recon-

struction problem.

At the heart of 3D reconstruction problems is structure

from motion (SFM). In SFM, we infer the structure of the

scene and the motion of the camera by using the correspon-

dences between features from different views. In particular,

certain types of features (points, lines, and so forth) are first

extracted and matched across images. Then the camera pa-

rameters and feature locations are optimized to minimize a

cost function, such as the 2D projection errors. The non-

linear minimization of the projection errors is referred to as

bundle adjustment in the literature[18].

In [14], the structure and the motion are first computed



from the multi-view relations and then refined using bundle

adjustment as the last step. Brown [4] employed an incre-

mental bundle adjustment algorithm to do 3D object recon-

struction. In particular, the approach incrementally inserts

new frames into the optimization problem, which computes

well conditioned initial reconstructions. These experiments

mainly focused on relatively small-scale objects and scenes.

Snavely [15] employed an approach similar to that in [4] to

build a photo tourism system enabling users to travel in a

large virtual 3D world. However, their incremental bun-

dle adjustment approach does not scale well, and the algo-

rithm inevitably becomes slow when the number of regis-

tered cameras increases.

We create large-scale reconstructions in a hierarchical

manner, which scales better than incremental approaches.

We partition the scene into several smaller scenes, or

submaps, that are independently optimized. The variables

in the submaps not directly used to merge submaps are fac-

tored out and their linearizations are cached.

A key insight in this paper is that linearization of

submaps stay accurate during the global alignment when

cameras and points are parameterized relative to a base

node local to their corresponding submap. This allows us

to globally merge submaps without requiring that the en-

tire reconstruction be in core memory at once. As we will

show, this leads to an inherently parallel, out-of-core imple-

mentation. Our approach requires far fewer passes through

the entire reconstruction, which corresponds to substantial

savings in disk I/O.

Finally, since the first step of our algorithm is to optimize

each submap, our algorithm is particularly useful in online

or distributed settings. In batch algorithms, all the images

must be available before a reconstruction is started. Using

our approach, usable reconstructions of each submap are

generated as soon as they are captured.

1.2. Related Work

Many techniques have been used in large-scale urban re-

construction to avoid having to do a full global bundle ad-

just. One approach is to augment the image capture system

with additional sensors, such as GPS receivers, so that accu-

rate reconstructions can be generated with only local bundle

adjustment. Chou [5] used a multi-image triangulation pro-

cess to build up the feature correspondences and extract the

information of lines and surfaces from the urban environ-

ment. Akbarzadeh et al. [1] introduced a video-based ur-

ban 3D reconstruction system in which the scene structure

was computed using the five-point algorithm as described in

[13]. However, both approach [1] and [5] heavily rely on ac-

curate camera pose information which is often unavailable

in more general systems.

Teller developed an urban reconstruction system [16] in

which rotations and translations of cameras are decoupled

and estimated separately. This approach assumes that ex-

trinsic poses are approximately known, and bundle adjust-

ment is employed to align the rotations of all cameras. In

addition, the system requires that images in the same set

share the same optical center and that the scene contains

enough line features.

In many situations, it is not practical (or possible) to

augment the capture setup in order to avoid global bun-

dle adjustment. Therefore, there has been much work di-

rected at making global bundle adjustment more efficient.

In bundle adjustment, it is important to take advantage of

the block sparsity structure of the system of equations. In

[6], the block-diagonal structure of the Hessian matrix was

exploited and the Schur complement was used to first factor

out the structure parameters, compute the camera poses, and

then back substitute for the structure parameters. For small

numbers of cameras, [6] showed that a dense representa-

tion for the reduced camera matrix was sufficient. As the

number of images increases, the size of the reduced camera

matrix increases, and its factorization becomes a bottleneck.

At that point, it is necessary to take full advantage of all the

sparsity in the system of equations.

There are two main ways to solve a sparse systems of

equations, iterative approaches such as conjugate gradient,

and direct sparse solvers [18]. One advantage of conju-

gate gradient is that the full Hessian does not need to be

stored, substantially lowering the amount of memory used

at the expense of computing the error and derivatives many

more times. Conjugate gradient methods tend to be com-

petitive with direct linear solvers such as Cholesky decom-

position only when sophisticated preconditioners are used.

Our approach maintains the computational efficiency of di-

rect solvers while not requiring that the entire Hessian be

stored in physical memory at the same time.

For large-scale urban environments, the factored sparse

matrices in traditional bundle adjustment are often still too

big to fit into core memory. Therefore, more sophisticated

techniques must be used. One option is to take a hierarchi-

cal, divide-and-conquer approach. For example, in both [7]

and [12] the scene is partitioned into several smaller scenes

that are easier to solve.

Nested dissection is an approach that is closely related to

ours. It is a divide-and-conquer approach applied directly to

solving a sparse system of equations. The recursive par-

titioning approach of [3]is an example of using a nested

dissection in an aerial photogrammetry setting. In nested

dissection, the parameter network is partitioned into sev-

eral submaps. The submap parameters are grouped together

and ordered first in the Hessian. Parameters associated with

measurements that span submaps are called separator vari-

ables, and are ordered last. By ordering the variables in

this manner, a standard sparse Cholesky factorization will

compute the factorization of each submap first, followed



by the factorization of the separator. Because submap vari-

ables do not have connections to variables in other submaps,

the Cholesky factorization can be modified to compute the

submap factorizations in parallel.

Since bundle adjustment is a non-linear optimization,

Levenberg-Marquardt is used to iteratively solve for the

minimum of the cost function. Sparse Cholesky factor-

izations are in the inner loop of the Levenberg-Marquardt

iterations. Therefore, while nested dissection can be im-

plemented in a parallel and out-of-core manner, it requires

sweeping through the entire reconstruction as well as com-

munication between processes during every iteration. In

contrast, we iterate each submap to convergence before

merging them, requiring only a very small number of global

iterations. This means our approach needs very little com-

munication between processes and a much smaller number

(often only one or two) of sweeps through the entire recon-

struction.

2. Notation and Bundle Adjustment Review

In photogrammetric bundle adjustment, we jointly esti-

mate the optimal 3D structure as well as the camera parame-

ters by minimizing a least-squares cost function. Typically,

the measurement function hk(.) is non-linear, and one as-

sumes a normally distributed measurement noise with asso-

ciated covariance matrix Σk, leading to

K
∑

k=1

‖hk(xik
, ljk

) − zk‖
2

Σk
(1)

Above, xi(i ∈ 0...M) represents the intrinsic and extrinsic

camera calibrations, li(j ∈ 1...N) represents the 3D struc-

ture, and zk(k ∈ 1 . . . K) represents the 2D measurement

of the point ljk
in camera xik

. The notation ‖.‖
2

Σ
stands for

the squared Mahalanobis distance with covariance matrix

Σ.

Overall, we seek the maximum a posteriori (MAP) es-

timate for the camera poses and the 3D structure given the

feature measurements. Under the assumption of indepen-

dent, zero-mean, normally distributed noise, the MAP es-

timate is the minimum of the non-linear least-squares cost

function given in (1). Equation 1 can be linearized as

hk(xik
, ljk

)−zk ≈
{

hk(x0

ik
, l0jk

) + Hik

k δxik
+ J

jk

k δljk

}

−zk

(2)

where Hik

k , J
jk

k are the Jacobians of hk(.) evaluated at

(x0
ik

, l0jk
).

Inserting Equation 2 into Equation 1, we obtain

δ∗ = argmin
δ

{

K
∑

k=1

∥

∥

∥
Hik

k δxik
+ J

jk

k δljk
− ek

∥

∥

∥

2

Λi

}

where we define ek
∆
= zk − hk(x0

ik
, l0jk

).

Figure 2. The block-structured matrix A′ for a typical SFM prob-

lem.The blue circles correspond to cameras and the blue squares

correspond to point parameters.

By combining the Jacobians into a matrix A and the vec-

tors ek into a right-hand side (RHS) vector c, we obtain:

δ∗ = argmin
δ

‖Aδ − c‖
2

2
(3)

Solving for the update step δ requires first computing the

Cholesky factorization of AT A = RT R. The update step is

computed by solving two triangular systems of equations,

RT y = AT c and Rδ = y. The sparse block structure of the

matrix A, which we denote by A′, is shown in Figure 2.

For large 3D reconstruction problems, the computational

cost of the Cholesky factorization begins to dominate. It is

well known that proper ordering of the columns of A to

reduce the fill-in of non-zero entries in R has a dramatic

effect on both the required storage and computational re-

sources [17]. Two commonly used variable reordering al-

gorithms are approximate minimum degree (AMD) [2] and

nested dissection [10] (also called recursive partitioning in

[3]). Nested dissection is closely related to our approach

and the two are compared in the following section.

3. Submap-Based Reconstruction

In our approach, the SFM problem is first partitioned

into submaps, setting the stage for a divide-and-conquer ap-

proach. In order to allow us to optimize the submaps inde-

pendently, we parameterize the submap nodes relative to a

local coordinate frame, which is accomplished by assigning

a base node bp to each submap Mp, as illustrated in Figure

3. Poses and landmarks in a submap are parameterized rel-

ative to this base pose rather than the global frame.

Measurements that depend on parameters in different

submaps Mp and Mq, are inter-measurements, Zp,q. Mea-

surements which constrain nodes within the same submap

Mp are intra-measurements, Zp. Parameters in a submap

that contribute to inter-measurements are the boundary

variables Sp, of that submap. All others are internal vari-

ables,Vp, of the submap. The set of base poses B and



boundary variables from all submaps constitute the sepa-

rating set:

S = S1 ∪ · · · ∪ SP ∪ B

In the sections below, we outline the proposed approach,

which consists of iterating over three distinct stages:

1. The internal variables for each submap are factored

out. The processing in each submap is independent

and can be done in parallel. This stage results in a

reduced system of equations that only depends on the

separator variables.

2. The separator variables are optimized using the cached

linearization of the intra-measurements. The inter-

measurements are relinearized at each iteration of the

separator optimization. At the end of this stage, the

separator variables are optimal up to the linearization

of the intra-measurements.

3. The internal variables for each submap are optimized

with the separator variables locked. Again, the submap

processing can be done in parallel. Note that stage 1

can be done while each submap is still in memory from

stage 3.

Our algorithm often converges to a minimum of the non-

linear cost function in only two iterations. This is impor-

tant in for the both the parallel and out-of-core implemen-

tation of our algorithm. Each submap has to be paged into

memory during every iteration, incurring a large disk IO

penalty each time. There is also a communication overhead

between processors in order to collect the submap lineariza-

tions onto the same processor in step two.

One of the main elements that enables such rapid con-

vergence is the introduction of the local coordinate sys-

tem. This allows the cached linearizations of the intra-

measurements to remain valid even when the submap under-

goes large transformations during the separator optimiza-

tion. Another way we limit the number of global iterations

is by squeezing as much utility out of the information we

have in memory at any one time. For example, we imple-

ment a full non-linear optimization to polish the internal

variables instead of simply back-substituting for a single,

linearized update step in stage three. This leads to a better

linearization point of the intra-measurements in step one.

Similarly, we iterate during the separator optimization in-

stead of simply taking one linearized step. By doing more

local iterations on the data that is in memory, we do not

require as many global iterations.

If the underlying cost function is linear in the parame-

ters, our algorithm simplifies to straight nested dissection

and only one global iteration is needed. In the linear case,

the local optimization of the separator variables only re-

quires one iteration and the update of the internal variables

simplifies to a simple back-substitution.

b1 b2

l1

l2

l3

l4

l5

l6

l7

l8

x0 x1 x2 x3

Figure 3. Two base nodes b1 and b2 are added to the partitioned

graph. The intra measurements Z1 and Z2 are colored in black.

The inter-measurements Z1,2 are in orange.

The relationship to nested dissection makes the bene-

fits of our algorithm clear in non-linear settings. The state

of the art approach for solving extremely large non-linear

systems is to use Levenberg-Marquardt on top of a direct

sparse linear solver. By using an out-of-core and paralleliz-

able approach like nested dissection to implement the linear

solver, large problems can be solved. Far less utility is being

squeezed out of each sweep through the data, which leads

to many more global iterations. Our approach exposes the

non-linearity at every level of the processing, which allows

it to converge with many fewer iterations.

3.1. Partitioning Into Submaps

We partition the factor graph into P submaps, denoted as

{Mp | p ∈ 1...P}, with each submap containing connected

poses and landmarks. The partition problem can be solved

as a graph cut problem. Since we want the structure from

motion problem decoupled so that the submaps are as in-

dependent as possible, the partitioning should minimize the

edges that span the submaps.

All the nodes in submap MP are represented as a relative

value with respect to bp:

xp = bp ⊕ x′

p

Here, x denotes either a camera pose or a 3D point. The

set of all base nodes is defined as B = {bi | i ∈ (1, p)}.

Introducing the base nodes is a key step: if the relative vari-

ables x′

p have converged to their optimal values, moving the

submap with respect to a global frame leaves the relative

variables x′

p unchanged.

3.2. Factoring Out Internal Variables

In each submap, we tackle a much smaller SFM prob-

lem:

ApδMp = cp



where Ap and cp are the parts of A and c in Equation 3

corresponding to submap p and contain only the columns

corresponding to Zp.

In order to re-use the linearization point of the intra-

measurements, the columns of Ap corresponding to the sep-

arator variables are put last, as follows:

[

AVp
ASp

]

[

δVp

δSp

]

= cp (4)

We then compute the Cholesky factor of the Hessian ma-

trix

H =
[

AVp
ASp

]T [

AVp
ASp

]

=

[

Rp Tp

0 Up

]T [

Rp Tp

0 Up

]

and reformat the system equations to

[

Rp Tp

0 Up

]T [

βp

βUp

]

=
[

AVp
ASp

]T
cp

[

Rp Tp

0 Up

] [

δVp

δSp

]

=

[

βp

βUp

]

Since the separator variables correspond to the lower

right block of the Cholesky factor, the system of equations

involving only variables in the separating set can be ex-

tracted trivially for later use in the separator optimization:

UpδSp = βUp

We could also have used the Schur complement to factor

out the block of internal variables. Instead of ending up with

an upper triangular system of equations, this would have re-

sulted in a square symmetric system of equations. While

this might have saved some computation in the submap, it

would double the storage requirements for the cached lin-

earizations and increase the computational cost of optimiz-

ing the separator, so we opt to use the Cholesky factoriza-

tion approach.

3.3. Globally Aligning the Submaps

Once all the submaps are aligned internally, they are as-

sembled and optimized:

ASδS = cS

where S = S1∪· · ·∪SP ∪B. This procedure is no longer a

simple bundle adjustment because of the following reasons:

Caching

Their linearizations of the intra measurements are not up-

dated. Instead, we use the linearizations cached from the

previous step UpδSp = βUp
(p = 1, . . . , P ) and stack them

into the full separator system:










Ũ1

...

ŨP

AS











δS =











βU1

...

βUP

cS











Note that the inter-measurements are still linearized during

each local iteration in response to the changing values for

the base nodes. Given a good graph cut, we find that the

stacked part is usually much larger than the local part, which

means most of the computation time is saved by caching the

linearization.

Note that we can save time when computing the Hessian

matrix in each iteration by precomputing the inner product

of the cached linearization terms:

H =

[

Ũ

AS

]T [

Ũ

AS

]

= AT
SAS + ŨT Ũ

where ŨT Ũ is only calculated once. The gradients can also

be partially precomputed in a similar manner.

Restriction to Separator

We modify only the values of the base nodes during each

local iteration. Once the base node optimization has con-

verged, we do a final back-substitution to update the bound-

ary variables. This allows us to avoid having to keep

track of both the original linearization point of the bound-

ary variables used to cache the linearization of the intra-

measurements, and the changing linearization point of the

inter-measurements.

In practice, we have found that the boundary variables do

not change nearly as much as the base nodes, so this simpli-

fication to the implementation is reasonable. For data sets

where the boundary variables are poorly conditioned, the

update of the full separator should be performed iteratively.

3.4. Updating the Internal Variables

The final step is to update the internal variables in each

submap. This is done by non-linearly optimizing the in-

ternal variables while locking the separator. In this op-

timization, we do not need to consider any of the inter-

measurements or of the intra-measurements that connect

only boundary variables. Just as they can be initially op-

timized independently, the final update of each submap can

be done independently.

4. Implementation

We want to choose partitions so that the number of inter-

measurements and therefore the number of separator vari-

ables are small. We use the Metis graph partitioner from [9]



Failures of BA Failures with 10 partitions Total runs

14 8 100

Table 1. The failure rate of bundle adjustment (BA) and our algo-

rithm after 100 runs.

to find a k-way graph cut that minimizes the number of mea-

surements that span the submaps. Note that the algorithm

has no special restriction on the graph cut itself, except that

each submap should remain full-rank.

For clarity in the paper, we describe the local optimiza-

tions using a simple Gaussian-Newton solver. In our im-

plementation, we use Levenberg-Marquardt for all the local

optimizations and add the damping factor λI to the Hessian

matrix.

Our system is implemented out-of-core. After the

submap partitioning, the boundary variables {Vp}, separa-

tor variables {Sp}, and the measurements are saved in sep-

arate files. We only need to load Vp and Sp and their corre-

sponding measurements when we optimize submap Mp.

We assume the nodes inside the local submaps are well

constrained. While it is typically the case that 3D features

are observed enough times inside a local map, a few nodes

in the local submaps are sometimes rank-deficient. Hence,

before each submap is optimized, filtering out these rank

deficient nodes and moving their intra-measurements to the

separator is necessary. Afterwards, the nodes are optimized

with the base nodes together in the separator, using the inter-

measurements and newly added intra-measurements.

5. Experimental Results

After the implementation of the algorithm, we assess its

performance on both synthetic and real data. All the results

were computed on a 1.83GHz CPU, 1GB memory laptop.

5.1. Synthetic Data: Downtown Area

We use the synthetic data of downtown area to demon-

strate some important aspects of our algorithm. As shown

in Figure 4, the 11, 965 synthetic 3D points are distributed

along roads obtained from real city street data. As the 3D

features of a certain street are mainly observed in the im-

ages taken from the same street, except at the intersections,

the Metis partitioner automatically splits the map into ten

submaps consisting of different streets (Figure 4a). Al-

though the internal structures are recovered well, as shown

in Figure 4b, the streets are still offset with respect to one

another because the submap positions have not been opti-

mized. The optimization of the separator successfully re-

covers the relationship between these submaps. Note that

nearly all previously offset boundaries are now well aligned

in Figure 4c.

To evaluate the accuracy of the algorithm, we compare

our algorithm to traditional bundle adjustment using the

1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.402

0.404

0.406

0.408

0.41

0.412

0.414

0.416

0.418

Iterations

R
es

id
ua

ls

 

 
BA
1% above BA
2 partitions
4 partitions
6 partitions
8 partitions
10 partitions
12 partitions

Figure 5. The comparison of the residuals left by different numbers

of partitions using our approach and bundle adjustment optimiza-

tion. The green solid line indicates the minimum computed by the

traditional bundle adjustment (BA) that was run with a very tight

stopping criteria to simulate the true minimum cost. The green

dashed line indicates 1% above the true minima. The other six

lines shows the residual after 1− 5 global iterations using 2 to 12

partitions. The plot data is based on the average of 100 runs.

residuals of the converged system. Our approach simpli-

fies to traditional bundle adjustment if all the parameters

are put in one submap. All the variables then become in-

ternal variables, and the first two steps are not required any

more. The non-linear optimization of the internal variables

in step three converges to the minimum in the first iteration.

We therefore show the results for bundle adjustment at the

data point corresponding to one partition in the figures.

We tested how many global iterations were needed for

our algorithm to converge using the downtown data per-

turbed by Gaussian noise. The average of 100 runs is

shown in Figure 5. The residual of bundle adjustment acts

as the base line under the true converge state. After the

first iteration, the residual is about 2.12% − 3.69% above

the minimum. After two iterations, the residuals drop to

0.25%−1.87% above the minimum. A typical stopping cri-

teria for bundle adjustment is when the rms error decreases

by less than 1%. For this data set, one to eight partitions

can be regarded as converged after only two global itera-

tions and the rest after three. In practice, we found that the

recovered geometry after one iteration was quite good.

Another important evaluation of the algorithm is the ro-

bustness. We measured how many times the algorithm con-

verged to a local minimum. As noted in [7], partitioned-

based approaches are generally more robust than global op-

timizations. We measured how many times traditional bun-

dle adjustment failed to converge versus our partitioned al-

gorithm with ten partitions (8 times). As shown in Table 1,

the partitioned approach failed to converge 8 compared to

14 times for traditional bundle adjustment.



(a) (b) (c)
Figure 4. The synthetic downtown data set with four partitions, which contain 81, 015 measurements in 2, 897 images. (a) The partitioned

map. (b) The map after submap optimization. (c) The final optimized map.

(a) (b) (c)
Figure 8. The St. Peter’s Basilica data set contains 142, 453 3D points in 285 images. (a) Detected SIFT features in a sample image. (b)

The unoptimized 3D world is partitioned into five submaps. (c) The 3D world after submap optimization.

BA 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Partitions

T
im

in
g

 

 
1st iteration
2nd iteration
3rd iteration

Figure 6. The comparison of the time used by bundle adjustment

and our approach. The timing results for one partition correspond

to traditional bundle adjustment. The stacked tricolor bars repre-

sent how much time was spend in different iterations to converge

to the state with residuals no more than 1% above the true global

minima.

5.2. Real Data: St. Peter’s Basilica

In addition to the synthetic data, we also tested the al-

gorithm on real images of St. Peter’s Basilica in Rome, as

shown in Figure 1, which includes 285 images and 142, 453
scene points. As depicted in Figure 8a, 471, 584 SIFT

features [11] were extracted and matched across multiple

BA 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Partitions

T
im

in
g

 

 
Error calculation
Linearization
Outer product
Factorization
Back−substitution

Figure 7. The break down of the time spent in different stages

of the optimization to converge the state with residuals no more

than1% above the true global minima. From the bottom up, the

stacked bars represent the time spent in error calculations, lin-

earizations, outer products, factorizations, and back-substitutions.

The most left bar corresponds to traditional bundle adjustment.

views. We assume the correspondences are accurate and

focus only on the bundle adjustment problem.

In our 1GB memory workstation, traditional second-

order bundle adjustment ran out of memory. In contrast, our

algorithm successfully optimized the entire data set in 48



minutes. First, we applied the Metis partitioner to split the

problem into five partitions, as shown in Figure 8b. Then we

optimized each submap, as described in Section 3.4 (Figure

8c). Note that the building roofs in two submaps slightly

shift with respect to each other. After the separator is opti-

mized, we have a well-constructed 3D world in Figures 1.

One obvious change is that the roof is correctly aligned.

6. Conclusions and Future Work

Our contributions can be summarized as follows:

• We take a divide-and-conquer approach to the full

SFM problem. As a result, we may cache the deriva-

tives of the locally optimized measurements and use

them in the separator optimization. By doing so, not

only do we save CPU cycles by not recomputing the

linearization, but we also save time when computing

the Hessian matrix.

• Our algorithm can run out-of-core and is straightfor-

ward to parallelize. With this approach, reconstruc-

tions that do not fit into physical memory can still be

reconstructed efficiently.

• By exposing the non-linearity of the cost function to

the algorithm, our implementation requires far fewer

sweeps through the entire reconstruction. This results

much less paging to disk for out-of-core implemen-

tations and inter-processor communication in parallel

implementations.

Although our algorithm allows us to reconstruct a very

large-scale system in a computationally efficient manner,

we have not directly addressed the initialization problem.

Generating a good initialization is an independent, but

equally important problem. For future work, we plan to

investigate both incremental and hierarchical initialization

approaches for the submaps.

References

[1] A. Akbarzadeh, J. M. Frahm, P. Mordohai, B. Clipp, C. En-

gels, D. Gallup, P. Merrell, M. Phelps, S. Sinha, B. Tal-

ton, L. Wang, Q. Yang, H. Stewenius, R. Yang, G. Welch,

H. Towles, D. Nister, and M. Pollefeys. Towards urban 3d

reconstruction from video. In Proc. of the International Sym-

posium on 3D Data Processing, Visualization and Transmis-

sion, 2006.

[2] P.R. Amestoy, T. Davis, and I.S. Duff. An approximate min-

imum degree ordering algorithm. SIAM Journal on Matrix

Analysis and Applications, 17(4):886–905, 1996.

[3] Duane C. Brown. The bundle adjustment - progress and

prospects. Int. Archives Photogrammetry, 21(3), 1976.

[4] M. Brown and D. G. Lowe. Unsupervised 3d object recogni-

tion and reconstruction in unordered datasets. In Intl. Conf.

on 3D Digital Imaging and Modeling, pages 56–63, 2005.

[5] G. Tao-Shun Chou. Large-Scale 3D Reconstruction: A

Triangulation-Based Approach. PhD thesis, EECS, Mas-

sachusetts Institute of Technology, 2000.

[6] C. Engels, H. Stewénius, and D. Nistér. Bundle adjustment

rules. In Symposium on Photogrammetric Computer Vision,

Sep 2006.

[7] A. W. Fitzgibbon and A. Zisserman. Automatic camera re-

covery for closed or open image sequences. In Eur. Conf. on

Computer Vision (ECCV), pages 311–326, 1998.

[8] M. Fradkin, M. Roux, H. Maitre, and U. M. Leloglu. Sur-

face reconstruction from multiple aerial images in dense ur-

ban areas. In IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 1999.

[9] G. Karypis and V. Kumar. Multilevel algorithms for multi-

constraint graph partitioning. In Supercomputing ’98: Pro-

ceedings of the 1998 ACM/IEEE conference on Supercom-

puting (CDROM), pages 1–13, Washington, DC, USA, 1998.

IEEE Computer Society.

[10] R.J. Lipton and R.E. Tarjan. Generalized nested dissec-

tion. SIAM Journal on Applied Mathematics, 16(2):346–358,

1979.

[11] D.G. Lowe. Distinctive image features from scale-invariant

keypoints. Intl. J. of Computer Vision, 60(2):91–110, 2004.

[12] D. Nistér. Reconstruction from uncalibrated sequences with

a hierarchy of trifocal tensors. In ECCV, 2000.

[13] D. Nistér. An efficient solution to the five-point relative pose

problem. In CVPR, 2003.

[14] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cor-

nelis, and J. Tops. Visual modeling with a hand-held camera.

Intl. J. of Computer Vision, 59(3):207–232, 2004.

[15] N. Snavely, S.M. Seitz, and R. Szeliski. Photo tourism: Ex-

ploring photo collections in 3D. In SIGGRAPH, pages 835–

846, 2006.

[16] S. Teller, M. Antone, Z. Bodnar, M. Bosse, S. Coorg,

M. Jethwa, and N. Master. Calibrated, registered images

of an extended urban area. Intl. J. of Computer Vision,

53(1):93–107, 2003.

[17] B. Triggs. Factorization methods for projective structure and

motion. In IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), pages 845–851, 1996.

[18] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.

Bundle adjustment – a modern synthesis. In W. Triggs,

A. Zisserman, and R. Szeliski, editors, Vision Algorithms:

Theory and Practice, LNCS, pages 298–375. Springer Ver-

lag, 2000.


