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Due to the ability of graphs to represent more generic and more complicated relationships among
different objects, graph mining has played a significant role in data mining, attracting increasing
attention in the data mining community. In addition, frequent coherent subgraphs can provide valu-
able knowledge about the underlying internal structure of a graph database, and mining frequently
occurring coherent subgraphs from large dense graph databases has witnessed several applications
and received considerable attention in the graph mining community recently. In this article, we
study how to efficiently mine the complete set of coherent closed quasi-cliques from large dense
graph databases, which is an especially challenging task due to the fact that the downward-closure
property no longer holds. By fully exploring some properties of quasi-cliques, we propose several
novel optimization techniques which can prune the unpromising and redundant subsearch spaces
effectively. Meanwhile, we devise an efficient closure checking scheme to facilitate the discovery of
closed quasi-cliques only. Since large databasescannot be held in main memory, we also design an
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out-of-core solution with efficient index structures for mining coherent closed quasi-cliques from
large dense graph databases. We call this Cocain*. Thorough performance study shows that Cocain*
is very efficient and scalable for large dense graph databases.
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1. INTRODUCTION

Data mining, whose goal is to discover implicit, previously unknown, and po-
tentially useful information from massive data [Frawley et al. 1992], is expand-
ing rapidly both in theory and in applications. A recent trend in data mining
research is to consider more complex cases than those representable by single-
table relational databases such as XML databases [Chen et al. 2003; Yang et al.
2003], spatial databases [Zhang et al. 2005; Papadias et al. 2005], microarray
databases [Hu et al. 2005], graph databases [Wang et al. 2006b; Horvath et al.
2006], and so on. Both practical and theoretical problems should be solved for
the databases involving these complex data types due to the relationships be-
tween entities that are thereby introduced.

As one of the central problems considered in the data mining community,
the discovery of frequent patterns in a database, that is, patterns occuring in
at least a certain specified number of elements of the database, has attracted
much attention and made great progress in recent years. In addition to be inter-
esting in their own right, frequent patterns can be used in mining association
rules [Agrawal and Srikant 1994; Klemettinen et al. 1994], correlations [Brin
et al. 1997; Wang et al. 2006b], causality [Silverstein et al. 2000], sequence pat-
terns [Agrawal and Srikant 1995; Zhang et al. 2005], episodes [Mannila et al.
1997; Laxman and Unnikrishnan 2005] and emerging patterns [Dong and Li
1999], and also can be used as building blocks or features for clustering [Hu
et al. 2002; Wang et al. 2002], classification [Matsuda et al. 1999; Hu et al. 2005;
Yan et al. 2004], and predictive data mining tasks [Borgelt and Berthold 2002;
Deshpande et al. 2005].

Previous studies on frequent pattern discovery have concentrated on rela-
tively simple notions of patterns and elements in the database, as they are
typically used for discovering association rules [Agrawal et al. 1993]. How-
ever, in a wide array of disciplines, data can be intuitively cast into graph
patterns [Chakrabarti and Faloutsos 2006]. Meanwhile, due to the significance
of application areas such as the analysis of chemical molecules [Borgelt and
Berthold 2002] or graph structures in the World Wide Web [Broder et al. 2000],
there has been increased interest in algorithms that can perform frequent
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pattern discovery in databases of structured objects, such as trees and arbi-
trary graphs.

While the frequent connected subgraph mining problem for tree datasets can
be solved in incremental polynomial time (see Chi et al. [2005] for an overview of
frequent subtree mining), it becomes intractable for arbitrary graph databases.
However, one of the most general forms for modeling complex, structured data
is that of the graph. Furthermore, graphs can naturally model increasingly
generic and complicated relationships among different objects. Frequent sub-
graph mining has a wide range of applications, such as chemical compound
classification [Dehaspe et al. 1998], functional annotation [Hu et al. 2005],
and the discovery of activity-related groups of chemical compounds, contrast
fragment structures, and functional modules among proteins. For all of these
reasons, the latter has become more and more significant, attracting much
attention in the data mining community. In past years, many frequent sub-
structure mining algorithms have also been proposed, typical examples in-
cluding AGM [Inokuchi et al. 2000], TreeMiner [Zaki 2002], FSG [Kuramochi
and Karypis 2001], gSpan [Yan and Han 2002], PB [Vanetik et al. 2002],
FFSM [Huan et al. 2003], CloseGraph [Yan and Han 2003], ADI-Mine [Wang
et al. 2004], FPGrowth [Buehrer et al. 2006], EM [Hashimoto et al. 2006], Co-
cain [Zeng et al. 2006] and so on.

However, graphs in general have undesirable theoretical properties with re-
gard to algorithmic complexity. In terms of complexity theory, currently no
efficient algorithms are known to determine if one graph is isomorphic to a
subgraph of another. Furthermore, no efficient algorithm is known to perform
systematic enumeration of the subgraphs of a given graph, a common facet of
data mining algorithms. Although several algorithms for mining frequent con-
nected subgraphs from datasets of arbitrary graphs have demonstrated their
performance empirically, we note that this general problem cannot be solved in
output polynomial time, unless P = N P [Horvath et al. 2006].

Meanwhile, several recent studies have shown that mining frequent coherent
subgraphs is especially useful [Hu et al. 2005; Pei et al. 2005; Yan et al. 2005;
Wang et al. 2006b], where a coherent subgraph can be informally defined as
a subgraph that satisfies a minimum cut bound (the formal definition can be
found in Section 2.1), since the set of frequent coherent subgraphs mined from
a graph database usually reflects the density distribution of the relationships
among objects in the database, and can provide valuable knowledge about the
internal structure of the graph database. Note that, in contrast to traditional
frequent subgraph mining, in this new problem setting we do not require each
embedding of a given frequent coherent subgraph to have exactly the same edge
topology, but rather to have a sufficient number of embeddings in the graph
database, each having a highly connected set of vertices. Frequent coherent
subgraph mining has also experienced several applications [Hu et al. 2005;
Wang et al. 2006b], and we will show two examples in the following.

Example 1.1 (Highly Correlated Stock Discovery). A stock market dataset
corresponding to a certain period can be converted to a graph in the follow-
ing way. A stock is represented by a vertex whose label is the stock name,
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Fig. 1. The maximum closed clique in the stock market database with correlation coefficient
threshold 0.90 and minimum relative support threshold 100%.

and an edge is used to connect two vertices if their correlation coefficient is no
smaller than a user-specified threshold. A coherent subgraph like a clique is
very meaningful from the application point of view, as it implies that the prices
of the stocks contained in a coherent subgraph usually evolve synchronously
over time, and a change of one stock’s price can be used to predict a similar
change for the prices of all other stocks in the same subgraph [Boginski et al.
2004; Wang et al. 2006b]. Figure 1 shows the maximum frequent closed clique
mined from 11 sets of US stock market data with correlation coefficient thresh-
old 0.9 and minimum relative support threshold 100% (more details can be
found in Wang et al. [2006b]).

Example 1.2 (Functional Annotation). Similarly, a set of microarray data
can be converted to a graph in which each node represents a unique gene and
an edge represents a strong similarity between the expression data of the two
genes corresponding to its two end-nodes. The similarity can also be measured
by a Pearson correlation coefficient. By mining coherent dense subgraphs from
a massive microarray database, functional modules can be mined and used
to predict functions for uncharacterized genes. For example, Figure 2 shows
a coherent subgraph discovered from the yeast microarray database by the
Codense algorithm [Hu et al. 2005]. All five genes except ASC1 are known to
be involved in protein biosynthesis. ASC1 can therefore be predicted to have
the same function, as well.

In addition, coherent subgraph mining has been shown useful in identifying
the clusters of genes that are coexpressed, as well as their protein interacts [Pei
et al. 2005], and in searching the maximal common structural features among
protein molecular graphs [Kato and Takahashi 2001].

During past years, several coherent subgraph discovery algorithms have
been proposed [Hu et al. 2005; Pei et al. 2005; Yan et al. 2005; Wang et al.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 13, Publication date: June 2007.



Out-of-Core Coherent Closed Quasi-Clique Mining from Large Dense Graph Databases • 5

RPS24B RPS26

RPS6B

ASC1 PRL2B

RPS2

Fig. 2. Coherent dense subgraph containing six genes mined from the yeast microarray database
using Codense.

2006b]. However, each of the previously proposed algorithms has its own lim-
itations. For example, the algorithm proposed in Pei et al. [2005] can only
mine quasi-cliques with exact 100% support threshold from a relational graph
database, where a relational graph is defined as a special type of graph structure
whose vertices are uniquely labeled [Yan et al. 2005]; similarly, the Clan algo-
rithm [Wang et al. 2006b] can only mine fully connected frequent subgraphs
(i.e., frequent cliques). In addition, all of the aforementioned algorithms are
based on the assumption that either the entire database or its majority can fit
into main memory. They cannot adapt to large dense databases. In this article,
we study a more general problem formulation: mining frequent quasi-cliques
from large dense graph databases, that is, we neither limit the minimum sup-
port to 100% nor require the input graphs to be relational. While the problem
becomes more general, it gets more difficult. As we will see later, the downward-
closure property [Agrawal and Srikant 1994] no longer holds (the same problem
is faced by Pei et al. [2005] and Zhang et al. [2005]), thus devising some effective
search-space pruning techniques is especially challenging. By fully exploring
some properties of quasi-cliques, we propose several novel optimization tech-
niques, and also an efficient closure checking scheme in order to facilitate the
discovery of closed quasi-cliques only. Meanwhile, we develop an efficient co-
herent closed quasi-clique mining algorithm, Cocain*, and some efficient index
structures for mining out-of-core structures.

2. PROBLEM FORMULATION

In this section, we introduce some preliminary concepts, notation, and terms in
order to simplify our following discussion. We also formulate the problem of min-
ing frequent closed coherent quasi-cliques from graph transaction databases.
Table I summarizes some common notations used in graph theory and their
meanings.

2.1 Preliminaries

In this article, we consider a simple graph only, which does not contain self-
loops, multiedges, or edge labels. An undirected vertex-labeled graph transac-

tion G can be represented by a 4-tuple G = (V , E, L, F ). If |G| = k, G is called
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Table I. Notations Used in This Article

Notations Description

V V = {v1, v2, ..., vk}, the set of vertices

E E ⊆ V × V , the set of edges

L the set of vertex labels

F F : V → L, the mapping function from labels to vertices

G G = (V , E, L, F ), an undirected vertex-labeled graph transaction

|G| |G| = |V |, the cardinality of G

L(v) the label of vertex v

G(S) the induced subgraph on S from G, where S ⊆ V (G)

N G (v) N G (v) = {u|(v, u) ∈ E(G)}

degG (v) degG (v) = |N G (v)|

disG (u, v) the number of edges in the shortest path between u and v in G

V G
cad (g ) the set of extensible candidate vertices with respect to g in G

V G
vad (g ) the set of valid extensible candidate vertices with respect to g in G

a

c

d b

b

1v

4v

5v

2v

3v

a

b

c b

d

1u

3u

5u

2u

4u

b

c b

a
3e

2e

1e

4e

Graph g1 Graph g2 Graph g3

Fig. 3. Examples of a 0.5-quasi-clique.

a k-graph. A graph G is said to be connected if ∀u, v ∈ V (G), disG(u, v) < +∞

(i.e., there is a path from any vertex to any other vertex in the graph G). A graph
that is not connected is said to be disconnected. Moreover, an induced subgraph

of a graph G is a subset of the vertices of V (G), together with any edges whose
endpoints are all in this subset. In the following discussions, the term “graph”
means the undirected vertex-labeled graph, unless otherwise stated. Next we
will introduce the formal definition of quasi-cliques.

Definition 2.1 (γ -Quasi-clique). A k-graph(k ≥ 1) G is a γ -quasiclique (0 ≤

γ ≤ 1) if ∀ v ∈ V (G), degG(v) ≥ ⌈γ · (k − 1)⌉.

From the preceding definition we can see that quasi-cliques are subgraphs
that satisfy a user-specified minimum vertex degree bound ⌈γ · (k − 1)⌉. Appar-
ently, a γ -quasi-clique must be a fully connected graph when γ = 1. This defini-
tion also means that singleton graphs are considered as γ -quasi-cliques. Given
a k-graph G, if ∃ v ∈ V (G) such that degG(v) = ⌈γ ·(k−1)⌉ and ⌈γ ·(k−1)⌉ = ⌈γ ·k⌉,
v is called a critical vertex of G with respect to γ .

As shown in Figure 3, ∀ v ∈ V (g1), degg1 (v) ≥ 2 = ⌈0.5 × (5 − 1)⌉,
so g1 is a 0.5-quasi-clique. Since degg1 (v3) = ⌈0.5 × 4⌉ and ⌈0.5 × 4⌉ =
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Minimum Degree = 2,   Minimum Edge Cut = 1

Fig. 4. A sample graph whose edge connectivity is smaller than minimum vertex degree.

⌈0.5 × 5⌉, v3 is a critical vertex of g1 with respect to 0.5. However, g1 is not a
0.6-quasi-clique, as there exists a vertex v (e.g., v2 and v3) such that degg1 (v) <

⌈0.6 × (5 − 1)⌉.
Most existing frequent subgraph mining algorithms are based on the

downward-closure property [Agrawal and Srikant 1994]. Unfortunately, this
nice property does not hold for quasi-clique patterns. An induced subgraph
of a γ -quasi-clique may not be a γ -quasi-clique. For instance, in Figure 3,
g2 is a 0.5-quasi-clique, but one of its induced subgraphs, g2({u3, u4, u5}),
is not.

Definition 2.2 (Edge Cut and Edge Connectivity). Given a connected graph
G = (V , E), an edge cut is a set of edges Ec such that G ′ = (V , E − Ec) is
disconnected. A minimum cut is the smallest set among all edge cuts. The edge
connectivity of G, denoted by κ(G), is the size of the minimum cut.

As shown in Yan et al. [2005], although the minimum vertex degree can re-
flect the level of connectivity of a graph to some extent, it cannot guarantee
that the graph is connected in a balanced way, as the edge connectivity might
be much smaller than the minimum vertex degree. Figure 4 shows such an
example. However, the following lemma gives a lower bound on the edge con-
nectivity of a γ -quasi-clique with γ ≥ 0.5, which guarantees the coherency of
the γ -quasi-clique when γ ≥ 0.5 holds.

LEMMA 2.1 (MINIMUM EDGE CONNECTIVITY). Let n-graph Q = (V , E) be a γ -

quasi-clique (0.5 ≤ γ ≤ 1, n ≥ 2). The edge connectivity of Q cannot be smaller

than ⌊n
2 ⌋, namely, κ(Q) ≥ ⌊n

2 ⌋.

PROOF. Let us divide V into two nonempty sets V1 and V2, and suppose V1 ≤

V2 and |V1| = k, then 1 ≤ k ≤ ⌊n
2 ⌋ must hold.

Since Q is a γ -quasi-clique, ∀ v ∈ V1, degQ (v) ≥ ⌈γ · (n − 1)⌉. However, v is at
most adjacent to other k−1 vertices in V1, and k−1 ≤ n

2 −1 < γ (n−1). Therefore,
v must be adjacent to vertices belonging to V2, and the number of edges which
connect v and vertices in V2 must be no smaller than ⌈γ · (n − 1)⌉ − (k − 1).
There are k vertices in V1, so there exist at least k · (⌈γ · (n− 1)⌉− (k − 1)) edges
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connecting V1 and V2. Let f (k) = k · (⌈γ · (n − 1)⌉ − (k − 1)), then

f (k) = −k2 + k · (⌈γ · (n − 1)⌉ + 1). (1)

The second-order derivative of f (k) (i.e., d2 f (k)
dk2 = −2) is negative, and f (k)

achieves the maximum at its sole stationary point k =
⌈γ ·(n−1)⌉+1

2 . As there
exists only one stationary point for quadratic polynomial function f (k) and
1 ≤ k ≤ ⌊ n

2 ⌋, f (k) must get its minimum either at k = 1 or at k = ⌊ n
2 ⌋. When

k = 1, f (1) = ⌈γ · (n− 1)⌉ ≥ ⌈n−1
2 ⌉ = ⌊n

2 ⌋, while when k = ⌊n
2 ⌋, each vertex in V1

must be adjacent to at least one vertex in V2, thus f (⌊n
2 ⌋) ≥ |V2| ≥ ⌊n

2 ⌋. From
the previous result, we can get that ∀ k ∈ [1, ⌊n

2 ⌋], f (k) ≥ ⌊n
2 ⌋. According to the

definition of edge connectivity, κ(Q) ≥ ⌊n
2 ⌋.

Because we are more interested in mining tightly connected subgraphs,
we do not expect that the edge connectivity of a subgraph pattern is too
small in comparison with the minimum vertex degree. From Lemma 2.1 we
know that if γ ≥ 0.5, the minimum cut of a γ -quasi-clique is no smaller
than half the size of the corresponding quasi-clique, which assures that the
vertices in the γ -quasi-clique are connected tightly and relatively evenly.
In this article, a γ -quasi-clique is said to be coherent if γ ≥ 0.5, and if
not explicitly stated, the parameter γ by default has a value no smaller
than 0.5.

Definition 2.3 (γ -Isomorphism). A graph G1 = {V1, E1, L1, F1} is γ -
isomorphic to another graph G2 = {V2, E2, L2, F2} iff both are γ -quasi-cliques,
|G1| = |G2|, and there exists a bijection f : V1 → V2 such that ∀ v ∈ V1, F1(v) =

F2( f (v)).

According to the definition of γ -isomorphism, we know that γ -isomorphism
is quite different from the graph isomorphism in graph theory, which is defined
as a bijection f : V (G1) → V (G2) from a graph G1 to another graph G2 such
that (u, v) ∈ E(G1) iff ( f (u), f (v)) ∈ E(G2). The γ -isomorphism between two
γ -quasi-cliques does not imply an exact bijective edge mapping. For example,
in Figure 3, g1 and g2 are 0.5-isomorphic to each other, although they are not
graph-isomorphic to each other.

A multiset is defined as a bag of vertex labels in which the order is ignored,
but multiplicity is explicitly significant, for example, multisets {1, 2, 3} and
{3, 1, 2} are equivalent, but {1, 2, 3} and {3, 1, 1, 2} differ. Let M (G) indicate
the multiset of labels of a graph G. Hence, in Figure 3, M (g1) = {a, b, b, c, d }

and M (g3) = {a, b, b, c}. From the γ -isomorphism definition, we can derive the
following lemma.

LEMMA 2.2. Two γ -quasi-cliques Q1 and Q2 are γ -isomorphic to each other

iff M (Q1) = M (Q2).

Lemma 2.2 can be used to detect the existence of γ -isomorphism between
two graphs, that is, we just need to check if they are both γ -quasi-cliques and
their multisets are equivalent.

For two γ -quasi-cliques Q and Q ′, if M (Q) ⊆ M (Q ′), Q is called a subquasi-

clique of Q ′, while Q ′ is called a superquasi-clique of Q . We use Q ⊑ Q ′ or
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Fig. 5. An example of a graph transaction database D.

Q ⊏ Q ′ (i.e., Q ⊑ Q ′ but Q = Q ′), respectively, to denote the subquasi-clique
or proper subquasi-clique relationship.

2.2 Problem Definition

A graph transaction database D consists of a set of input graphs, and the cardi-
nality of D is denoted by |D|. Figure 5 shows an example of a graph transaction
database D which consists of two input graphs G1 and G2, and |D| = 2. For
simplicity, in the rest of this article we sometimes omit the notation of database
D when the context is clear.

For two graphs G and G ′, let g be an induced subgraph of G, if M (g ) = M (G ′),
then we call g an instance of G ′ in G. If there exists at least one instance of
G ′ in G, we say that graph G roughly supports G ′, while graph G ′ is roughly
supported by G. Meanwhile, if g is γ -isomorphic to another γ -quasi-clique Q ,
we call g an embedding of Q in G. If there exists at least one embedding of Q in
G, then G is said to strictly support Q , while Q is said to be strictly supported
by G.

The number of input graphs in graph database D that strictly (or roughly)
support a γ -quasi-clique Q (or a graph G) is called the absolute strict-support

(or absolute rough-support) of Q (or G) in D, denoted by supD
s (Q) (or supD

r (G)),
while the relative strict-support (or relative rough-support) is the percentage
of input graphs which strictly (or roughly) support Q (or G), denoted by
rsupD

s (Q) (or rsupD
r (G)). Obviously, rsupD

s (Q) = supD
s (Q)/|D|, and rsupD

r (G) =

supD
r (G)/|D|.

For an absolute support threshold min sup and graph transaction database
D, a quasi-clique Q (or a subgraph g ) is called a frequent quasi-clique (or a vice-

frequent graph) if supD
s (Q) ≥ min sup (or supD

r (g ) ≥ min sup). If there does
not exist any other quasi-clique Q ′ such that Q ⊏ Q ′ and supD

s (Q) ≤ supD
s (Q ′),

then Q is called a closed quasi-clique in D.1

Problem Definition. Given a graph transaction database D and a minimum
strict-support threshold min sup, we study the problem of mining the complete
set of γ -quasi-cliques in D that are frequent, closed, and coherent (i.e., γ ≥ 0.5).

1Here the definition of a “closed” pattern is a little different from the traditional because the
downward-closure property does not hold for frequent quasi-clique mining, and it is possible that
a quasi-clique’s strict-support is greater than that of its subquasi-cliques. Also, in the case where
Q ⊏ Q ′ and supD

s (Q) ≤ supD
s (Q ′), we say Q ′ can subsume Q .
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3. RELATED WORK

Computing clique or quasi-clique structures from a single graph has long been
studied [Karp 1972; Bron and Kerbosch 1973; Feige et al. 1991; Hastad 1996;
Abello et al. 2002; Ostergard 2002] and identifying the size of the largest clique
in a graph was one of the first problems shown NP-hard [Karp 1972]. However,
these previous works did not study the problem of mining quasi-cliques that
frequently occur across a set of input graphs. Recently, several algorithms were
proposed to mine frequent dense subgraphs from large graph databases, such
as Codense [Hu et al. 2005], Crochet [Pei et al. 2005], CloseCut and SPLAT [Yan
et al. 2005], Clan [Wang et al. 2006b], and so on. In addition, according to our
definition of a quasi-clique, we do not require that there exists an edge for each
pair of vertices in a quasi-clique, thus mining closed quasi-cliques is similar
to some extent to some variations of formal concept analysis, such as δ-free
sets [Selmaoui et al. 2006] and biclustering of categorical data [Pensa et al.
2005], which also allow for a certain number of zeros in a rectangle of ones.

In Hu et al. [2005], the Codense algorithm was devised to mine frequent
coherent dense subgraphs across massive biological networks and to discover
functionally homogenous clusters. The problem formulation in Hu et al. [2005]
is quite different from ours, and a frequent coherent dense subgraph mined by
Codense might not necessarily be a frequent quasi-clique. In Yan et al. [2005],
two approaches, CloseCut and Splat, were proposed to mine frequent closed
subgraphs with connectivity constraints. They can only be applied to relational
graph databases. The problem studied in Yan et al. [2005] also differs from ours.

Probably the most related research is that in Pei et al. [2005] and [Wang et al.
2006b], which have their own limitations compared with this work. The Crochet
algorithm proposed in Pei et al. [2005] can mine quasi-cliques, but requires each
mined quasi-clique to have a perfect 100% support threshold, and also only
works for relational graph databases. Meanwhile, the Clan algorithm proposed
in Wang et al. [2006b] neither requires the input graphs to be relational nor
limits the support threshold to be exactly 100%, but can only mine frequent
closed cliques, that is, fully connected subgraphs.

In a preliminary version of this work [Zeng et al. 2006], we studied a more
general problem formulation, that is, mining frequent closed quasi-cliques from
large dense graph databases, and designed an efficient closed coherent quasi-
clique discovery algorithm, Cocain. In Cocain, we neither limit the minimum
support to be 100% nor require input graphs to be relational. Moreover, the
downward-closure property holds for clique patterns, thus designing some prun-
ing techniques for frequent clique mining is much easier compared with quasi-
clique mining. However, by fully exploring some nice properties of quasi-clique
patterns, we proposed several novel apriori-like pruning techniques which can
be pushed deeply into the mining process. Furthermore, we also devised an
efficient closure checking scheme in order to facilitate the discovery of closed
quasi-cliques only.

As a major value-added version of our preliminary work [Zeng et al. 2006],
we here summarize the major extensions as follows. First, Cocain and all the
aforementioned algorithms are in-memory solutions which are based on the
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assumption that the entire graph database or at least its majority can fit into
the main memory. However, in most real applications, the graph databases are
usually too large to be held in memory. In order to adapt to the huge graph
database setting, we devise an effective out-of-core solution based on several
newly proposed efficient index structures. Our scalability study shows that
the extended algorithm, Cocain*, can scale to very large databases. Second,
some of the basic operations for calculating valid extensible vertex candidates
in the algorithm are very time consuming, thus, we propose some new opti-
mization techniques and devise a new subalgorithm, Valid+. Our performance
study shows that these optimization techniques are very effective in improving
the algorithm performance. Finally, we have conducted extensive new perfor-
mance studies, including an effectiveness test of the newly proposed optimiza-
tion techniques, effectiveness comparisons among various pruning methods, an
efficiency test of Cocain*, a new scalability test on much larger databases, and
illustrations of some coherent closed quasi-clique examples discovered from
some real databases.

4. ENUMERATION STRATEGY

In this section, we describe our enumeration strategy to discover the complete
set of frequent coherent quasi-cliques, including an efficient canonical represen-
tation of coherent quasi-clique patterns, a vice-frequent subgraph enumeration
framework, and the structural redundancy pruning technique.

4.1 Canonical Representation of Subgraphs

One of the key issues in graph mining is how to choose an efficient canonical
form that can uniquely represent a graph and has low computational complex-
ity in order to facilitate the graph isomorphism testing. Currently, there are
two popular classes of solutions to this problem: minimum(or maximum) adja-
cency matrix code [Kuramochi and Karypis 2001; Huan et al. 2003] and some
kind of DFS (abbreviated for depth-first search) code [Zaki 2002; Yan and Han
2002]. However, both have high computational complexity and are not the most
efficient representations for quasi-clique patterns.

From Lemma 2.2, we see that a vertex label multiset preserves much in-
formation for a quasi-clique. Given a k-graph g , we call any sequence of all
elements in M (g ) a graph string, and there are k! different strings for g if each
element in M (g ) is distinct. Assume there is a total order (e.g., lexicographical
order) on the vertex labels, we define the following total order of any two strings
p and q with size |p| and |q|, respectively. Let pi denote the ith vertex label
in string p, we define p < q if either of the following two conditions holds: (1)
∃ t(0 < t ≤ min{|p|, |q|}) such that ∀ i ∈ [1, t − 1], pi = qi and pt < qt ; and (2)
(|p| < |q|) and ∀ i ∈ [1, |p|], pi = qi; otherwise p ≥ q. A string Sa = a1a2...an

is called a substring of another string Sb = b1b2...bm, denoted by Sa ⊑ Sb (or
Sa ⊏ Sb if m > n), if there exist n integers 1 ≤ i1 < i2 < ... in ≤ m such that
a1 = bi1 ,a2 = bi2 , ..., an = bin .

Definition 4.1. The canonical form of a graph G is defined as the minimum
string among all its strings and denoted by CF (G).
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As we ignore the exact topology of a quasi-clique, it is evident that the pre-
ceding definition is a unique representation of a quasi-clique. However, we note
that it does not hold for a general graph. After giving the definition of the
canonical form of a graph and the substring relationship, we can derive the fol-
lowing two lemmas to facilitate γ -isomorphism checking and subquasi-clique
relationship checking.

LEMMA 4.1. Two γ -quasi-cliques Q1 and Q2 are γ -isomorphic to each other

iff CF (Q1) = CF (Q2).

LEMMA 4.2. Given two γ -quasi-cliques Q1 and Q2, Q1 ⊑ Q2 (or Q1 ⊏ Q2)

iff CF (Q1) ⊑ CF (Q2) (or CF (Q1) ⊏ CF (Q2)).

The previous two lemmas can be derived easily from the definition of γ -
isomorphism and the subquasi-clique relationship, respectively; here we omit
the proof.

4.2 Vice-Frequent Subgraph Enumeration

According to the definition of a vice-frequent graph, it is evident that any in-
duced subgraph of a vice-frequent graph must be also vice-frequent. Thus, this
downward-closure property can be exploited for vice-frequent subgraph enu-
meration.

Once given a total order on the vertex labels, we can represent the vice-
frequent subgraphs by their corresponding canonical forms and conceptually
organize them into a lattice-like structure in the same way as Wang et al.
[2006b]: Each node represents a subgraph in the form of “canonical form:rough-
support:strict-support”. (Note that for simplicity, in the following we will denote
a subgraph by its canonical form plus its rough-support and strict-support). Fur-
thermore, each edge between two nodes represents a direct subgraph (i.e., with
exactly one less vertex) relationship between the two corresponding subgraphs.
All the vice-frequent k-subgraphs are at level k and arranged according to the
order of their canonical forms. For our running example in Figure 5, assume
the total order among vertex labels is a ≤ b ≤ c ≤ d ≤ e, all the vice-frequent
subgraphs are organized into a structure like the one shown in Figure 6. For
example, g3 in Figure 3 has instances (but not embeddings) in both G1 and G2

in Figure 5, and can be represented by the node with a label abbc:2:0, which
has three 3-subgraphs (i.e., abb:2:1, abc:2:1, bbc:2:0) as its direct subgraphs.
In addition, all the nodes with dashed ellipses are vice-frequent subgraphs but
not frequent quasi-cliques, nodes with light grey color are nonclosed frequent
quasi-cliques, and nodes with dark grey color are closed quasi-cliques. Figure 6
shows that among all the vice-frequent subgraphs, only abd:2:2 and bcd:2:2 are
closed quasi-cliques.

Based on the definition of embedding and instance of a subgraph, we can
see that the embedding is a special type of the instance, and an embed-
ding of a graph g must be an instance of g . Given a γ -quasi-clique Q , since
supD

s (Q) ≤ supD
r (Q) holds, if Q is frequent, then Q must be vice-frequent. Con-

sequently, we can discover the complete set of frequent γ -quasi-cliques from the
set of vice-frequent subgraphs. By conceptually organizing the vice-frequent
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a:2:2 b:2:2 c:2:2 d:2:2

ab:2:1 ac:2:1 ad:2:1 bc:2:1 bd:2:2 cd:2:2

abc:2:1 abd:2:2 acd:2:1 bcd:2:2

abcd:2:0

abb:2:1

abbc:2:0 abbd:2:0

abbcd:2:0

Level

1

2

3

4

5

bb:2:0

bbc:2:0 bbd:2:0

bbcd:2:0

Null

Fig. 6. A lattice-like structure built from our running example (γ = 0.5, min sup = 2).

subgraphs into a lattice-like structure, the problem of mining frequent quasi-
cliques becomes that of how to traverse the lattice-like structure to enumerate
vice-frequent subgraphs and discover frequent γ -quasi-cliques. Previous stud-
ies have shown two popular search strategies: DFS [Huan et al. 2003; Borgelt
and Berthold 2002; Yan and Han 2002] and BFS [Kuramochi and Karypis
2001]. We adopt the DFS strategy, however, our method is slightly different
from previous ones. The previous depth-first search methods like rightmost ex-
tension [Zaki 2002; Yan and Han 2002] grow the current graph of size k by
one edge in each step in order to get a graph of size (k + 1), while we grow the
current k-subgraph by one vertex plus the corresponding edges in one step to
generate a (k +1)-subgraph. In this way, we can get a rudimentary algorithm to
discover frequent closed γ -quasi-cliques. However, this rudimentary algorithm
costs too much in terms of space and runtime and is too expensive, as it incurs
a lot of redundancy during the quasi-clique enumeration.

4.3 Structural Redundancy Pruning

By depth-first traversing the lattice-like structure, we find that some nodes
might be generated more than once, thus there exists much redundancy. For
example, abd:2:2 in Figure 6 can be generated from ab:2:1, ad:2:1, or bd:2:2.
A simple way to remove the redundant subgraphs can be implemented by
maintaining the set of already-mined subgraphs. Upon getting a new sub-
graph, we check whether there is any already-mined subgraph that has the
same canonical form as the new one, and if so, we just throw away the newly
generated subgraph. However, this does not help in removing the redundant
computing.

In order to eliminate structural redundancy while maintaining the complete-
ness of the result set, we also adopt the structural redundancy pruning tech-
nique used in Wang et al. [2006b] and propose an efficient vice-frequent sub-
graph enumeration method. Given an m-graph G and CF (G) = a0a1...am, we
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require that G can only be generated by growing the subgraph g with canon-
ical form CF (g ) = a0a1...am−1. In this way, except for the node φ, each node
in the lattice-like structure has only one parent, and this lattice-like structure
will turn into a tree structure. Let LAS(g ) be the last element in CF (g ) (i.e.,
LAS(g ) = am), obviously, in the enumeration tree structure all descendants
of the node g would be in the form CF (g ) ⋄ b0b1...bk , where b0 ≥ LAS(g ) and
∀ i ∈ [1, k], bi−1 ≤ bi. Taking Figure 6 for example, node abd:2:2 can only be gen-
erated from node ab:2:1, and not ad:2:1. The solid lines among different nodes
in Figure 6 are valid enumeration paths, while the dashed lines are invalid.
Obviously, excluding the dashed lines, Figure 6 is a tree structure.

5. SEARCH SPACE PRUNING

In the previous section, we proposed an enumeration strategy and have al-
ready discovered coherent frequent quasi-clique patterns. However, this is a
rudimentary and costly method. In this section, we propose several novel op-
timization techniques to prune futile parts of the search space based on some
nice properties of quasi-clique patterns, including diameter pruning, combina-

tion pruning, vertex connectivity pruning, failed-vertex pruning, and subgraph

connectivity pruning. At the end of this section, we will introduce an efficient
algorithm for discovering valid extensible vertices of a subgraph and also its
improvement.

5.1 Diameter Pruning

Before we elaborate on the optimization techniques, let us first introduce the
following important lemma which plays a foundational role in the subsequent
discussion.

LEMMA 5.1 (MAXIMAL DIAMETER). If a graph Q is a γ -quasi-clique, then

∀ u, v ∈ V (Q), disQ (u, v) ≤ 2.

PROOF. This property is a special case of Theorem 1 that appeared in Pei
et al. [2005] on the diameter of a quasi-complete graph when γ ≥ 0.5 holds.

Lemma 5.1 shows that the distance between two vertices in a coherent quasi-
clique must be no greater than 2. Based on this, we can derive the following
lemma, which will help us prune many unpromising vertices.

LEMMA 5.2 (DIAMETER PRUNING). Let G be a graph and S ⊆ V (G), if G(S) is

a γ -quasi-clique, then ∀ u, v ∈ S, disG(u, v) ≤ 2.

PROOF. Since G(S) is a subgraph of G, disG(S)(u, v) ≥ disG(u, v) holds.
In addition, according to Lemma 5.1, we have disG(S)(u, v) ≤ 2. Therefore,
disG(u, v) ≤ 2 must hold.

Given a graph G, let S ⊂ V (G) and v ∈ V (G) − S, from Lemma 5.2 we know
that if G(S) and v can form a “bigger” quasi-clique, then ∀ u ∈ S, disG(v, u) ≤

2 must hold. Accordingly, a straightforward and reasonable application of
Lemma 5.2 is to discover the extensible vertices of a subgraph which can later
be used to form quasi-cliques. First, with ∀ u ∈ S we calculate the extensible
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vertex set K (u) (K (u) = {v | disG(u, v) ≤ 2}), then conjoin all K (u)’s to obtain
the global extensible vertex set of the subgraph G(S). Obviously, K (u) can be
generated in three steps. The first is generating D(u), which consists of the
vertices that are adjacent to u, namely, D(u) = {v | disG(u, v) = 1}. The second
is generating I (u), where I (u) = {v | ∃ u′ ∈ D(u), disG(u′, v) = 1}. Finally, we get
K (u) through the union of D(u) and I (u). In this way, we can discover an ex-
tensible vertex set for an instance of a subgraph G(S), and thus pruning many
unpromising vertices.

Example 5.1 (Diameter Pruning). In Figure 6, for node b:2:2, there are two
instances in G2, namely G2({v2}) and G2({v6}). Because disG2 (v2, v6) = 3, we can
state that there does not exist a quasi-clique Q in G2 such that V (Q) ⊇ {v2, v6} .
Accordingly, we can remove G2({v2, v6}) from the instance set of bb, and thereby
there exists no instance of bb in G2. Though there exists an instance of bb in
G1, we can infer that the strict-support of bb is no greater than 1, which is less
than min sup. Thus, although bb is vice-frequent, it is unnecessary to generate
node bb:2:0. Accordingly, nodes bbc:2:0, bbd:2:0, and bbcd:2:0 will also not be
generated. This example shows that the diameter pruning method can be used
to prune a lot of futile parts of the search space.

5.2 Combination Pruning

Furthermore, we can combine structural redundancy pruning with diameter
pruning to further shrink the extensible vertex set. As stated in structural re-
dundancy pruning, only those vertices whose labels are no smaller than LAS(g )
can be used to grow g , where g is the current prefix subgraph. Therefore, when
calculating K (u) we can remove vertices whose labels are smaller than LAS(g ),
and the removal of some vertices in K (u) may make some of the vertices left
in K (u) violate the condition of an extensible vertex introduced in Lemma 5.1.
For example, suppose ∃ v0 ∈ I (u) and there exists only one vertex v′ such that
v′ ∈ D(u) and disG(v0, v′) = 1. If v′ /∈ V (g ) and the label of v′ is smaller than
LAS(g ), then v′ will never appear in all the descendants of g , thus a descendant
g ′ of g which contains vertex v0 cannot be a quasi-clique, as disg ′

(u, v0) > 2
must hold. Therefore, we can remove the vertex v0 from K (u) safely.

In order to eliminate these vertices efficiently, after getting D(u), we remove
those vertices in D(u) whose labels are both smaller than LAS(g ) and do not
belong to V (g ). Let D̄ g (u) denote the remaining of D(u) after the aforementioned
process, that is, D̄ g (u) = {v | disG(u, v) = 1 ∧ (v ∈ V (g ) ∨ L(v) ≥ LAS(g ))},
and accordingly Ī g (u) = {v | ∃ u′ ∈ D̄ g (u), disG(u′, v) = 1}, K̄g (u) = {v | v ∈

D̄ g (u) ∪ Ī g (u), L(v) ≥ LAS(g )}. After we compute the final set of extensible
vertices K̄g (u), for each vertex u in subgraph g , we can then conjoin all the
K̄g (u)’s to get the global extensible vertex set wih respect to g . We call an
element in the global extensible vertex set an extensible candidate with respect
to g , and use V G

cad (g ) to denote the set of extensible candidates with respect to
g in G. Apparently, V G

cad (g ) = ∩∀ v∈V (g )K̄
g (v).

Example 5.2 (Combination Pruning). Given an instance g0 = G1({u1, u2})
in Figure 5, we have D(u1) = {u3, u4, u6}. Because the labels of u3 and u4 are
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smaller than LAS(g0) = c and both are not in V (g0), we can remove them
from D(u1). Thus D̄(u1) = {u6}, from which we get Ī(u1) = {u2, u3}. Then u3 in
Ī(u1) can be pruned due to L(u3) < L(u2), and we finally get K̄(u1) = {u2, u6}.
Similarly, we can get K̄(u2) = {u5, u6}, and compute the set of extensible candi-
dates with respect to g0 in G1 as V

G1

cad (g0) = {u6}. From the preceding analysis
we can see that although disG1 (u1, u5) = 2 and disG1 (u2, u5) = 1, u5 is not an
extensible candidate with respect to g0, since for any descendant g ′ of g0 in
the enumeration tree, disg ′

(u1, u5) > 2.

5.3 Pruning Techniques Based on Vertex Degree

LEMMA 5.3. If m + u < ⌈γ · (k + u)⌉ (where m, u, k ≥ 0 and 0.5 ≤ γ ≤ 1),

then m < ⌈γ · k⌉ and ∀ i ∈ [0, u], m + i < ⌈γ · (k + i)⌉.

PROOF. First, we assume m ≥ ⌈γ ·k⌉, then m+u ≥ ⌈γ ·k⌉+u ≥ ⌈γ ·k⌉+⌈γ ·u⌉ ≥

⌈γ ·(k+u)⌉, which contradicts with the fact m+u < ⌈γ ·(k+u)⌉. Thus m < ⌈γ ·k⌉

holds. Second, let t = u − i, then m + i = m + u − t < ⌈γ · (k + u)⌉ − t ≤

⌈γ · (k + u)⌉ − ⌈γ · t⌉ ≤ ⌈γ · ((k + u) − t)⌉ = ⌈γ · (k + i)⌉.

In the following, we propose an additional three optimization techniques
based on Lemma 5.3 which can be used to prune the unpromising search-space
effectively.

For v ∈ V G
cad (g ), we define the internal set V

g
in(v) = N G(v)∩V (g ) and external

set V
g

ex(v) = N G(v) ∩ V G
cad (g ). Let indeg g (v) = |V

g
in(v)| be the inner degree of

v, and exdeg g (v) = |V
g

ex | be the external degree. Taking Figure 5 for example,
assume g = G2({v5}), V

G2

cad (g ) = {v3, v4} (note v1 and v6 have been pruned by
combination pruning), then indeg g (v3) = 0 and exdeg g (v3) = 1.

LEMMA 5.4 (VERTEX CONNECTIVITY PRUNING). Suppose g is a k-subgraph of

G, if ∃ v ∈ V G
cad (g ) such that indeg (v) < ⌈γ · k⌉ and indeg g (v) + exdeg g (v) <

⌈γ ·(k+exdeg g (v))⌉, there does not exist a quasi-clique Q in G such that V (Q) ⊇

V (g ) ∪ {v}.

PROOF. Assume there exists a quasi-clique Q such that V (Q) ⊇ V (g ) ∪ {v},
and let |Q | = l . Since Q is a quasiclique, V (Q) ⊆ V (g ) ∪ V G

cad (g ). We define
R = V (Q) ∩ V

g
ex(v), and denoting |R| by m, then l − k − 1 ≥ m and m ≤

|V
g

ex(v)| = exdeg g (v). Because indeg g (v) < ⌈γ ·k⌉ and indeg g (v)+exdeg g (v) <

⌈γ · (k + exdeg g (v))⌉, according to Lemma 5.3, we get that ∀ i ∈ [0, exdeg g (v)],
indeg g (v) + i < ⌈γ · (k + i)⌉. Thus, degQ (v) = indeg g (v) + m < ⌈γ · (k + m)⌉ ≤

⌈γ · (l − 1)⌉, that is, degQ (v) < ⌈γ · (|Q | − 1)⌉. This contradicts the assumption
that Q is a quasiclique.

In the case of indeg g (v) + exdeg g (v) < ⌈γ · (k + exdeg g (v))⌉, v is called an
invalid extensible candidate, otherwise it is a valid extensible candidate. Obvi-
ously, invalid extensible candidates do not make any contribution to the genera-
tion of “bigger” quasi-cliques. Therefore, after getting the extensible candidate
set V G

cad (g ), we could remove all invalid extensible candidates from V G
cad (g ).

Due to the removal of these vertices, some originally valid extensible candi-
dates may turn invalid, so we can do this pruning iteratively until no vertex
can be removed from V G

cad (g ). We denote the remaining set by V G
vad (g ). Hence,
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if G(S) is a quasi-clique in G and S ⊃ V (g ), then S ⊆ V (g ) ∪ V G
vad (g ). Conse-

quently, we only need to use the vertices in V G
vad (g ) to grow g , which can further

improve the algorithm’s efficiency.
Assume g is a subgraph of a graph G, for a vertex u ∈ V (g ), let V

g
ext(u) =

N G(u)∩V G
vad (g ). Moreover, let the extensible degree extdegg (u) be the cardinality

of V
g

ext(u), namely, extdegg (u) = |V
g

ext(u)|. If there exists a critical vertex v in g

such that extdegg (v) = 0, we call v a failed vertex of g .

LEMMA 5.5 (FAILED VERTEX PRUNING). If there exists a failed vertex v in a k-

subgraph g of G, there will be no such an induced subgraph Q of G such that

V (Q) ⊃ V (g ) and Q is a quasi-clique.

PROOF. We prove this by contradiction. Let Q be such an induced subgraph
of G and |Q | = m. Obviously m > k and V (Q) ⊆ V (g ) ∪ V G

vad (g ). Since v is a
critical vertex in g , degg (v) = ⌈γ ·(k−1)⌉ and ⌈γ ·(k−1)⌉ < ⌈γ ·k⌉. Furthermore,
because degQ (v) ≤ degg (v) + extdegg (v) and extdegg (v) = 0, degQ (v) < ⌈γ · k⌉ ≤

⌈γ · (m − 1)⌉, which contradicts the assumption that Q is a quasi-clique. Thus,
there must exist no such an induced subgraph.

Given a k-subgraph g of a graph G, if ∃ u ∈ V (g ) such that degg (u) < ⌈γ ·

(k − 1)⌉ and degg (u) + extdegg (u) < ⌈γ · (k − 1 + extdegg (u))⌉, then we call u an
unpromising vertex in g .

LEMMA 5.6 (SUBGRAPH CONNECTIVITY PRUNING). If a k-subgraph g of G con-

tains an unpromising vertex u, there will be no induced subgraph Q of G such

that V (Q) ⊃ V (g ) and Q is a quasi-clique.

PROOF. Let Q be such an induced subgraph and |Q | = l . Since Q is a
γ -quasi-clique, V (Q) ⊆ V (g ) ∪ V G

vad (g ) holds. Let V ′ = V (Q) ∩ V
g

ext(u) and
|V ′| = m, then l ≥ m + |V (g )| = m + k. Because degg (u) < ⌈γ · (k − 1)⌉ and
degg (u) + extdegg (u) < ⌈γ · (k − 1 + exdeg g (u))⌉, from Lemma 5.3 we get that
∀i ∈ [0, exdeg g (u)], degg (u)+i < ⌈γ ·(k−1+i)⌉. Thus degQ (u) = degg (u)+|V ′| =

degg (u) + m < ⌈γ · (k − 1 + m)⌉ ≤ ⌈γ · (l − 1)⌉, that is, degQ (u) < ⌈γ · (|Q | − 1)⌉.
This contradicts the assumption that Q is a γ -quasi-clique.

According to Lemmas 5.5 and 5.6, if a subgraph contains a failed or un-
promising vertex, it has no hope to form a quasi-clique in the future. Therefore,
after getting the valid extensible candidate set V G

vad (g ), once we inspect the
existence of failed or unpromising vertices in g , then there is no hope to grow
instance g to generate quasi-cliques, and thus we can set V G

vad (g ) = φ and stop
growing g .

5.4 The Algorithm Valid

By integrating the previous pruning techniques, we can devise Subalgorithm
1, Valid, to calculate the valid extensible candidate set for a subgraph g . For
each vertex u in the current instance g , we scan the graph G in which g resides
to find the set D̄(u) (line 06). Then we generate the set Ī(u) from D̄(u), obtain
the extensible candidate set T of u (lines 07–08), and conjoin each discovered
extensible candidate set to get the global extensible candidates rs (line 09).
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Subalgorithm 1 VALID (g )

INPUT:
(1) g: an instance subgraph.

OUTPUT:
(1) rs: the set of valid extensible candidates with respect to g.

BEGIN
01. set rs = V (G)(G is the graph in which g resides);

02. For each vertex u in V (g )
03. If rs is empty

04. break;

05. set K̄ = D̄ = Ī = φ;

06. D̄ = {v|disG(u, v) = 1 ∧ (v ∈ V (g ) ∨ L(v) ≥ LAS(g ))};
07. Ī = {v | ∃ t ∈ D̄, disG(t, v) = 1};

08. K̄ = {v|(v ∈ (D̄ ∪ Ī)) ∧ (L(v) ≥ LAS(g ))};
09. rs = rs ∩ K̄;

10. Remove invalid extensible candidates from rs;

11. If there exists a failed or an unpromising vertex in g

12. rs = φ;

13. return rs;

END

Finally, we apply vertex connectivity pruning (line 10), failed-vertex pruning,
and subgraph connectivity pruning (lines 11–12) to rs to generate the final set
of valid extensible candidates with respect to g .

5.5 Improvement of Valid

Although the pruning techniques proposed in this article are supposed to be
very effective in enhancing the efficiency of quasi-clique enumeration, the op-
erations corresponding to lines 02–11 in subalgorithm valid are rather costly,
as we have to calculate the valid extensible candidates for each vertex in the
current subgraph. When the subgraph is extremely large, these loop opera-
tions will be very expensive in both space and runtime, and would potentially
become bottlenecks of the pattern discovery process. In this subsection we will
introduce some methods in order to improve these costly operations.

As we defined earlier, K̄g (u) is the extensible vertex set of u through diam-
eter and combination pruning. Since different subgraphs would have different
last vertex labels, u will have different K̄g (u)’s for different g ’s. The following
lemma shows the relationship between K̄g (u) and K̄g ′

(u), where g ′ is the direct
subgraph of g (i.e., g ′ is obtained by removing from g that vertex having the
largest label among vertices in g ).

LEMMA 5.7. Assume g ′ is the direct subgraph of g and both are subgraphs

of G, then ∀ u ∈ V (g ′), K̄g (u) ⊆ K̄g ′

(u).

PROOF. First of all, we prove that ∀ u ∈ V (g ′), D̄ g ′

(u) ⊇ D̄ g (u). Let V (g ) −

V (g ′) = {am}. Since D̄ g (u) = {v|disG(u, v) = 1 ∧ (v ∈ V (g ) ∨ L(v) ≥ LAS(g ))}.
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Fig. 7. Relationships of v, am, and Vcad (g ′).
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L(am) = LAS(g ) ≥ LAS(g ′), am ∈ Z
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2 (u), namely, D̄ g (u) ⊆ D̄ g ′

(u).

Therefore, ∀ u ∈ V (g ′), D̄ g ′

(u) ⊇ D̄ g (u).
According to the definition of Ī g (u), we get that Ī g (u) ⊆ Ī g ′

(u), D̄ g ′

(u) ∪

Ī g ′

(u) ⊇ D̄ g (u) ∪ Ī g (u), that is, ∀ u ∈ V (g ′), K̄g (u) ⊆ K̄g ′

(u).

Assume CF (g ) = a1a2...am, then Vcad (g ) = ∩m
i=1K̄

g (ai) and Vcad (g ′) =

∩m−1
i=1 K̄g ′

(ai). From Lemma 5.7 we know that ∩m−1
i=1 K̄g ′

(ai) ⊇ ∩m−1
i=1 K̄g (ai), thus

Vcad (g ) ⊆ Vcad (g ′)∩K̄g (am). Therefore, if we know the information of g ′’s exten-
sible vertices, we can get a superset of the extensible vertices of g . In addition,
after getting the extensible vertices, we should apply some more pruning tech-
niques to get the valid extensible candidates Vvad (g ). But how can we get the
valid extensible candidates of g from those of g ′?

Obviously, g ′ does not have any failed vertex or unpromising vertex. Other-
wise, it will not have a valid extensible candidate am to generate a new subgraph
g . Thus, we need only apply the vertex connectivity pruning method in order
to get the valid extensible candidates. Let P(g) denote the vertex set which was
pruned from the extensible vertex set of g by vertex connectivity pruning. In
the following we will introduce two lemmas which will help us facilitate the
computation of valid extensible candidates.

LEMMA 5.8. Given a subgraph g(CF () = a1a2...am) and its direct subgraph

g with CR(g ) = g ′, ∀ v ∈ P (g ′), if v ∈ Vcad (g ), then v ∈ P (g ).

PROOF. Since v ∈ P (g ′), indeg g ′

(v) < ⌈γ · (m − 2)⌉ and indeg g ′

(v) +

exdeg g ′

(v) < ⌈γ · (m − 2 + exdeg g ′

(v))⌉ must hold. Moreover, as am ∈ Vcad (g ′)
and Vcad (g ) ⊆ Vcad (g ′), we have exdeg g ′

(v) ≥ exdeg g (v). The relationships of
v, am, and Vcad (g ′) are shown in Figure 7. We will prove the lemma in two cases.

In the first case, v is not adjacent to am, so we have indeg g ′

(v) = indeg g (v),
indeg g (v)+exdeg g (v) ≤ indeg g ′

(v)+exdeg g ′

(v). As indeg g ′

(v)+exdeg g ′

(v) <

⌈γ · (m−2+ exdeg g ′

(v))⌉ and exdeg g (v) ≤ exdeg g ′

(v), according to Lemma 5.3
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we have indeg g ′

(v) + exdeg g (v) < ⌈γ · (m − 2 + exdeg g (v))⌉. Then indeg g (v) +

exdeg g (v) < ⌈γ · (m − 2 + exdeg g (v))⌉ ≤ ⌈γ · (m − 1 + exdeg g (v))⌉ must
hold.

In the second case, v is adjacent to am, so we have indeg g (v) = indeg g ′

(v) +

1 and exdeg g (v) ≤ exdeg g ′

(v) − 1. As exdeg g (v) + 1 ≤ exdeg g ′

(v) and
indeg g ′

(v) + exdeg g ′

(v) < ⌈γ · (m − 2 + exdeg g ′

(v))⌉, from Lemma 5.3 we have
indeg g ′

(v) + exdeg g (v) + 1 ≤ ⌈γ · (m − 2 + exdeg g (v) + 1)⌉ = ⌈γ · (m − 1 +

exdeg g (v))⌉, that is, indeg g (v) + exdeg g (v) ≤ ⌈γ · (m − 1 + exdeg g (v))⌉.
In conclusion, in any case indeg g (v)+ exdeg g (v) ≤ ⌈γ · (m−1+ exdeg g (v))⌉

must hold and v should be pruned from Vcad (g ) based on the vertex connectivity
pruning technique. Therefore v ∈ P (g ).

LEMMA 5.9. Given a subgraph g with CF (g ) = a1a2...am, and its direct

subgraph g ′, Vvad (g ) ⊆ Vvad (g ′) ∩ K̄g (am).

PROOF. For the sake of accomplishing this proof, we need to prove that ∀v ∈

Vvad (g ), v ∈ Vvad (g ′)∩K̄g (am). Assume that v ∈ Vvad (g ), as Vvad (g ) = Vcad (g )−
P (g ), v ∈ Vcad (g ) and v /∈ P (g ). From Lemma 5.8 we have v /∈ P (g ′). Otherwise,
if v ∈ P (g ′), since v ∈ Vcad (g ), we have v ∈ P (g ). This contradicts the fact
that v /∈ P (g ). Therefore, v /∈ P (g ′) and v ∈ Vcad (g ′), v ∈ Vcad (g ′) − P (g ′) =

Vvad (g ′). In addition, v ∈ Vcad (g ) and v ∈ K̄g (am), thus v ∈ Vvad (g ′)∩ K̄g (am). In
conclusion, we have that ∀v ∈ Vvad (g ), v ∈ Vvad (g ′)∩K̄g (am), namely, Vvad (g ) ⊆

Vvad (g ′) ∩ K̄g (am).

Based on Lemma 5.9, we can get a superset of Vvad (g ) from Vvad (g ′) ∩ K̄(am)
on which we can then apply vertex connectivity pruning. Meanwhile, it is con-
venient for us to maintain Vvad (g ′). Accordingly, based on Lemma 5.9 we can
devise a more efficient algorithm, Subalgorithm Valid+, to replace Subalgo-
rithm Valid. If g has only one vertex u, then the set of valid extensible can-
didates rs is equal to K̄g (u) (lines 16–18). Otherwise, assume u and g ′ are
the last vertex and direct subgraph of g , respectively. Based on Lemma 5.9,
we can get an extensible candidate set (line 20). Then we can apply prun-
ing techniques like those used in Valid to further prune the search space
(lines 21–23).

Subalgorithm 2 VALID+ (g )

INPUT:
(1) g: an instance subgraph.

OUTPUT:
(1) rs: the set of valid extensible candidates with respect to g.

BEGIN
15. u is the last vertex of g;

16. if |g | = 1;

17. rs = K̄(u);
18. return rs;

19. g ′ is the direct subgraph of g;

20. rs = Vvad (g ′) ∩ K̄(u);
21. Remove invalid extensible candidates from rs;
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22. If there exists a failed or an unpromising vertex in g

23. rs = φ;

24. return rs;

END

It is obvious from Subalgorithm Valid+ that we need to maintain Vvad (g ) for
each node corresponding to an instance subgraph g in the enumeration tree. It
hence seems likely that these extensible candidate vertex sets may occupy a lot
of space. We must remark here that, usually, maintaining Vvad (g ) for a given
node with respect to g has a very short lifecycle. In other words, we only need to
maintain Vvad (g ) after the node corresponding to g is generated and before all
its descendants are enumerated. Thus, we usually do not need too much space
to maintain the intermediate sets of extensible candidate vertex sets.

6. CLOSURE CHECKING SCHEME

By integrating the pruning techniques proposed in this article with the vice-
frequent subgraph enumeration framework, we can discover the complete set
of frequent quasi-cliques. However, how do we compute the set of closed quasi-
cliques? A straightforward approach is to store all the frequent quasi-cliques
that we have found, check the subquasi-clique relationships among the quasi-
cliques, and remove the nonclosed ones. While inserting a frequent quasi-clique
q into the result set, we need to perform two types of checking. The first is
superclique detecting, which checks whether there already exists an element
q′ such that q ⊏ q′ and sups(q) ≤ sups(q

′). If there exists such a q′, then q is
nonclosed and will not be inserted into the result set. The second is subclique

detecting, which checks whether there exists any already-mined quasi-clique q′

such that q′
⊏ q and sups(q) ≥ sups(q

′). All such q′’s are nonclosed and should
be removed. Apparently, this naïve approach is very costly. In the following, we
introduce a more efficient closure checking scheme to facilitate the discovery of
closed quasi-clique patterns.

Given two subgraphs G1 and G2 with canonical forms CF (G1) = a1a2...an

and CF (G2)=b1b2...bm (where n<m), respectively, if CF (G1) ⊏ CF (G2), there
must exist n integers 1 ≤ i1 < i2 < ... < in ≤ m such that a1=bi1 , a2=bi2 , ...,
an=bin . If in=n, the relationship of CF (G1) and CF (G2) in the enumeration
tree can be as illustrated in Figure 8(a), that is, the node corresponding to
CF (G1) is an ancestor of the node corresponding to CF (G2). Otherwise, let
k = min{ j | i j = j }, then CF (G1) and CF (G2) have the same prefix a1a2...ak−1

(if k = 1, the prefix is empty) and ak > bk (as ak = bik , ik > k, and bk < bik hold).
Thus CF (G1) > CF (G2) holds, and this relationship in the enumeration tree is
shown in Figure 8(b).

One strategy for speeding up pattern closure checking is to postpone the
closure checking for G1, as well as the insertion of G1 into the result set (in
case G1 is closed) until all its descendants in the enumeration tree have been
processed. In this way, G2 must be discovered before G1 for the first case, shown
in Figure 8(a), as node CF (G2) is a descendant of CF (G1). In the second case,
shown in Figure 8(b), it is evident that G2 is also discovered before G1 according
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Fig. 8. Two cases of CF (G1) ⊏ CF (G2) in a vice-frequent subgraph enumeration tree.

to the DFS traversal strategy. In summary, if the current quasi-clique G1 can be
subsumed by another frequent closed γ -quasi-clique G2 (i.e., CF (G1) ⊏ CF (G2)
and supD

s (G1) ≤ supD
s (G2)), then the insertion of G2 into the result set will oc-

cur before the closure checking of G1. Accordingly, when we check whether
a frequent quasi-clique q is closed, there is no need to perform subclique de-
tection, as there does not exist any quasi-clique q′ in the result set such that
CF (q′) ⊏ CF (q) and supD

s (q′) ≤ supD
s (q).

Although there is no need for subclique detecting, we still have to perform
superclique detection. As shown in Figure 8, there are two cases for superclique
detecting. In the first case, we need to check whether there exists a descendant
quasi-clique of the current quasi-clique G1 that can subsume G1 in the enu-
meration tree. According to our strategy described before, we know that G1

must be mined after all its descendants, and superclique detection in this case
becomes relatively simple. After processing all the descendants of G1, we let
the recursive mining procedure return the maximum strict-support (denoted
by r) of all frequent quasi-clique nodes under the subtree rooted with CF (G1)
(if there does not exist any frequent quasi-clique, then it returns value zero).
If supD

s (G1) ≤ r, we know that G1 is nonclosed and will not insert G1 into the
result set. However, if supD

s (G1)>r, we still need to check whether there exists
any nondescendant superclique of G1 that can subsume G1 (i.e., the second
case, shown in Figure 8(b)).

In order to accelerate the nondescendant superclique detecting process, we
divide the elements in the result set into different groups according to their
absolute strict-support.2 In each group, we first order the elements by size
of quasi-clique in descending order, and among quasi-cliques with the same
size in the same group, we then order them by canonical form in ascending
order. The idea is illustrated in Figure 9. In the support vector, we store the
strict-support and a pointer that links the list of frequent quasi-cliques having
the same strict-support. In Figure 9, we omit the canonical forms of frequent
quasi-cliques, and depict only their size in the list. This data structure can

2We do not need to maintain the groups corresponding to strict-supports which are smaller than
min sup. Also, if the maximum support of the closed quasi-cliques is very large, we can use a
binning technique [Wang et al. 2006a] to reduce the number of groups.
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facilitate closure checking effectively. For example, when we try to perform
nondescendant superclique detection for a frequent 8-quasi-clique q which has
a strict-support k, we need only check those elements in the groups whose
corresponding strict-supports are no smaller than k. While checking group k,
we only need to check whether the first three elements in this group are proper
superquasi-cliques of q. In addition, once we find that the canonical form of
the current 9-quasi-clique is greater than CF (q), we can stop the comparison
of the quasi-cliques of size 9 in group k and guarantee that there exists no 9-
quasi-clique of q in group k that can subsume q. We then continue to check the
group (k + 1). After checking group t, if we still cannot find any superquasi-
clique of q that has no smaller strict-support than q, then we can safely say q

is closed and insert it into the group k according to the corresponding ordering
scheme.

7. THE COCAIN* ALGORITHM

By introducing the vice-frequent enumeration framework and structural re-
dundancy pruning technique, we can discover the complete set of coherent
frequent quasi-clique patterns efficiently. With the help of several advanced
pruning techniques, we can prune futile and unpromising search-space effec-
tively. Furthermore, with the proposal of the closure checking scheme, the closed
quasi-clique patterns could be mined. Therefore, by integrating them we get the
final solution, Cocain*, for discovering the complete set of coherent frequent
quasi-clique patterns.

Before running Cocain* as shown in Algorithm 1, we first compute the set
of vice-frequent vertex labels and their corresponding instances by scanning
the original database, and remove from the graph database those vertices with
nonvice-frequent vertex labels. This procedure can reduce the size of input
graphs significantly, especially when min sup is high. After this preprocessing,
we use Cocain* to mine the complete set of frequent closed coherent quasi-
cliques. For the current prefix vice-frequent subgraph g , we first use Subalgo-
rithm Valid+ to get the set of valid extensible candidates Vvad for each instance
of g (lines 26–27), from which we can further calculate the vice-frequent exten-
sible labels (line 28). For each vice-frequent extensible label, we invoke Cocain*
to discover descendants of g (lines 30–32). After all recursive invocations have
returned, we can use the closure checking scheme to determine whether to
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Algorithm 1 Cocain*(D, CF (g ),I N S(g ),min sup,γ )

INPUT:
(1) D: the input graph database,
(2) CF (g ): the canonical form of g,
(3) I N S(g ): the set of instances of g in the database D,
(4) min sup: the minimum support threshold,
(5) γ : the edge density coefficient.

OUTPUT:
(1) rs: the set of frequent closed γ -quasicliques,
(2) max: the maximum strict-support of all descendant quasi-cliques of g .

BEGIN
25. glbsup=0, rv=0;

26. For each instance ins ∈ I N S(g )
27. Vvad (ins) = VALID+(ins);
28. Calculate vice-frequent valid candidate label set V E X (g ) according to each Vvad (ins);
29. Sort the labels in V E X (g ) in a certain order;

30. For each label l ∈ V E X (g )
31. rv = Cocain∗(D, CF (g ) ⋄ l , I N S(g ⋄ l ), min sup, γ );
32. glbsup = max{glbsup, rv};

33. If (sups(g ) ≥ min sup) and (sups(g ) > glbsup)
34. Insert CF (g ) into RS if g passes the nondescendant superclique detecting;

35. return max{sups(g ), glbsup};

END

insert g into the final result set according to the strict-support of g and the
returned values of the recursive invocations (lines 33–34).

8. THE OUT-OF-CORE SOLUTION

Like most existing studies, all of our previous discussions are based on the
assumption that either the whole database or at least its majority can fit into
main memory, the number of possible labels in databases is not large, and the
major data structures are designed for being held in main memory, too. Are
there any real-life applications that need to mine large graph databases? The
answer is yes. For example, in data integration of XML documents or mining
semantic web, it is often required to find the common substructures from a large
collection of XML documents. It is easy to see applications with collections
of millions of XML documents. As another example, stock market data can
also be converted to graphs with thousands of vertices. These large databases
often cannot be held in main memory. Thus, it is necessary to devise out-of-core
solutions for these large databases.

Why is mining large disk-based graph databases so challenging? In most
previous studies, the major data structures (the adjacency list or adjacency
matrix) are designed for being held in main memory. Moreover, most of the pre-
vious methods are based on efficient random accesses to elements (e.g., edges
and their adjacent edges) in graphs. However, if the adjacency list or adjacency
matrix representations cannot be held in main memory, the random accesses
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to them become very expensive. For disk-based data without any index, ran-
dom accesses can be extremely costly, the computation becoming I/O bounded.
In this section, we will devise some effective index structures to facilitate
scalable mining of coherent closed quasi-cliques from disk-based large graph
databases.

8.1 Critical Operations

Algorithm Cocain*, shown in Algorithm 1, is efficient when the database can
be held in main memory, since this algorithm focuses on effective heuristics
to prune the search space. However, it may encounter difficulties while min-
ing large databases. The major overhead involved is that Cocain* has to ran-
domly access elements (e.g., edges and vertices) in the graph database, as
well as the projections of the graph database, many times. For databases that
cannot be held in main memory, the mining becomes I/O bounded and thus
costly.

Random access to elements in graph databases and isomorphism checking
are not unique to Cocain*. In fact, this is a common problem for many graph
pattern mining algorithms, such as FSG [Kuramochi and Karypis 2001], gSpan
[Yan and Han 2002], and so on. In our solution for mining coherent closed quasi-
cliques, the major data access operations are as follows.

OP1: Vertex label support checking, which calculates the support of a vertex
label in the graph database;

OP2: Label-host graph checking, which finds for a vertex label l those graphs
in the databases where l appears and also its relative positions in these
graphs, and

OP3: Adjacent vertex checking, which finds all adjacent vertices for a vertex v

in the graphs where v resides.

Each of the aforementioned operations is usually called numerous times
during the pattern discovery process. Without appropriate indices, each of these
operations may require scanning the database or its projections. If the database
or its project cannot fit into main memory, the scanning and checking may result
in a great deal of I/O overhead.

Can we design some effective index structures so that the related informa-

tion can be maintained and all the aforementioned operations can be executed

efficiently using the indices only, thus without scanning the original database

and checking the graphs? This motivates the design of the index structures
described in the next section.

8.2 The Data Structures

8.2.1 Adjacency Information. The first problem is how to store the graph
databases, especially the adjacency information among different vertices. We
adopt the adjacency list as our storage data structure. Figure 10 shows the
adjacency list for our running example in Figure 5.

For each vertex, we store all its neighbors’ indices in the current graph. For
instance, the vertex u5 in G1 in Figure 5 has two neighbors, u2 and u4, whose
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Fig. 10. Adjacency data structure.

indices are 2 and 3, respectively. Therefore, in the adjacent data structure, the
vertex u5 of G1 has two elements, 2 and 3.

Apparently, if the graph database has m edges, the space complexity of this
adjacent data structure is 2m. There exists redundancy in the structure we
adopted, as each edge is stored twice. For example, from either the adjacency
list of u2 or the adjacency list of u5 in G1 of Figure 10, we know that u2 is
adjacent to u5. Indeed, this is redundant, however, it will speed-up our pattern
discovery process. For finding all the neighbors of a vertex v, we only need to
check the adjacency list of v. Without this redundancy, we have to access more
than one adjacency list. This redundancy will make our pattern discovery more
timely and effective. Moreover, when we process large graph databases, what
we are most concerned with is the runtime, and not the disk space which the
indices occupy.

Consequently, with the help of the preceding adjacent data structure, the crit-
ical operation OP3, adjacent vertex checking, can be accomplished efficiently.

8.2.2 Label Index. Except for the critical operation OP3, we have to deal
with another two critical operations efficiently. Thus, we design a label index
data structure to facilitate these two operations. Figure 11 shows the label
index data structure built for our running example in Figure 5.

The label index data structure has three layers. The first stores the list of
sorted vertex labels. For each label, there is a link pointing to a list of graph-ids
in the second layer, in which this label appears. For each graph in the second
layer, it points to a 2-tuple list which keeps the starting and end positions of the
corresponding vertex label. For instance, the vertex label c appears in G1 and
G2 in our running example. Hence, it points to a list containing two graph-ids
G1 and G2. Meanwhile, in G2 there are two vertices, v4 and v5, each having a
vertex label of c, and their position indices are 3 and 4, respectively. Therefore,
the 2-tuple is (3, 4).

As we can see, for each vertex label l , if its rough-support is Sup(l ), its
corresponding index will occupy 3Sup(l ) + 1 cells (note here that a cell may
correspond to one space unit for storing an integer data type or a long integer
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Fig. 11. Label index data structure.

data type, depending on the concrete implementation). Therefore, the space
complexity of the label index data structure is

∑
∀l∈L(G)(3Sup(l ) + 1).

Once the label index data structure is constructed, it will greatly facilitate
the operations OP1 and OP2. For OP1 (i.e., vertex label support checking), we
need only get the length of the corresponding graph-ids list in the second layer.
And we can also maintain this information permanently after we construct
the index. For OP2 (i.e., label-host graph checking), we can get all the graph-
ids from the corresponding list and also their corresponding starting and end
positions in each graph.

8.3 Construction and Usage of the Index Structures

Given a specific minimum support threshold min sup, we can scan the original
graph database and remove those vertices with infrequent vertex labels. Then
we can construct the index structures, adjacency data structure, and label index
structure, and keep them in the disk for future use. For all minimum support
thresholds no smaller than min sup, we can always use these index structures
constructed with a minimum support min sup. With the label index structure,
before running Cocain* we can directly get the frequency of each vertex label,
and then get the frequent vertex labels and their corresponding instances. For
adjacency information of the vertices, it is very easy to use the adjacency data
structure.

The storage of the index structures is relatively flexible. If the graph database
is small enough, all the index structures can be held in main memory. On the
other hand, if the graph database is too large for the index structures to be held
in main memory, some layers of the index structures can be stored on disk. The
adjacency information is the most detailed and can be put on disk first. If the
main memory is still too small to hold the label index structure, part of it can
be switched to disk, too. In the extreme case, the entire set of vertex labels can
be held on disk and a B+-tree or hash index can be built on them.

In Wang et al. [2004], the authors also proposed an index structure called
ADI in order to accelerate frequent subgraph mining from disk-based graph
databases. However, differently from the ADI structure, we create indices for
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the vertex labels in the graph database, rather than for the edges, as the crit-
ical operations in Cocain* and gSpan are different. In addition, from the pre-
ceding data structure design we know that the efficiency of the index struc-
tures is mainly affected by the number of graphs in the dataset and the
number of distinct frequent vertex labels. We will evaluate the construction
time of the index structures and their disk space consumption empirically in
Section 9.

9. DISCUSSIONS AND EMPIRICAL RESULTS

We conducted an extensive performance study to evaluate various aspects of
the algorithm. We implemented the algorithm in C++, and all the experiments
were performed on a PC running Fedora Core 4 Linux and with a 1.8GHz AMD
Sempron CPU and 1GB of main memory installed. In the following we use
min sup and γ to denote the relative strict-support threshold and edge density
parameter, respectively. For simplicity, we use “min sup − γ ” to indicate the
pair of values of min sup and γ that we used in the experiments. For instance,
“100%-1.0” indicates that min sup and γ are set at 100% and 1.0, respectively.

9.1 Databases

In the experiments we used both real and synthetic databases to evaluate the
algorithm. Next we describe these databases in detail.

9.1.1 Real Databases. The real databases we used in our testing consist
of a US stock market series database, the KEGG database (abbreviated for
Kyoto Encyclopedia of Genes and Genomes database), and the yeast microarray
database.

—Stock market databases. According to Boginski et al. [2004] and Wang et al.
[2006b], stock market data with respect to a certain period of time can be
converted to a graph based on the cross-relationship of price fluctuations. We
used the same method as Wang et al. [2006b] to generate the stock market
databases, each of which was generated according to a certain correlation
coefficient and comprises 11 graphs. The characteristics of these databases
are depicted in Table II. Note that “x-stock” means this database was gener-
ated according to a correlation coefficient “x”. As we can see, all these stock
market databases except 0.99-stock are dense and large, with thousands of
vertices and hundreds of thousands of edges.

—KEGG databases. The second real database is the KEGG database, which can
be downloaded from http://www.genome.jp/kegg/. It contains 129 pathways,
each specifying one graph object with the entry elements as its nodes and
the relation and reaction elements as its edges. The relation and reaction
elements indicate the connection patterns of rectangles (gene products) and
of circles (chemical compounds), respectively. In the experiments, we only
considered the relations among genes, and ignored the reaction elements.
In this way, we got 129 input graphs, each of which, on average, containing
90 vertices and 104 edges (please refer to Table II to get more statistical
information).
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Table II. Stock Market Database Characteristics

Database # Graphs # Vertices # Distinct Labels # Edges

0.99-Stock 11 439 143 318

0.96-Stock 11 12643 3511 88310

0.95-Stock 11 18517 3998 220822

0.94-Stock 11 24002 4952 440090

0.93-Stock 11 28807 5363 754696

0.92-Stock 11 32993 5648 1167722

0.91-Stock 11 36647 5849 1675918

0.90-Stock 11 39998 6018 2274223

KEGG 129 11629 5720 13437

Yeast 39 88093 6349 940289

—Yeast microarray databases. The third real database we used is comprised
of the coexpression networks derived from 39 sets of yeast microarray data
provided by the authors of Hu et al. [2005], each consisting of the expres-
sion profiles of 6,661 genes in at least 8 experiments. For each set of yeast
microarray data, we constructed an input relational graph where two genes
are connected if they show strong similarity in their expression patterns as
measured by Pearson’s correlation. The statistical information about this
database is also shown in Table II.

9.1.2 Synthetic Databases. Furthermore, we also used a synthetic data
generator provided by the authors of Kuramochi and Karypis [2001] to generate
the synthetic databases. The generator takes the following six parameters as
input (for more details, please refer to Kuramochi and Karypis [2001]):

D: total number of input graphs
E: number of edge labels used
V : number of vertex labels used
I : average size of frequent subgraphs
L: number of potentially frequent subgraphs
T : average size of input graphs
Since we do not consider the difference of edge labels, the parameter E,

namely, the number of edge labels, will not affect the algorithm’s performance.
In the experiments, we set a fixed value of 200 for E, that is, E = 200 (in the
experiments we just randomly selected a value for E, and we must note that
it has no impact on the algorithm performance). For the other parameters, we
set V = 50, I = 50, and L = 1,000 as the default values if not explicitly stated.
The value of L is much bigger than L = 200 that was used in the experiments
of Kuramochi and Karypis [2001] and Wang et al. [2004]. In the following we
use D100kT20 to denote a synthetic database that contains 100k graphs with
average size 20, 200 edge labels, and 1,000 potentially frequent subgraphs with
average size 50.

9.2 Efficiency Comparison of Cocain* and Cocain

We first conducted some experiments to evaluate the newly proposed approach,
Cocain*, in comparison with Cocain. The result is shown in Figure 12. In the
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Fig. 12. Efficiency comparison of Cocain and Cocain*.

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1000

1200

R
u
n
ti

m
e 

(s
ec

)

S
iz

e 
(M

B
)

Number of Input Graphs (in 100K)

Construction Time
Index Size

Fig. 13. Sensitivity analysis of the index structures with respect to base size.

experiments, we used the synthetic dataset D1000kT40, which contains one
million input graphs. From Figure 12 we see that Cocain* is more efficient
than Cocain, especially when the support is not very high. This illustrates
that the newly proposed techniques are effective in improving the algorithm
efficiency.

9.3 Sensitivity Analysis of the Index Data Structures

Meanwhile, we also evaluated the efficiency of the index structures proposed in
Section 8 by testing their construction time and space consumption in the disk.
Our purpose here is to identify which parameters have a big impact on the effi-
ciency of the index structures. In the experiments we fixed the minimum rela-
tive strict-support at 1%. Figure 13 shows the results on the synthetic datasets
T10I50V 50 with a base size ranging from 100K to 1600K . The left y axis
shows the runtime in seconds to construct the index structures, and the right y

axis shows the space in megabytes consumed by the index structures. From the
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Fig. 15. Sensitivity analysis of the index structures with respect to average size of input graphs.

figure, we see that both the construction time and space consumed by the index
structures have a linear relationship with the base size. Figure 14 shows the
results on synthetic datasets D100kT40I50 with the number of distinct vertex
labels ranging from 10 to 100. We see that the number of distinct vertex la-
bels has little impact on both the construction time and space consumed by the
index structures. Similarly, Figure 15 shows the results on synthetic datasets
D100kI50V 50 with the average size of input graphs ranging from 10 to 100.
It is obvious that the average size of input graphs has a relatively big impact
on the efficiency of the index data structures.

9.4 Comparison of Valid and Valid+

As we mentioned in Section 5.5, since Vvad (g ) ⊆ Vvad (g ′) ∩ K̄g (am), the adop-
tion of Valid+ in Cocain* may cause more subgraphs to be enumerated in
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Fig. 16. Comparison of Valid and Valid+ (0.95-stock, min sup = 60%).

the discovery process. Can we still benefit from Cocain*? Figure 16 depicts
the evaluation results. In our test, we chose the 0.95-stock database and set
min sup = 60%. As shown in Figure 16(a), Valid+ only enumerates marginally
more subgraphs than Valid. But Figure 16(b) shows that Valid+ costs much
less in terms of time than Valid. This illustrates that Valid+ is more effective
and efficient than Valid.

9.5 Efficiency Test

We also implemented one baseline algorithm, Raw, which excludes all the prun-
ing techniques. By comparing the runtime efficiency of Cocain* and Raw using
both synthetic and real databases, we can get an idea about the effectiveness
of the pruning techniques proposed in this article.

Figures 17(a)–(d) show the runtime comparison between Cocain* and Raw
with databases D100kT20, 0.99-Stock, KEGG, and Yeast, respectively. From
Figure 17 we see that Cocain* scales better in terms of support threshold, and
is also much faster than Raw with all four databases. For example, for database
0.99-Stock, Cocain* only takes 0.01 seconds to finish, while Raw takes about
2,511 seconds with γ = 1.0 and min sup = 30%. The high performance of
Cocain* in comparison with Raw also demonstrates that the pruning techniques
proposed for Cocain* are extremely effective.

We then tested the runtime efficiency of Cocain* and Raw by fixing min sup

at a certain value and varying the value of γ from 0.5 to 1.0. Figures 18(a) and
(b) show the results for synthetic database D100kT20 with min sup = 1%, and
real database 0.99-Stock with min sup = 40%, respectively. We can see that
Cocain* is always much faster than Raw for different values of γ . For example,
for database 0.99-Stock, Cocain* is several orders of magnitude faster than
Raw with min sup = 40% and γ =0.7. The results in Figure 18 demonstrate
that Cocain* is very efficient, even with a relatively low value for γ .

Moreover, in the efficiency test we oberserved that we cannot use the huge
dense graph databases (e.g., D100k20T rather than D1000kT20 and 0.99-stock
rather than 0.90-stock) or a very low value for min sup. This is because Raw is
too slow and takes too much time, even with a very small or sparse database.
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Fig. 17. Efficiency comparison (varying min sup).

Fig. 18. Efficiency comparison (varying γ ).

For example, even with the 0.99-stock and min sup = 30%, Raw takes 2,511
seconds while Cocain* takes only about 0.01 seconds. When using 0.90-stock
or a lower value for min sup, Raw will take millions of seconds, which is a too
long time. In order to get the testing results of Raw in a relatively short period
of time, we have to use small sparse databases and low values for min sup.
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Fig. 19. Comparison of pruning techniques (0.95-stock, min sup = 60%).

9.6 Comparison of Different Pruning Techniques

We proposed several pruning techniques in this study, including diameter prun-
ing, combination pruning, vertex connectivity pruning, failed-vertex pruning,
and subgraph connectivity pruning. In this section, we discuss and compare
their effectiveness. Figure 19 shows the runtime and number of enumerated
subgraphs in various conditions with combinations of different pruning tech-
niques. For instance, the caption “No Vertex Con. Prun.” denotes a variant of
Cocain* without applying vertex connectivity pruning. From the results shown
in Figure 19(a) we can observe that diameter pruning, vertex connectivity prun-
ing, and subgraph connectivity pruning are rather effective in pruning un-
promising search-spaces and play key roles in our pruning strategy. Based on
the results in Figure 19(b), we observe that each pruning technique we proposed
is effective while failed, vertex-pruning, diameter pruning, and subgraph con-
nectivity pruning play more important roles in improving the efficiency of the
algorithm.

9.7 Scalability Test

Meanwhile, a comprehensive scalability study was conducted in terms of base
size on both real and synthetic databases. We first replicated the 0.95-stock
database from 2 to 16 times and ran Cocain* with three different combined pa-
rameter values: 100%-1.0, 100%-0.5, and 80%-1.0. As shown in Figure 20(a), it
is evident that Cocain* shows linear scalability in runtime against the number
of input graphs in database. For the synthetic database, we set min sup = 10%,
γ = 0.5, and varied parameter D from 100k to 1,000k, parameter T from 10
to 40, and got the runtime of Cocain* as shown in Figure 20(b). Similarly, Co-
cain* also shows good scalability in runtime against base size for synthetic
databases.

9.8 Coherent Closed Quasi-Clique Examples

By applying Cocain* to stock market and KEGG databases, we found a lot
of nontrivial coherent closed quasi-cliques. Figure 21 shows the distribution
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Fig. 20. Scalability on database size.

Fig. 21. Maximum pattern-size distribution (0.95-stock).

of the maximum closed quasi-clique size with respect to edge density coeffi-
cient γ for 0.95-stock by fixing min sup at 90%, 80%, 70%, 60%, and 50%,
respectively. For example, by setting γ = 0.5 and min sup = 60%, Cocain*
discovered 39 frequent closed quasi-cliques of size 13. Figure 22 shows two em-
beddings of one maximum quasi-clique of size 13, which corresponds to the set
of stock index names DMF, MEN, MQY, MTS, MVT, MYI, MYJ, NPX, NUV,
PIF, PPM, VKL, and VMO. At the same time, we plotted their price fluctua-
tions in one of the 500-day periods, as shown in Figure 23. Obviously, in these
500 days, these 13 stocks’ prices evolved synchronously. This illustrates that
the closed quasi-cliques discovered by Cocain* from the US stock market data
are very helpful in revealing the internal structure and providing valuable
insights.

For the KEGG database, we also found some interesting coherent sub-
graphs. For example, by setting min sup = 1% and γ = 0.5, we got a total
of 1,759 frequent coherent closed quasi-cliques, among which the maximum
quasi-clique contains 11 highly correlated genes: ec:1.1.1.222, ec:1.1.1.237,
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Fig. 22. Two example embeddings of one maximum closed quasi-clique of size 13 (0.95-stock,
γ = 0.5, min sup = 60%).

Fig. 23. Price fluctuation of the 13 stocks in one maximum closed quasi-clique of size 13.

ec:1.4.3.2, ec:1.13.11.27, ec:2.6.1.1, ec:2.6.1.5, ec:2.6.1.9, ec:2.6.1.57, ec:4.1.1.28,
ec:4.3.1.5, and ec:5.3.2.1. This maximum quasi-clique was strictly supported by
pathways map00350 and map00360. Figure 24 shows the two corresponding
embeddings.
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Fig. 24. Two example embeddings of the maximum closed quasi-clique of size 11 (KEGG, γ = 0.5,
min sup = 1%).

10. CONCLUSION

In this article we devised a novel algorithm, Cocain*, to mine frequent closed co-
herent quasi-cliques from large dense graph databases. We introduced a simple
canonical form in order to uniquely represent a quasi-clique pattern, proposed
several effective search-space pruning techniques by exploring some nice prop-
erties of quasi-clique patterns, diameter pruning, combination pruning, vertex
connectivity pruning, failed-vertex pruning, and subgraph connectivity prun-
ing, which can be used to accelerate the mining process, and also designed an
efficient pattern closure checking scheme to speed-up the discovery of closed
quasi-cliques. Finally, in order for Cocain* to scale to extremely large graph
databases, we also proposed two effective index structures to support the out-
of-core solution. An extensive performance study with both real and synthetic
databases has demonstrated that the pruning techniques we proposed in this
article are very effective, and that Cocain* is very efficient and scalable. Besides
applications to highly correlated stock discovery and function prediction for un-
characterized genes, in the future we plan to explore potential applications of
closed coherent quasi-clique mining in clustering/classifying graph-structured
databases.
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