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Abstract
We present a simple method for compressing very large and regularly sampled scalar fields. Our method is partic-
ularly attractive when the entire data set does not fit in memory and when the sampling rate is high relative to the
feature size of the scalar field in all dimensions. Although we report results forR

3 andR4 data sets, the proposed
approach may be applied to higher dimensions. The method is based on the new Lorenzo predictor, introduced
here, which estimates the value of the scalar field at each sample from the values at processed neighbors. The pre-
dicted values are exact when the n-dimensional scalar field is an implicit polynomial of degree n−1. Surprisingly,
when the residuals (differences between the actual and predicted values) are encoded using arithmetic coding,
the proposed method often outperforms wavelet compression in an L∞ sense. The proposed approach may be
used both for lossy and lossless compression and is well suited for out-of-core compression and decompression,
because a trivial implementation, which sweeps through the data set reading it once, requires maintaining only a
small buffer in core memory, whose size barely exceeds a single n−1 dimensional slice of the data.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Compression, scalar fields,
out-of-core.

1. Introduction

Numerous engineering, biomedical, and other scientific ap-
plications produce extremely large data sets through numeric
simulations or physical data acquisition. In a large propor-
tion of the cases, the data represents one or more scalar
fields sampled over regular grids in dimension three, four, or
higher. For example a typical 3D simulation produces values
on a regular grid of 81923 samples8. In 4D a typical com-
bustion simulation generated using a High-Performance Par-
allel Processing Cluster may include 1000 time slices, each
representing a regular sampling of a cube at a resolution of
515x512x5121.

At each space-time sample, the values of several scalar
and vector fields are produced. Storing the results of this
simulation and transmitting them to remote visualization
clients is expensive. A variety of data compression tech-
niques have been proposed to reduce the storage and trans-
mission cost6.

We focus here on the loss-less, single resolution (i.e. non
progressive) compression. Instead of a hierarchical method,
which transmits a sub-sampled (and possibly smoothened)
model first and then estimates the missing values through in-
terpolation, we transmit the values in order, using a new pre-
dictor to extrapolate the next value from the previous ones.
The residuals (differences between the actual and predicted
values) may be encoded with fewer bits and, if desired fur-
ther compressed using arithmetic coding.

We have extended a simple two-dimensional parallelo-
gram predictor7 to higher dimensions and have named it
the Lorenzo predictor. It estimates the scalar value of a sam-
ple on the corner of ann-dimensional cube from the scalar
values of the others 2n− 1 corners. Although the formula
for the predictor is very simple, its predictive power is sig-
nificant for higher-dimensional data. For example, inR4,
the Lorenzo predictor can recover exactly any scalar field
that corresponds to an implicit cubic polynomial. In some
situations, the proposed method outperforms wavelet com-
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Figure 1: This is a 4D dataset, from the simulation of two
fluids interacting. This image is courtesy of Lawrence Liver-
more National Laboratory.

pression in anL∞ sense, when the residues are encoded
using arithmetic compression. Furthermore, because, during
compression and decompression, we only need to access the
immediate neighbors, the proposed approach is particularly
well suited for out-of-core implementations where the total
size of the data set significantly exceeds what can be stored
in core memory.

2. Prior Art

A variety of methods to compress 4D volumes have been
proposed in recent years. These include wavelets12, DCT-
encoding by Lum3, RLE encoding2, and images4, 5. The
wavelet approach uses an interpolating predictor, which,
according to informal experiments, produces 50% smaller
residues than an extrapolating predictor. On the other hand,
the wavelet’s hierarchical approach requires more space and
processing power than our extrapolating predictor. When lo-
cal temporary storage is an issue, wavelet approaches may
break the dataset in smaller chunks and compress each one
independently. The proposed approach does not require such
splitting.

3. The Predictor

When applied to a samplev, the Lorenzo predictor estimates
the scalar valueF(v) at v from its immediate neighbors that
have already been recovered. Assume that the data is orga-
nized as a regular grid of samples. Both the compression
and decompression visit it in scanline order. For simplicity
of notation, we use the local coordinate system where sam-
ple v has coordinates(1,1, . . . ,1) and its previously visited
neighbors are those samples with coordinates in{0,1}n. The
value of the scalar fieldF(v) is estimated from the values of
the scalar field at the other previously recovered vertices of

then-dimensional unit cube{0,1}n using the following for-
mula:

P(v) = ∑
u

(−1)g(u) ∗F(u) (1)

whereP(v) is the prediction atv, andg(u) denotes the num-
ber of coordinates ofu that equal 0. Note thatg(u) may also
be expressed asn−u · v, wheren is the dimension andu · v
is the dot product ofu andv.

Note that, as shown in Fig.2, in this formulation, the im-
mediate neighbors of the predicted vertexv have weight 1.
Second degree neighbors (i.e., those which can be reached
from v by traversing two edges of the cube) have weight−1,
third degree neighbors have weight+1, and so on.

Figure 2: In the 2D case (top left), the new value is pre-
dicted from its neighbors using the parallelogram rule (add
the scalar field values at the two a-vertices and subtract the
value at the b vertex). In the 3D case, we add the values of
the ’a’ corners, subtract the values of ’b’ corners and add
the value of the ’c’ corner. In the 4D case, we add the values
at the first and third degree neighbors and subtract the sum
of the values at the second and fourth degree neighbors.

4. Prediction for polynomials

The estimated values computed by the Lorenzo predictor in
n dimensions are exact for all scalar functions that are poly-
nomials of degreen−1. As a proof, assume thatQ is a poly-
nomial of degreem in n variables withm< n and consider
the following theorem and its corollary:
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Theorem: For a given monomialM in n variables
of degreem inferior ton, the sum of signed values
(−1)p(u)M(u) for all the verticesu of the unit cube
is zero, withp(u) being the number of coordinates
of u that equal 1. Note thatp(u) = n−g(u).

More formally, let u = (x1, . . . ,xn). A Monomial
M(u) has the form: xp1

1 . . .x
pk−1

k−1 xpk
k xpk+1

k+1 . . .x
pn
n , with

∀i pi ≥ 0 and ∑i pi = m. Then the theorem states that

∑u∈{0,1}n(−1)p(u)M(u) = 0.

Proof: There are n variables, but the sum
∑i pi = m of the powers of the variables listed in
M is less thann. Therefore at least one variable is
not listed in M. Assume without loss of generality
that thekth variable is not listed. Consequently,
the value of M is independent of that variable
and thus M(x1, . . . ,xk−1,0,xk+1, . . . ,xn) =
M(x1, . . . ,xk−1,1,xk+1, . . . ,xn). Note that
(−1)x1+...+0+...+xn = −(−1)x1+...+1+...+xn.
Therefore, the vertices of the cube can be paired
so that the values of(−1)p(u)M(u) on the two
vertices of a given pair are either both zero or
have absolute value one and opposite signs. Thus,
the sum of the signed values is zero.

This result may be easily extended to polynomials.

Corollary : For a given polynomialQ in n vari-
ables of degreem inferior to n, the sum of the
signed values(−1)p(u)Q(u) for all the verticesu
of the unit cube is zero, withp(u) being the num-
ber of coordinates ofu that equal 1.

Proof: Q is the sum of monomials of degreem< n.
We can permute the two summations. Thus:

Q = ∑i Mi

∑u∈{0,1}n(−1)p(u)Q(u) = ∑u∈{0,1}n(−1)p(u) ∑i Mi(u)

= ∑i ∑u∈{0,1}n(−1)p(u)Mi(u) = ∑i 0 = 0

The corollary implies that (−1)nM(1, . . . ,1) =
∑u∈{0,1}n−{1,...,1}(−1)p(u)Q(u), and hence

M(v) = (−1)n ∑u(−1)p(u)Q(u) or equivalently
M(v) = ∑u(−1)g(u)Q(u).

The Lorenzo predictor is of highest possible order among
all predictors that attempt to predict the value of a scalar field
at one corner of a cube from the values at the other corners.
In other words, it is of optimal order for this setting. As a jus-
tification, consider the monomialx1x2 . . .xn (product of all
coordinates). It is zero on all vertices of the unit cube except
for one. So, any predictor would not be able to differentiate
this monomial from the zero polynomial. Hence, the values
of the scalar field at the 2n−1 corners of ann-dimensional
cube are not sufficient to recover the value of annth degree
polynomial at the 2nth corner.

Note that, in two dimensions, the Lorenzo predictor is a
linear predictor and hence can reconstruct exactly portions
of the scalar field that behave as a linear functionF(x,y) =
ax+ by+ c.

In R3 however, the same simple Lorenzo predictor can
reconstruct quadratic functions:

F(x,y,z) = ax2+by2+cz2+dxy+exz+ f yz+gx+hy+ jz+k

In R4, the predictor extends its reconstruction power to
cubic polynomials:

F(x,y,z, t) = a1x3 + a2x2y + a3x2z + a4x2t + a5xy2 +
a6xz2 + a7xt2 + a8xyz+ a9xyt + a10xzt+ a11y

3 + a12y
2z+

a13y
2t +a14yz2+a15yt2+a16yzt+a17z

3+a18z
2t +a19zt2+

a20t
3 + a21

Note that, in theR4 case, the predictor does not explicitly
compute the 21 coefficients of a cubic polynomial, but can
nevertheless predict the value of the polynomial from the
values it takes at the 15 neighbors of each new sample.

Note that simpler predictors exist that correctly predict all
polynomials of degreem< n. For example, one may use the
n samples that preceedv on a scanline.

Unfortunately, such lower-dimensional predictors are
anisotropic and hence fail to exploit data coherence in all
dimensions. The Lorenzo predictor is the simplest isotropic
predictor that can recover correctly all polynomials of degree
less thann.

5. Scanline compression algorithm

Consider a 4D scalar data set organized in an array
F [xmax,ymax,zmax, tmax]. The pseudocode for the com-
pression algorithm is presented below:

Lorenzo(d,x1, . . . ,xn)
if all x1, . . . ,xn differ from -1

p := LorenzoPredictor(d,x1, . . . ,xn);
Encode(F [x1, . . . ,xn]− p);

else
Lorenzo(d−1,x1, . . . ,xd−1,0,xd+1, . . . ,xn);
for i = 1 todmaxdo

Lorenzo(d,x1, . . . ,xd−1, i,xd+1, . . . ,xn);

The variabled indicates the dimension of the predic-
tor, x1, . . . ,xn are the coordinates of a sample in the data,
and dmax is the number of samples in thedth dimension.
The function LorenzoPredictor computes the Lorenzo pre-
dictor of dimensiond (the first parameter) at the coordinates
x1, . . . ,xn. The starting call to compress a 4D dataset would
be:

Lorenzo(4,−1, . . . ,−1);

For example consider the 2D case of a 3× 3 matrix H,
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with points from(0,0) to (2,2). The trace of the compres-
sion program would on the integer lattice be:

Lorenzo(2,−1,−1);
Lorenzo(1,−1,0);

Lorenzo(0,0,0); EncodesH[0,0]
Lorenzo(1,1,0); EncodesH[1,0]−H[0,0]
Lorenzo(1,2,0); EncodesH[2,0]−H[1,0]

Lorenzo(2,−1,1);
Lorenzo(1,0,1); EncodesH[0,1]−H[0,0]
Lorenzo(2,1,1);

EncodesH[1,1]− (H[1,0] + H[0,1]−H[0,0])
Lorenzo(2,2,1);

EncodesH[2,1]− (H[1,1] + H[2,0]−H[1,0])
Lorenzo(2,−1,2);

Lorenzo(1,0,2); EncodesH[0,2]−H[0,1]
Lorenzo(2,1,2);

EncodesH[1,2]− (H[0,2] + H[1,1]−H[0,1])
Lorenzo(2,2,2);

EncodesH[2,2]− (H[2,1] + H[1,2]−H[1,1])

6. Footprint

When the data is large, there may not be enough space to
hold it all in main memory. Thus, both the compression and
decompression algorithms may need to work from auxiliary
storage. In its simplest form, compression estimates the next
value using a predictor, then reads the next value from the
raw data input stream, encodes the difference, and writes the
difference out to the output stream of compressed values.
Similarly, decompression estimates the next value using the
same predictor, reads in the correction from the input stream
of compressed data, decodes it and adds it to the estimated
value, and writes the result to the output stream of decom-
pressed values.

Let the term footprint denote the amount of main mem-
ory needed by the predictor (both during compression and
during decompression).

The footprint for the Lorenzo predictor is the size of a
single slice as illustrated in Fig.3 for theR2 case and in
Fig. 4 for theR3 case.

Here the red area is the footprint that needs to be in mem-
ory, but it is still one dimension less than the whole dataset.
For example, a 512n dataset has a footprint that is 512 times
smaller than the whole dataset.

To make use of the small footprint an out-of-core al-
gorithm has to allocate a buffer for storing the footprint
points. This buffer has the size of one slice of the data
plus the size of the footprint for a data set one dimension
less. For example, the size of the footprint buffer inR4 is
XM ∗YM ∗ZM +XM ∗YM +XM +1, whereXM is the range in
theX axis and so on. The buffer is implemented as a circular
FIFO vector of that size.

Figure 3: When compressing aR2 data set, the next value
(grey square) is predicted by using values from the foot print
(red). The other previously processed values (blue) are not
used by the predictor and need not be kept in memory.

Figure 4: When compressing aR3 data set, the next value
(light cube in the center) is predicted by using values from
the footprint slice (red). The other previously processed val-
ues (bottom in blue) are not used by the predictor and need
not be kept in memory.

If the corrections are compressed with an adaptive arith-
metic encoder, space to store the probability tables is also
needed. This space is much smaller than the whole dataset,
and because of the predictor’s good behavior, as can be seen
in Fig 6, only a subset of all possible corrections need to be
compressed with arithmetic encoder, because they represent
more than 99% of all corrections though their range is small
and centered around 0.

7. Residual encoding and lossy compression

When a lossy compression is acceptable we allow a small
discrepancy between the compressed data and the real data
in order to improve the compression ratio. For example a 5%
tolerance will in practice reduce the size of a compressed
file by half. We have considered two different error metrics,
L∞ and L2. The first is the maximum of the errors in the
decompressed version, the latter is the square root of the sum
of the square of the errors. So,L∞ is a metric to be used
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when it’s imperative that the error never exceeds a threshold.
The L2 error allows a small number of errors to be large
while the average error is smaller.

To guarantee that we do not exceed a prescribedL∞ error
we quantize the residuals from our predictor, and readjust
the values at the scalar field, to compensate for any possi-
ble error accumulation. Thus the error made is at much the
quantization error. The adjusted corrections are encoded in a
lossless fashion.

We have compared two approaches to encoding the resid-
uals. The first one is to feed the corrections to an adaptive
arithmetic encoder. The second one is to use a context arith-
metic encoder, like the one studied by Bell9, using the ac-
tual prediction as the context for the correction. The context
arithmetic encoder gives us a 25% gain over the adaptive
arithmetic encoder.

8. Results

We have tested our approach both on synthetic and real data.
Using synthetic data, we populated a volume dataset with
functions of higher degree than that of the predictor. For a
3D predictor, when applied to a volume data set filled with
a cubic function, the predictor makes an error between 3 to
8%, (measure taken from applying the predictor to different
cubic functions), and a 4D predictor against a volume set
filled with a quartic makes an error of less than 1%. Both
errors are formulated in theL∞ sense.

Figure 5: This is a comparison in L∞ of the Lorenzo Pre-
dictor (blue) and SPIHT (pink), a wavelet implementation,
on a 2D dataset.

We have also tested our predictor on two real 4D datasets.
After applying the predictor we use two different lossless en-
coding methods (discussed below) to write the corrections to
disk. We show the improvements in using a 4D compression
on top of a series of 3D compressed slices. To keep the size
of the datasets small, all values are quantized to one byte.

Our first dataset is courtesy of Prof. Chris Shaw from

Figure 6: These three histograms are from our LLNL
dataset. The top one shows the frequency of the 4D correc-
tions (which range from 0 to 1000000000), as a function of
their value, ranging from -128 to 127. The middle one shows
the frequency of the 3D corrections for individual time slices.
The bottom one shows the raw values, which range from 0 to
255.

Georgia Tech. It is the 3D model of a house on fire, show-
ing how the fire, smoke and pressure progress through time.
This dataset has a high number of zones where the scalar val-
ues are uniform, and zones exhibiting high gradients, which
correspond to the moving front of the fire. Because the high
number of 0 corrections in the dataset, we use a lossless RLE
compression method which we applied both to the 3D and
4D residuals for comparision. The size of the uncompressed
4D dataset is 43,202,395 bytes, with 3D slice compression
we reduce it to 1,076,587 bytes (2.49% of the total), and
524,768 bytes (1.21% of the total) with 4D compression.
Due to the high coherence in all dimensions, the 4D pre-
dictor outperforms by 50% the 3D compression applied to
individual slices.

Our second test dataset is a fluid mixing simulation, cour-
tesy of the Lawrence Livermore National Laboratory, iden-
tical to the one used in Mirin10. This dataset is a simula-
tion of how two fluids interact. In the first time steps the
fluids are calm, and the dataset is easy to compress. Later,
the fluids mix up and the compression ratio in those frames
is much lower. In this dataset we have chosen to use an adap-
tive context arithmetic encoding as a postprocessing step to
the Lorenzo prediction.

The 3D time slice predictor produces the best compres-
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sion. The 3D predictors for 3D slices in all the other direc-
tions are less effective. To explain this behavior, consider
that this original dataset was computed at very high resolu-
tion in time. To reduce the storage of this dataset the floating
point data was quantized to one byte and one frame out of
every hundred was used. This subsampling phase has sig-
nificantly reduced the coherence along the time axis. Our
approach gave us 304,937,058 bytes for 3D (1.77 bits per
symbol) and 318,871,620 bytes for 4D (1.85 bits per sym-
bol).

DataSet 4D Lorenzo Predictor Cubic Wavelets

Smooth 644 0.16 Bits/Symbol 0.20 Bits/Symbol
Harsh 644 3.73 Bits/Symbol 3.28 Bits/Symbol
Harsh 1284 1.75 Bits/Symbol 1.80 Bits/Symbol

Table 1: This shows the entropy of the residuals computed
with wavelets and the Lorenzo predictor for a 4D dataset, in
a lossless fashion.

We have compared the Lorenzo predictor with wavelets
in two scenarios. The first is a lossless compression, where
we compare cubic wavelets against the Lorenzo predictor for
several 4D datasets. As can be seen in Table1, both Wavelets
and Lorenzo predictor have close values, but the Wavelets
are slightly better. In the test the entropy of the corrections
of both schemes is what Table1 reports. On our second sce-
nario, the Lorenzo predictor was compared to SPIHT11, an
efficient implementation of wavelets that uses the S+P trans-
form. This compression was lossy, in theL∞ metric. Fig5
shows that the Lorenzo predictor performs better in those
conditions. The compression ratios of this example were
computed by actually compressing the residuals, with a con-
text arithmetic encoder for the Lorenzo predictor and SPIHT
using its hierarchical tree method.

9. Conclusion

The Lorenzo predictor introduced here predicts the value of
ann-dimensional scalar fieldF at a sample pointv from its
2n−1 previously processed neighbors that form the vertices
of a {0,1}n hypercube of whichv is the vertex(1, . . . ,1,1).
The predicted value forF(v) is simply the weighted sum of
all values ofF at the other corners of the cube. The weights
are either 1 or -1, depending on their minimal number of
edges of the cube between the sample andv.

The Lorenzo predictor is exact for all polynomials of de-
gree less thann. Its accuracy increases with the smoothness
of the data. Because of the limited size of the memory foot-
print, it is well suited for out-of-core compression and de-
compression.

We provide the implementation details and illustrate its
power on examples of real and synthetic data.
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