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Out-of-Core Construction and Visualization of Multiresolution Surfaces

Peter Lindstrom

Lawrence Livermore National Laboratory

Abstract

We present a method for end-to-end out-of-core simplification and
view-dependent visualization of large surfaces. The method con-
sists of three phases: (1) memory insensitive simplification; (2)
memory insensitive construction of a multiresolution hierarchy; and
(3) run-time, output-sensitive, view-dependent rendering and nav-
igation of the mesh. The first two off-line phases are performed
entirely on disk, and use only a small, constant amount of memory,
whereas the run-time system pages in only the rendered parts of the
mesh in a cache coherent manner. As a result, we are able to pro-
cess and visualize arbitrarily large meshes given a sufficient amount
of disk space; a constant multiple of the size of the input mesh.

Similar to recent work on out-of-core simplification, our mem-
ory insensitive method uses vertex clustering on a rectilinear octree
grid to coarsen and create a hierarchy for the mesh, and a quadric
error metric to choose vertex positions at all levels of resolution.
We show how the quadric information can be used to concisely
represent vertex position, surface normal, error, and curvature in-
formation for anisotropic view-dependent coarsening and silhouette
preservation.

The run-time component of our system uses asynchronous ren-
dering and view-dependent refinement driven by screen-space error
and visibility. The system exploits frame-to-frame coherence and
has been designed to allow preemptive refinement at the granular-
ity of individual vertices to support refinement on a time budget.

Our results indicate a significant improvement in processing
speed over previous methods for out-of-core multiresolution sur-
face construction. Meanwhile, all phases of the method are disk
and memory efficient, and are fairly straightforward to implement.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Surface and ob-
ject representations

Keywords: surface simplification, large-data visualization, view-
dependent refinement, out-of-core algorithms

1 Introduction

Recent advances in scanning technology and the ever increasing
size of computer simulations have led to a rapid increase in the
availability and size of geometric data sets. Massive polygonal data
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Figure 1: Various view-dependent meshes produced by our sys-
tem. The mesh in the middle has been coarsened aggressively out-
side the view frustum (here shown as a rectangle).

sets, consisting of hundreds of millions of faces, are becoming quite
common [Bernardini et al. 1999; Levoy et al. 2000]. While the per-
formance of graphics hardware has also seen a dramatic rise in the
last few years, our ability to produce data sets that overload the ca-
pabilities of state-of-the-art graphics chips has led researchers to
develop methods for automatic model simplification and run-time
level-of-detail (LOD) management [Funkhouser and Séquin 1993].
Whereas many polygonal environments consist of a large collec-
tion of moderately complex objects, such as those used in video
games, recent trends are for single objects to consist of millions of
polygons. Examples of such models include terrain surfaces and
high-resolution range scans. The traditional approach of storing a
few static levels of detail is not viable for such large objects, which
are often viewed in a manner that they vary greatly in screen res-
olution over the surface. As a result, methods for view-dependent
simplification have been proposed, in which a continuous level-of-
detail hierarchy is first constructed and then adapted at a fine gran-
ularity at run-time [Lindstrom et al. 1996; Xia and Varshney 1996;
Duchaineau et al. 1997; Hoppe 1997; Luebke and Erikson 1997;
El-Sana and Varshney 1999; Erikson et al. 2001].

The techniques mentioned above have been used successfully
for simplifying models up to a few million triangles. In the last
few years, however, polygonal models have become so large that
they often greatly exceed our ability to perform conventional in-
core simplification, and a number of techniques have been devised
for simplifying such models out-of-core, e.g. [Bernardini et al.
1999; Lindstrom 2000; Lindstrom and Silva 2001; Shaffer and Gar-
land 2001]. These methods, however, all produce static, single-
resolution meshes, which in a sense is inappropriate for such large
surfaces, because in order to view them interactively they have to
be simplified to such a degree that many important details are lost.
Rather, we would like to construct a level-of-detail hierarchy for
such large surfaces, and then use view-dependent techniques to ren-
der and explore them at varying resolution without significant loss
in fidelity. While there has been some recent work on out-of-core

mailto:pl@llnl.gov
http://www.llnl.gov/casc/people/lindstrom/


construction of LOD hierarchies, most notably by El-Sana and Chi-
ang [2000] and by Prince [2000], these methods have rather long
execution times, can be somewhat difficult to implement, and still
rely on having a large amount of memory available for in-core pro-
cessing. Furthermore, the results presented in these papers are for
models of rather modest size (just a million or a few million trian-
gles), making it difficult to judge how well they scale to truly large
models.

In this paper, we present an alternative approach to out-of-core
simplification for view-dependent refinement, by extending the
static simplification algorithm by Lindstrom and Silva [2001]. Our
end-to-end off-line method is memory insensitive, meaning that it
can run successfully with essentially an arbitrarily small amount of
memory (in our case, less than 8 MB). We achieve this by stor-
ing all intermediate computations in temporary files on disk, and
take advantage of fast sequential disk access. In addition to be-
ing memory efficient, our method is considerably faster than previ-
ously published techniques, running at a triangle reduction rate of
up to 60,000 triangles per second. We also present data structures
for concisely encoding quadric matrices and the per-vertex infor-
mation needed later at run-time during view-dependent rendering.
Finally, our method is straightforward to implement and is a simple
but significant extension of Lindstrom and Silva’s memory insensi-
tive simplification algorithm. We will present the various steps in
our algorithm after covering related work in the area.

2 Previous Work

In this section, we cover previous work on view-dependent and out-
of-core surface simplification. Because there has been extensive
work on simplification, we here only cover a few of the most related
algorithms in the field.

Among the first methods for view-dependent simplification for
general polygonal models was the technique by Xia and Varsh-
ney [1996]. Their method uses edge collapse to construct a binary
tree of possible coarsening operations off-line. At run-time, they
use a screen space metric, based on geometric error and proxim-
ity to silhouettes and specular highlights, for determining which
edges to collapse. Hoppe extended his work on progressive meshes
to view-dependent refinement [Hoppe 1997]. Similar to [Xia and
Varshney 1996], Hoppe uses edge collapse, but his algorithm pro-
vides greater freedom in choosing the order of edge collapses,
which generally results in higher quality adaptive meshes. His
method also makes use of geomorphing to reduce temporal LOD
artifacts. More recently, El-Sana and Varshney [1999] presented a
method, based on the more general vertex merge operation, that is
able to merge and simplify topologically disjoint parts of an object.
This method has been improved by El-Sana and Bachmat [2002],
who aggregate parts of the multiresolution hierarchy to speed up
LOD selection and rendering.

A different approach to view-dependent refinement was taken by
Luebke and Erikson [1997]. Rather than relying on edge collapse or
vertex pair contraction, they use an even more general coarsening
operation—vertex clustering—which allows a large collection of
vertices to be merged in a single atomic operation. Like us, they
make use of an octree decomposition of space, rather than a general
binary tree over the set of mesh vertices. Like others, they make
use of normal cones to detect when the surface is near a silhouette.
Luebke and Hallen [2001] later used this framework for performing
view-dependent “imperceptible simplification.”

The off-line processing techniques above all assume that the hi-
erarchy can be constructed in-core. To simplify large meshes out-
of-core, Lindstrom [2000] proposed a technique, based on vertex
clustering on a uniform grid, that makes use of Garland and Heck-
bert’s quadric error metric [Garland and Heckbert 1997]. Lind-
strom’s method performs a single sweep over the mesh and con-

structs an in-core representation of the simplified model. More
recently Lindstrom and Silva [2001] extended this method by re-
moving the requirement of having enough RAM to store the sim-
plified model. Their memory insensitive technique uses a constant
amount of memory and performs a series of external sorts to allow
sequential access to the on-disk data. Our first simplification phase
is based upon their algorithm. To provide a higher level of adap-
tivity, Shaffer and Garland [2001] proposed making two instead of
one pass over the mesh. In the first pass, uniform clustering like
in [Lindstrom 2000] is performed, after which a binary space par-
titioning (BSP) tree is constructed from the accumulated quadric
information. In the second pass, the BSP tree is used to reclus-
ter the mesh. Other recent out-of-core simplification methods for
adaptive but static levels of detail are presented in [Choudhury and
Watson 2002; Fei et al. 2002; Garland and Shaffer 2002].

There have only been a few published methods for out-of-core
simplification for view-dependent refinement. Hoppe applied his
view-dependent progressive mesh work to terrain data [Hoppe
1998]. His approach is to partition the terrain into a block hierarchy
and simplify the blocks independently. Then, the blocks are merged
and the seams between them are simplified further. Prince [2000]
later extended Hoppe’s out-of-core simplification method for ter-
rain to arbitrary polygonal surfaces. Prince’s method, like ours,
makes use of quadric error metrics, but uses edge collapse as the
coarsening primitive. While effective for medium-size models, his
out-of-core method still requires much RAM and may be too slow
for simplifying very large models. Cignoni et al. [2002] describe ef-
ficient data structures for a similar block hierarchy based technique
that allows a greater degree of simplification across block bound-
aries. Their results suggest an improvement over [Prince 2000]
in simplification speed and memory efficiency, but they do not re-
port on using their data structures for interactive view-dependent
refinement. El-Sana and Chiang [2000] proposed a novel out-of-
core technique for view-dependent simplification by segmenting
the mesh into independent patches. These patches are such that the
edge collapse order inherently preserves the boundaries between
them, thus simplifying and stitching the patches together can be
done without the need for explicit boundary constraints. Unfortu-
nately, the models used by El-Sana and Chiang are small by out-
of-core simplification standards, and it is not clear how well their
method scales. For large enough models the average patch size is
likely to shrink to the point that each edge must be loaded and col-
lapsed individually, leading to excessive thrashing. More recently,
DeCoro and Pajarola [2002] described external data structures and a
run-time system for out-of-core visualization. Their framework as-
sumes edge collapse is used to coarsen the mesh, but no out-of-core
method is presented for constructing the multiresolution structure.

Rusinkiewicz and Levoy [2000] proposed an interesting alter-
native to polygon-based view-dependent refinement. Their QSplat
algorithm clusters the triangle mesh into a vertex hierarchy, and
then uses point primitives to render the mesh. While conceptually
simple, most current hardware is optimized for triangle rather than
point rendering, and the quality afforded by real-time point-based
rendering can be rather low. Still, hybrid techniques like Cohen
et al.’s point- and triangle-based simplification [Cohen et al. 2001]
may prove useful. Finally, there are a number of out-of-core visu-
alization systems based on managing collections of static levels-of-
detail, including [Aliaga et al. 1999; Erikson et al. 2001; Varadhan
and Manocha 2002]. While related to our method, the focus of
these works is on the run-time handling of a large number of small
objects, as opposed to the off-line construction and run-time fine-
grained adaptation of a single large mesh.

To our knowledge, our system is the first to perform both scal-
able out-of-core simplification and view-dependent visualization of
general surfaces from external memory. We will describe our algo-
rithm in the following sections.



3 Algorithm Overview

Our view-dependent algorithm consists of three phases: simplifi-
cation, level-of-detail hierarchy construction, and run-time view-
dependent refinement and rendering. The first two phases are run
off-line to produce an on-disk level-of-detail representation of the
mesh. The run-time component then traverses this hierarchy, pages
in the data needed, and produces an adaptive mesh that can be dis-
played interactively. Our main approach is to use a sparse octree de-
composition of space over a uniform rectilinear grid, similar to Lue-
bke and Erikson’s view-dependent simplification algorithm [Lue-
bke and Erikson 1997]. The octree is sparse in the sense that only
those nodes that contain at least one vertex from the input mesh are
retained. Each node in this octree corresponds to a vertex at some
level of resolution, and adaptive mesh simplification and refinement
are performed by collapsing and expanding nodes (i.e. removing
and creating child nodes, respectively) in the octree. In this section,
we give a brief overview of the three phases of our algorithm, and
provide further details in the following sections.

The first phase—simplification—is based on the OoCSx mem-
ory insensitive mesh simplification algorithm by Lindstrom and
Silva [2001]. Their method is a memory efficient variation on the
out-of-core simplification algorithm by Lindstrom [2000], which in
turn was inspired by Rossignac and Borrel’s [1993] vertex cluster-
ing algorithm. Using a uniform grid to partition space, all vertices
that fall in the same grid cell are merged (clustered) to a single ver-
tex. In this process, the triangles that collapse to an edge or a point
are discarded. Whereas vertex clustering has the potential to intro-
duce non-manifold vertices and edges, this is typically not a con-
cern in interactive visualization, which is our primary application.
On the contrary, modest topology simplification is often desired to
eliminate the “topological noise” introduced in the data scanning
process. For the sake of geometric accuracy, representative ver-
tices for the clusters are chosen based on minimizing the quadric
error—a weighted sum of squared distances to the triangle planes
of the input mesh—which can be encoded using a symmetric 4× 4
matrix [Garland and Heckbert 1997].

The OoCSx algorithm performs all these tasks on disk and avoids
costly random accesses using a sequence of external sorts, followed
by fast sequential accesses. The intermediate output of this algo-
rithm is a set of triangles for the simplified mesh and a list of quadric
matrices for its vertices. Note that, unless the cluster grid is fine
enough, the mesh will be irreversibly decimated in this first phase,
and some fine details of the original full-resolution mesh may be
lost. However, in our experience, this potential loss in detail is
rarely noticeable. Each triangle that survives the simplification is
later assigned to an internal node in the octree hierarchy, as given
by an octcode—a bit string that uniquely identifies a grid cell by
position and resolution in the octree. Also to facilitate the ensu-
ing octree construction, we augment the per-vertex quadric matri-
ces with a vertex position, computed from the quadric matrix, and
an approximate vertex normal, and output these fields to a vertex
file. The vertex file is output in octcode order, such that sibling
nodes are stored together. This phase of the algorithm is described
in Section 4.

The octree construction phase begins by sorting the triangle file
by octcode, such that the triangle order follows the order in which
nodes are created in the octree. We then build the octree by first
processing the vertex file sequentially. Sibling nodes are identified
and grouped together, and the quadric and other geometric informa-
tion is merged to form a new level. Meanwhile, the triangle file is
scanned sequentially and triangles are deposited in the nodes where
they belong. The generated parent nodes are output sequentially
(again in octcode order) to a temporary file for that given level of
resolution, and the process is applied iteratively until all levels in
the octree are represented, ending with a temporary file containing

a single node—the root node. This bottom-up construction is then
followed by a final top-down, level-by-level traversal, during which
nodes are linked together in a single file and the hierarchical struc-
ture is output in the desired order, from coarse to fine resolution.
Note that all the I/O accesses used in our simplification and octree
construction are sequential in nature, and are therefore very effi-
cient. The algorithm for the octree construction phase is described
in Section 5, while the data structures for the output produced are
discussed in detail in Section 6.

In the run-time phase, the file containing the LOD hierarchy,
which could potentially greatly exceed the available main mem-
ory, is memory mapped so that it can be accessed as though it were
resident in contiguous memory. For simplicity, we let the operating
system perform on-demand paging of the external data, although
this data could equally well be accessed using an explicit paging
scheme. To minimize run-time computation, an in-core “copy” is
made of each active node in the octree. As new nodes are created,
we extract data from the external LOD hierarchy, compute any per-
vertex and per-triangle information not explicitly stored, and write
this data to a dynamically allocated data structure. These nodes
are maintained in a dynamic subset of the complete external octree,
and are expanded and collapsed, as determined by view-dependent
error and visibility criteria, to adapt to the current viewpoint. The
triangles contained in the active nodes and the currently active ver-
tices they reference are then output to a triangle list and rendered.
To avoid stalling the rendering when parts of the mesh need to be
paged in, we decouple renderering and refinement/paging as two
asynchronous threads. Also, for the sake of interactivity, we im-
pose a time limit on the refinement thread to guarantee frequent up-
dates of the mesh, and generally perform refinement breadth-first
to ensure that detail is progressively added evenly over the mesh
whenever the allotted refinement time is insufficient. The in-core,
dynamic data structures are presented in Section 7, while the steps
of the view-dependent refinement are given in Section 8.

4 Simplification

The simplification phase of our algorithm is based on, and is essen-
tially identical to, the beginning stages of the memory insensitive
technique OoCSx described in [Lindstrom and Silva 2001]. There-
fore, we will only briefly cover this part of our algorithm, and we
will focus on the few differences between the two methods. Pseudo-
code for the simplification phase is given in Table 1.

Before the simplification begins, the user chooses the resolu-
tion of a uniform rectilinear grid that completely contains the input
mesh. This grid is constrained to have dimensions 2n × 2n × 2n,
for some positive integer n. The cells in this grid correspond to the
leaf nodes in an (n + 1)-level octree that ultimately forms a mul-
tiresolution representation of the mesh. In the discussion below, we
will use the terms grid cell, cluster, and node interchangedly.

As in [Lindstrom and Silva 2001], we process the input mesh,
which is represented as a triangle soup (a sequence of triplets of
vertex coordinates), one triangle at a time. For each triangle t, we
compute a 4-vector

n̄t = ŵt

(

n̂t

dt

)

(1)

for an implicit plane equation n̂T

t x + dt = 0 that will later be used
to construct a quadric matrix. The weight ŵt allows non-uniform
weighting of the planes (see below). Then, for each of t’s three
vertices, we quantize the vertex coordinates to an integer grid cell
location, and then convert this location to an octcode v (cf. [Li and
Loew 1987]). These octcodes are represented as follows: The root
node has octcode v = 1 and the kth child of a node v is computed as
8v + k, with k = 0, . . . , 7. These octcodes have the property that
they are ordered by level, from top to bottom, and sibling nodes



simplify(Tin )
1 for each triangle t = 〈p1

t ,p
2
t ,p

3
t 〉 ∈ Tin

2 compute plane n̄t for t
3 for each vertex pi

t of t
4 map pi

t to leaf octcode vi
t

5 append 〈vi
t, n̄t〉 to plane file P

6 if v1
t , v2

t , v3
t are distinct then

7 compute (reversed) octcode v∗

t for t from v1
t , v2

t , v3
t

8 append 〈v∗

t , v1
t , v2

t , v3
t 〉 to triangle file Tout

9 externally sort P on octcode v
10 for each octcode v ∈ P
11 for each plane n̄t for v
12 add n̄tn̄

T

t to quadric matrix Qv for v
13 add n̂t to approximate normal n̂v for v
14 compute vertex position pv from Qv

15 append 〈v,Qv,pv, n̂v〉 to vertex file Vn

Table 1: Pseudo-code for memory insensitive simplification. The
output is a triangle file Tout and a vertex file Vn for level n (the
bottom level) in the LOD hierarchy.

have consecutive octcodes. Whereas these octcodes are different
from the cluster IDs used in OoCSx, this is of no consequence to the
simplification algorithm—any one-to-one mapping between quan-
tized coordinates and cluster IDs will do. The planes and associated
octcodes are then output sequentially to a temporary plane file P .
If the triangle’s vertices belong to different clusters, we determine
which octree node vt to assign t to. As in [Luebke and Erikson
1997], we choose vt to be the lowest common ancestor of all pairs
of vertices from t, such that expanding the node vt would introduce
the triangle t (analogous to the introduction of triangles caused by
a vertex split in [Hoppe 1996]). Unfortunately, the order given by
vt does not exactly match the bottom-up order in which nodes are
visited in during the octree construction. Therefore, we compute a
modified sort key v∗

t for t that orders nodes by increasing octcode
within each level, but reverses the inter-level order such that leaf
nodes are listed first.1 Finally, the non-degenerate triangle and its
reversed octcode are written to a triangle file Tout .

After the input has been exhausted, the plane file is sorted on
the octcode field using an external sort. As in [Lindstrom and Silva
2001], we use rsort [Linderman 1996] for this task.2 We then
process all planes, one cluster at a time, and construct a 4 × 4
quadric matrix Qv for each cluster v:

Qv =
∑

t

n̄tn̄
T

t =
∑

t

ŵ2
t

(

n̂tn̂
T

t

dtn̂
T

t

dtn̂t

d2
t

)

(2)

We also construct an approximate normal n̂v for the cluster, e.g.
as the sum of the cluster’s face normals, which will later be used
to resolve an ambiguity in sign of the actual normal extracted from
the quadric matrix. If space is at a premium, we can avoid storing
n̂v by performing additional computation and encoding this sign
directly in the quadric matrix (see Section 6.1.2). Given a quadric
matrix Qv , we proceed by computing a representative vertex for the
cluster that minimizes the quadric error [Lindstrom and Silva 2001].
Finally, we output the quadric matrices, along with their octcodes,
vertex positions, and normals, to an intermediate vertex file Vn for
level n in the octree (the bottommost level), and we remove the
temporary plane file P . For each leaf node that contains at least one
vertex from the original mesh, we now have a single vertex for the
full-resolution simplified mesh. The original OoCSx simplification
algorithm would at this point perform multiple external sorts on the
triangle file to replace the cluster IDs with vertex indices. Because

1 This key can be computed from the octcode by inverting all bits lower

than the most significant one bit and negating the result.
2
rsort is proprietary software developed at AT&T Labs.

octree-construct(Vn, T)
1 externally sort T on reversed octcode v∗

2 for each level l = n, ..., 1
3 for each set of siblings C in Vl with parent octcode p
4 compute Qp and n̂p by summing over children
5 compute pp, ǫp, and rp

6 record offsets Op of p’s children within Vl

7 for each triangle 〈v∗

t , v1
t , v2

t , v3
t 〉 ∈ T with vt = p

8 append 〈v1
t , v2

t , v3
t 〉 to Tp

9 append 〈p,Qp,pp, n̂p, ǫp, rp, Op, Tp〉 to Vl−1

10 for each level l = 0, ..., n
11 for each node p in Vl

12 if l = n then
13 append 〈pp, n̂p〉 to octree hierarchy H
14 else
15 compute rp and λp from Qp and n̂p

16 compute child offsets Cp within H from Op

17 append 〈rp, λp,pp, ǫp, rp, Cp, Tp〉 to H

Table 2: Pseudo-code for memory insensitive octree construction.
The procedure takes as input a vertex file Vn and a triangle file T,
and outputs a multiresolution hierarchy H .

we will make direct use of the cluster IDs (or octcodes), this step
fortunately does not have to be done in our algorithm. Instead, we
perform only a single external sort—on the plane equation file.

In order to support different triangle weighting schemes in the
quadric matrix construction (cf. [Garland 1999, §3.4.1]), we make
use of normalized weights

ŵ2
t =

(

∑

i

Ai

)2 w2
t

∑

i w2
i

(3)

where At is the area of triangle t, wt is the relative weight of t (we
use wt = At by default), and the summations are over the same
triangles as in Equation 2. This ensures that the quadric error has
units of volume squared, regardless of the weighting scheme used.

The steps described in this section are all the components of our
simplification algorithm. The output is a single-resolution, static
mesh. We now proceed by constructing a level-of-detail hierarchy
for this simplified mesh.

5 Octree Construction

The second phase of our algorithm takes the simplified mesh, rep-
resented as a list of vertices Vn, augmented with quadric error in-
formation, and a list of triangles T, and constructs a coarse-to-fine
level-of-detail representation H of the mesh. For each node in H ,
we store vertex information, such as position, normal, error, etc.,
as well as a (potentially empty) list of triangles. The triangles of a
node are the ones that are eliminated when the node is collapsed.
We will focus later on the particular data structures used for the
nodes in H , and spend this section describing the steps of the oc-
tree construction algorithm.

Table 2 lists pseudo-code for the octree construction. We begin
by externally sorting the triangle file on its reversed octcode field
v∗. This is done to group the triangles by octree node and to place
them in the order in which the nodes will be processed. Follow-
ing this sort, we begin constructing the internal nodes of the octree
(lines 2–9). Recall that the simplification has already produced ver-
tex positions and normals for the leaf nodes Vn on level n. Because
Vn is sorted on octcode, and because sibling nodes have consecu-
tive octcodes, we can easily scan Vn and fetch the per-vertex data
for each group of siblings. From these we compute a quadric matrix
and approximate normal for the parent using simple addition. We
additionally compute the optimal vertex position p, the minimum



on-disk non-leaf node
vertex data

3-vector r rotation for orthogonal matrix P
3-vector λ eigenvalues of A
3-vector p vertex position
scalar ǫ quadric error at p
scalar r bounding sphere radius

triangle data
count nT number of triangles
octcode*3 T list of triangles

octree data
offset*8 C file offsets to children

on-disk leaf node
vertex data

3-vector p vertex position
3-vector n̂ normal vector

Table 3: On-disk data structures for octree non-leaf and leaf nodes.

error ǫ, and the radius r of a bounding sphere, centered on p, that
encloses the bounding spheres of the node’s children (the bound-
ing spheres for leaf nodes have zero radius). As child nodes are
read from Vl, we record their file offsets within Vl and store these
with their parent. These offsets will later be used to link nodes to-
gether in the hierarchy. After the vertex data and offsets have been
computed, we sequentially scan the triangle file for those triangles
assigned to the parent node. Finally, we append the parent node to a
temporary file Vl−1 for the next coarser level. This procedure is it-
erated until nodes for all levels of the octree have been constructed,
after which T has been exhausted and can safely be removed.

The next and final step is to link the nodes together in a single
file H (lines 10–17). As is common in multiresolution methods,
we store the multiresolution structure from coarse to fine resolu-
tion. While this layout is of no particular advantage to our view-
dependent algorithm, other than the fact that the breadth-first layout
and closeness of siblings in the file result in good cache coherence,
we anticipate that a coarse-to-fine order would be beneficial for pro-
gressive transmission.

Starting with the root node and processing one level at a time,
we compute for each internal node p an alternative representation
(rp, λp) for Qp, which also implicitly encodes the normal n̂p. We
will describe this representation in more detail in Section 6. For the
internal nodes, we also compute global offsets Cp to their children
within H . Using the offset ol to the beginning of the current level
l, the byte size |Vl| of the current level (as recorded at the end of
outputting Vl during the bottom-up construction), and the offset oc

to one of p’s existing children within the next level l+1, the position
of c in H is simply ol+1 + oc = ol + |Vl| + oc. We thus replace
Op with Cp and append p to H . For leaf nodes, we write only the
fields 〈p, n̂〉. After the temporary file Vl has been exhausted, we
can remove it and move on to the next level. Finally, after all nodes
have been output to H , phase 2 of our algorithm is complete.

6 External Data Structures

We now turn our attention to the data structures used for our exter-
nal on-disk representation of the level-of-detail hierarchy H . Each
internal node in H consists of vertex information (position, normal,
etc.) and a list of triangles and pointers to its children. These data
structures are given by Table 3. Because leaf nodes have no trian-
gles associated with them, and because error evaluation and view
culling are done only for internal nodes, we store only position and
normal information with leaf nodes. The triangles are represented
as triplets of octcodes corresponding to leaf nodes in the hierarchy.
The vertex fields are derived entirely from the quadric matrices, and
will be discussed in the following sections.

6.1 Vertex Data

In this section, we describe how to compute and store the per-vertex
information needed in our view-dependent renderer from the 4× 4
quadric matrix Q. The data we are primarily concerned with are
the vertex position p, the surface normal n̂, the quadric error ǫ at
p, and a matrix K that encodes the normal curvature and is used
to measure how large the error appears from different view direc-
tions. We could compute and store (K, n̂,p, ǫ) directly, however
this information would require 6 + 3 + 3 + 1 = 13 scalar val-
ues, whereas the original quadric matrix requires only 10 values
(assuming we take advantage of the fact that Q and K are sym-
metric). Instead, we will make use of an alternative representation
(r, λ,p, ǫ)—three 3-vectors and a scalar—that allows K and n̂ to
be computed quickly. In addition to these fields, we also store the
radius r of a bounding sphere, centered on p, used for view frustum
culling. We will describe how to compute this radius later.

6.1.1 Vertex Position and Quadric Error

In Section 4, we explained how to compute the quadric matrix Q
for a vertex, or more generally a node in the LOD hierarchy. As
in [Lindstrom 2000], we decompose the quadric matrix as

Q =

(

A

−bT

−b
c

)

(4)

We can then write the quadric error ǫ(x) as

ǫ(x) = x
T
Ax− 2bT

x + c (5)

Let p be the position of the vertex associated with the node and let
∇ǫ(p) = 2(Ap−b) be the gradient of ǫ at p. We now rewrite ǫ:

ǫ(x) = (x− p)T
A(x− p) + 2(Ap − b)T(x− p)

+ (pT
Ap − 2bT

p + c)

= (x− p)T
A(x− p) +∇ǫ(p)T(x− p) + ǫ(p)

(6)

Because we want to minimize the quadric error, we generally
choose the vertex position p to be a minimizer for ǫ, which implies
∇ǫ(p) = 0 and

ǫ(x) = (x− p)T
A(x− p) + ǫ(p)

ǫ(p) = c− p
T
Ap

(7)

That is, if p = argmin ǫ, we can parameterize the quadric error as
(A,p, ǫ). This parameterization is valid whether A is singular or
not. If A is singular, ǫ has infinitely many minima, in which case
we choose the one closest to the grid cell center. In rare circum-
stances our chosen optimum p falls outside its associated grid cell.
When this happens, we constrain p using the procedure outlined
in [Lindstrom and Silva 2001], which may result in a p that does
not minimize ǫ. Regardless of this special case, if we do not have to
compute ǫ at points other than the vertex position p (irrespective of
our choice of p), then the parameterization (A,p, ǫ) is useful since
it directly gives us the vertex position p and the error ǫ at p. Still,
we are left with determining the normal n̂ and the curvature matrix
K. As shown below, these two quantities can both be derived from
the matrix A.

6.1.2 Surface Normal

To compute the surface normal n̂, note that the matrix A is the
covariance matrix (with zero mean) for the set of (weighted) nor-
mals of the triangles in the cluster [Garland 1999, §4.2.2]. Thus,
the eigenvector for the largest eigenvalue λ1 of A corresponds to



the dominant normal direction n̂. Note that if n̂ is an eigenvector,
then so is −n̂. Because the sign of the normal matters for correct
rendering, we will show later how to resolve this ambiguity. Using
an eigen decomposition of A, we have

A = PΛP
T

P = (x̂1 x̂2 x̂3) x̂1 ‖ n̂

Λ = diag(λ1, λ2, λ3) λ1 ≥ λ2 ≥ λ3 ≥ 0

(8)

where Λ is a diagonal matrix of (non-negative) eigenvalues, and P
is orthogonal with determinant det(P) = 1. That is, P is a rotation
matrix, which can be represented using as little as three parameters.
We have chosen to use a 3-parameter axis-angle representation that
is similar to the standard unit quaternion representation. Let P cor-
respond to a rotation around a unit vector r̂ by an angle θ. Then the
vector

r = (rx ry rz)
T =
√

2 sin θ
2

r̂ (9)

completely represents P. We will not go into detail of how to com-
pute r from P, but refer the reader to any tutorial on quaternions,
e.g. [Shoemake 1991]. We recover P from r as follows:

P =





1− r2
y − r2

z

ryrx + αrz

rzrx − αry

rxry − αrz

1− r2
z − r2

x

rzry + αrx

rxrz + αry

ryrz − αrx

1− r2
x − r2

y





α =
√

2− r2
x − r2

y − r2
z

(10)

Thus, by storing r, we can quickly compute P and the normal n̂
from the first column of P. To recover A, we also store the eigen-
values λ.

As noted above, the canonical decomposition A = PΛPT does
not necessarily lead to a matrix P whose first column equals the
surface normal in sign. However, if we already know the (approxi-
mate) normal, which is the case in our simplification algorithm (see
Section 4), then we can test whether the normal obtained from P
matches the given normal. If the two vectors point in opposite di-
rections, then we encode this fact by negating λ1. Because A is
non-zero and positive semi-definite, we must have λ1 > 0, and we
can therefore safely use the sign bit of λ1 to encode the sign of n̂.

As mentioned in Section 4, we explicitly store approximate nor-
mals in the vertex files. To save disk space, however, we could use
the technique just described for extracting normals from quadric
matrices. We would then compute, but not store, a surface nor-
mal for each leaf node during simplification, compare it against the
normal obtained from the quadric matrix Q, and encode its sign
difference in Q. Similar to the argument above, because Q is non-
zero and positive semi-definite, tr(Q) > 0, and the need to flip the
extracted normal can be encoded by negating the diagonal of Q.

6.1.3 Curvature Matrix

Our view-dependent error metric takes advantage of the fact that
geometric displacements parallel to the view direction are less per-
ceptible than those perpendicular to the view direction. Thus geom-
etry viewed straight-on can often be coarsened significantly more
than geometry near silhouettes—a fact that has been exploited by
other view-dependent methods, e.g. [Lindstrom et al. 1996; Xia and
Varshney 1996; Hoppe 1997; Luebke and Erikson 1997]. This is
illustrated in Figure 2 for a smoothed and slightly curved octahe-
dron. Rather than using a cone to bound the normals [Hoppe 1997;
Luebke and Erikson 1997], we account for this directionality by
analyzing the normal spread given by the quadric matrix.

Let n̂t be the unit normal, and consequently the direction of ge-
ometric error, associated with triangle t. Furthermore, let v̂ be the
unit vector from the cluster’s representative vertex that we are com-
puting the error for to the viewpoint. In our anisotropic error projec-
tion, we modulate the error associated with t by the sine of the angle

Figure 2: Illustration of silhouette preservation. The surface of the
rounded octahedron can be simplified more aggressively when it is
perpendicular to the view direction, as seen on the left.

γt between n̂t and v̂, i.e. by the factor ηt = sin γt = ‖n̂t × v̂‖.
(This modulation factor was also used in [Lindstrom et al. 1996;
Hoppe 1997].) Thus, when γt is zero the projected error vanishes,
while γt = 90◦ implies that we are near a silhouette and the pro-
jected error is at a maximum. We can rewrite (the square of) ηt as
follows:

η2
t = ‖n̂t×v̂‖2 = v̂

T
v̂n̂

T

t n̂t−(v̂T
n̂t)

2 = v̂
T(I−n̂tn̂

T

t )v̂ (11)

This modulation factor for a single triangle t can then be extended
to a set of triangles T in a cluster as a weighted sum:

η2
T =

∑

t∈T ŵ2
t η2

t
∑

t∈T ŵ2
t

= v̂
T

∑

t∈T ŵ2
t I− (ŵtn̂t)(ŵtn̂t)

T

∑

t∈T ŵ2
t

v̂

= v̂
T

(

I− A

tr(A)

)

v̂ = v̂
T

(

I− PΛPT

λ1 + λ2 + λ3

)

v̂

= v̂
T
Kv̂

(12)

The weight ŵt is the same as the one used to weight triangles in the
quadric matrix construction (see Section 4). The expression for the
trace of A, tr(A) =

∑

t∈T ŵ2
t , follows from the fact that tr(·) is

linear and tr(n̂tn̂
T

t ) = n̂T

t n̂t = 1.
We call K the “curvature matrix,” because it encodes the amount

that the surface curves in different directions. From the definition
of K, we see that as the normals spread out the curvature grows, the
eigenvalues approach a common value, K approaches 2

3
I, and as a

result ηT becomes more and more isotropic. If on the other hand
λ1 is much larger than the other eigenvalues, then the normals are
tightly clustered, the curvature is small, and ηT allows aggressive
coarsening when v̂ is near the dominant normal direction.

6.1.4 Bounding Sphere

In order to support fast hierarchical view frustum culling, we com-
pute the tightest possible hierarchy of nested bounding spheres over
the vertices in H (cf. [Lindstrom and Pascucci 2001]). The radius
for a node p located at pp is given by

rp =

{

0 if p is a leaf node

max
c∈Cp

{‖pp − pc‖+ rc} otherwise (13)

where Cp are the children of p. Using these bounding spheres for
view frustum culling, we are guaranteed that a vertex is culled only
if it and its descendants are not visible. Note that for conservative
view culling the bounding sphere should also enclose all edge con-
nected neighbors of a vertex [Hoppe 1997]. However, because the
adjacent vertices of a node depend nontrivially on run-time level-
of-detail decisions, we cannot compute useful conservative bound-
ing spheres off-line. In practice, our bounding sphere hierarchy is
loose enough to not cause any visible artifacts. See Figure 1 for an
example of view frustum culling.



7 In-Core Data Structures

In this section we describe the in-core data structures used in our
run-time view-dependent renderer. These data structures closely
resemble the ones used by Luebke and Erikson [1997], but have
been modified to work in an out-of-core setting, where only part of
the octree is assumed to be memory resident. That is, we maintain
an in-core subset H ′ of the LOD hierarchy H , such that the leaf
nodes of H ′ correspond to the vertices of the adaptively refined
mesh. We refer to the subset H ′ of H as the set of active nodes.
The triangles of the refined mesh are those stored in the internal
(non-leaf) nodes of H ′. Each triangle vertex, represented on disk
as an octcode v for a leaf node in H , is mapped to a proxy vertex—
either v itself or its lowest active ancestor. Thus, the actual vertices
used for a triangle change dynamically as the mesh is adaptively
refined and simplified.

Table 4 lists the octree node data structures that are dynamically
allocated at run-time. We have already covered the fields for the
vertex data in Section 6, and will here discuss the remaining fields
for the node. The triangle data consists of a list of triangles and a
list of pointers to triangle vertices that currently reference this node
as their proxy. Thus the vertex data type consists of an octcode for
a leaf node and an in-core octree node pointer to the vertex’s proxy.
Whenever a node is expanded, we need to modify all the triangle
vertices that have the node as a proxy, which is accomplished by
maintaining a list of back references to those vertices. Similarly,
when a node is collapsed, its children’s references are first accessed,
and the associated proxies are modified to point to the collapsed
node.

In contrast to [Luebke and Erikson 1997], where the entire hi-
erarchy is assumed to be memory resident, we cannot pre-compute
the list of back references (or “tris” using their terminology), be-
cause these references might point to triangles in nodes that are not
active and therefore have not been dynamically allocated. We could
of course store these references as non-memory-specific octcodes,
but have opted instead to maintain only references to triangles in ac-
tive nodes, and to update the reference lists on-the-fly as triangles
are added and removed. Similarly, we do not construct the triangle
list T for a node until it is expanded. We will further discuss the
operations on the octree H ′ in the following section.

The octree node pointers prev and next are part of a doubly
linked list of all active nodes in H ′, except for leaf nodes in H ,
which cannot be expanded and for which collapsing has no ef-
fect. This list is traversed linearly during run-time refinement, as
explained in the next section.

8 View-Dependent Refinement

We are now ready to describe the steps pertaining to the final phase
of our out-of-core view-dependent renderer: the run-time compo-
nent. Because the level-of-detail hierarchy stored on disk may ex-
ceed the amount of available memory, we must be careful to page
in only the active nodes of the hierarchy. Rather than making use of
an explicit paging system, we rely on the use of read-only memory
mapping to associate the on-disk hierarchy with a logically con-
tiguous address space, and let the operating system fetch the data
from disk when it is first accessed. Similar strategies for out-of-
core rendering of large terrain have been employed, for example,
by Hoppe [1998] and by Lindstrom and Pascucci [2001]. This ap-
proach to data paging is particularly attractive when the refinement
and rendering tasks are decoupled and run asynchronously, as is
the case in our system. Also, as demonstrated in [Lindstrom and
Pascucci 2001], by arranging the data and the accesses to it in a
cache coherent manner, it is possible to substantially improve the
paging performance. Indeed, our choice of arranging the octree in
a coarse-to-fine, breadth-first layout on disk was made intentionally

in-core octree node
vertex data

3×3-matrix K curvature matrix
3-vector n̂ vertex normal
3-vector p vertex position
scalar ǫ quadric error at p
scalar r bounding sphere radius

triangle data
count nT number of triangles
vertex*3 T list of triangles
count nR number of references
pointer R list of references to this node

octree data
boolean leaf is node a leaf on disk in H?
boolean front is node a leaf in memory in H ′?
index l octree level
pointer s pointer to static external node
pointer*8 C pointers to children
pointer prev previous node in queue
pointer next next node in queue

Table 4: In-core data structures for octree node.

after having been inspired by the quadtree layout in [Lindstrom and
Pascucci 2001]. We point out that, since we do not access the mem-
ory mapped hierarchy continuously, but copy and “decompress”
the compact on-disk data to a more readily usable in-core structure
when a node becomes active, it is entirely possible to use an explicit
paging scheme in place of memory mapping. The benefits of do-
ing so include improved scalability (many operating systems limit
memory mapping to a 32-bit addressing space), more general ge-
ometry cache replacement policies (although the madvise system
call, when implemented, provides this functionality), as well as po-
tentially better memory usage if only small pieces of each memory
page is needed (which is generally not the case in our system). The
downsides of explicit paging include higher paging overhead, the
need to keep an explicit “page table” for resident data, and imple-
menting a robust data replacement policy that adapts well to the dy-
namically changing memory resources in a multiuser/multiprocess
environment.

Given the general framework above, we now describe the two
tasks of adaptive refinement and rendering.

8.1 Refinement Algorithm

Similar to several other components of our algorithm, our adaptive
octree refinement closely follows the strategy employed by Luebke
and Erikson [1997]. We begin by creating a single node for the
root of the dynamic octree H ′. During refinement, we make use
of two complementary operations; node expansion and collapse.
When expanding a node we add its children; when collapsing a
node we remove its descendants. Pseudo-code for these steps is
listed in Table 5. Note that node expansion is valid only if a node
is on the front, i.e. if it is a leaf node in the dynamic octree. Ex-
panding a node requires dynamic memory allocation and a minor
processing step to initialize the fields in Table 4. In addition to the
implicit caching of on-disk data performed by the operating sys-
tem, the overhead of this step can be reduced by making use of an
explicit node cache, as advocated in [DeCoro and Pajarola 2002].

As already mentioned, the refinement runs as a separate thread
and produces a list of triangles to render by a dedicated render
thread using a double buffering approach; one buffer is being dis-
played while the other is being worked on by the refinement thread.
Rather than visiting the active nodes in a depth-first manner during
refinement, we make use of a linear circular queue Q that orders the
nodes roughly in a breadth-first manner. The reason for doing so is
that we want the ability to preempt the refinement whenever large



node-expand(p)
1 front(p)← false
2 for each child c of p
3 initialize c by computing its vertex data
4 if ¬leaf (c) then
5 append c to end of refinement queue Q
6 for each triangle t assigned to p
7 for each vertex vi

t of t
8 identify proxy node qi

t from octcode vi
t

9 add reference r from proxy node qi
t to t

10 for each reference r in p
11 identify child c corresponding to r
12 transfer r from p to c and update proxy pointer for r

node-collapse(p)
1 for each child c of p
2 node-collapse(c)
3 for each reference r in c
4 transfer r from c to p and update proxy pointer for r
5 if ¬leaf (c) then
6 remove c from refinement queue Q
7 remove c from H ′

8 for each triangle t assigned to p
9 for each vertex vi

t of t
10 remove reference to t from proxy qi

t for vi
t

11 front(p)← true

Table 5: Pseudo-code for node expansion and collapse.

amounts of data need to be paged in, which allows the mesh to be
incrementally updated periodically and progressively. The breadth-
first traversal ensures that detail is paged in and added evenly over
the visible surface. By specifying a minimum update frequency
(we use a default of one update per second), the refinement thread
can be preempted at any point, and we maintain a pointer into the
circular queue where we last left off, in case the refinement was pre-
viously interrupted, or at the “tail” of the queue, if all nodes were
previously processed. At the beginning of each refinement pass, we
set the tail to the node last processed, and always add new nodes re-
sulting from node expansion at the tail end of the queue. Note that
this results in an approximate breadth-first ordering of the active
nodes. For applications that demand strict frame rate control, our
breadth-first queue could easily be replaced with a priority queue
(cf. [Duchaineau et al. 1997]), which would allow meeting a given
triangle budget.

For each node visited, we test its bounding sphere against the
six planes of the view frustum to determine if it is visible. If not,
we collapse it. Thus pieces of the mesh outside the view frustum
are not entirely discarded, but are aggressively coarsened. This al-
lows at least crude navigation of the mesh whenever the view shifts
rapidly. If the node is visible, we project its quadric error onto the
screen. (The details of this evaluation are given below.) If the error
exceeds a user-specified threshold τ and the node is on the front, we
expand it. Otherwise, if the threshold is not exceeded and the node
is not on the front, we collapse it. In this manner, the octree adapts
as the viewpoint changes, and we visit only those nodes that even-
tually make up the mesh. Because nodes above the front are also
evaluated, it is possible to quickly decimate large portions of the
octree, e.g. if the view conditions change rapidly, without having to
trim the octree bottom-up.

Finally, after the octree has been refined, we traverse it node by
node and add all the triangles encountered to a triangle list. For
each triangle, we follow the pointers to the proxy nodes and append
their vertex positions and normals to the list. If flat (per-triangle)
shading is preferred, we instead compute and store triangle normals
in the list. Upon completion, the triangle list is shipped to the render
thread and gets reused until the next list has been constructed.

8.2 Screen Space Metric

The decision whether to collapse or expand a node is governed by
a screen space error metric and an error threshold. In our screen
space metric, we make use of the quadric error ǫ and position p
of a node’s representative vertex, as well as the curvature matrix
K. We saw earlier that the quadric error measures (squared) volu-
metric errors. For view-dependent refinement, we need to express
ǫ in terms of a screen space geometric deviation, i.e. in units of
length. While there are several ways of doing this, our approach is
to assume that the volumetric errors correspond to some hypotheti-
cal volume, e.g. a sphere, and we simply compute the radius of the
corresponding sphere and use it as the error term. One nice feature
of this mapping is that it is monotonic, i.e. the error of a parent node
remains at least as large as its children’s. This computation is done
once when the node is constructed, and the ǫ field in the dynamic
node is assumed to have units of length.

As a base metric, we set the screen space error to be proportional
to the ratio of the object space error and the distance from the view-
point to the node. As suggested in Section 6.1.3, to incorporate
directionality into our metric for silhouette preservation, we modu-
late the base metric by the factor η. Thus, our screen space metric
ρ can be written as

ρ = λη
ǫ

d
= λǫ

√
vTKv

vTv
(14)

where d = ‖v‖, v = e − p is the vector from the node to the
viewpoint e, and λ is the screen resolution in pixels per radians.
The metric ρ has a nice geometrical interpretation, due in part to
our definition of η. Using the law of sines, one can show that

ηt
ǫ

d
= sin γt

ǫ

d
= sin φt

‖v + ǫn̂t‖
‖v‖ ≃ φt (15)

where φt is the visual angle (in radians) subtended by the point-
to-surface displacement ǫn̂t between p and t. The relative error
in this approximation is bounded by ǫ

d−ǫ
, and is thus low when

ǫ ≪ d, which is generally the case. As a result, ρ

λ
is (to a good

approximation) a weighted average of the angular extents of the
surface errors.

To determine whether a node is active or not, we compare the
screen space error ρ against a user-specified threshold τ . For effi-
ciency reasons, we square and rearrange some terms, and obtain the
following expression:

active ⇐⇒ ρ > τ

⇐⇒ λ2ǫ2(vT
Kv) > τ2(vT

v)2

⇐⇒ ǫ2(vT
Kv) > κ2(vT

v)2
(16)

where κ = τ
λ

is the angular error threshold in radians.

Because the octree is pruned whenever a node is found to be
inactive, we should ideally ensure that a node’s projected error is
always larger than those of its children. Note that the quadric er-
rors by their additive nature already satisfy this nesting property.
Similarly, the amount of curvature encoded in the matrix K can
only increase when quadric matrices are combined. However, the
direction and length of the vector v vary from node to node, mak-
ing it possible to violate the nesting condition. A general technique
for handling this view-dependent problem was presented in [Lind-
strom and Pascucci 2001], in which a nested sphere hierarchy is
computed and used in place of the positions of individual vertices.
This sphere hierarchy is the same as the one we compute for view
frustum culling purposes. While not implemented here, we believe
that it would be rather straightforward to incorporate the sphere hi-
erarchy into our screen space metric.



model Tin Tout n
simp. time (%) octree time (%) total time

Tin/s
disk usage (MB)

read sort write sort pull push (h:m:s) input temp. output

Buddha 1,087,716
62,346 7 20.6 48.0 25.7 0.5 2.7 2.6 18 61,468

37
189 2.2

204,766 8 17.2 40.7 25.6 1.3 7.9 7.3 22 49,622 189 7.7
522,700 9 12.7 28.9 25.0 2.4 17.1 14.0 32 33,908 189 22.7

Lucy 28,055,742
188,782 8 28.9 37.7 32.0 0.1 0.9 0.4 11:46 39,737

963
4,713 6.5

721,798 9 27.0 37.0 30.9 0.2 3.4 1.4 12:40 36,897 4,823 25.5
2,678,781 10 27.6 35.4 23.9 0.5 9.0 3.5 18:37 25,119 4,815 96.8

Isosurface 228,996,372 46,949,908 10 21.1 25.5 27.4 1.5 17.5 7.0 2:39:10 23,978 7,862 39,994 1,585.2

St. Matthew 372,767,445 3,187,812 10 27.9 42.2 28.3 0.1 1.1 0.5 2:51:40 36,190 12,798 63,942 112.6

Table 6: Numerical results for out-of-core simplification and octree construction. The timings are reported for the subphases read (lines 1–8),
sort (line 9), and write (lines 10–15) of the simplification phase (see Table 1), and sort (line 1), pull (lines 2–9) and push (lines 10–17) of the
octree construction phase (see Table 2). The Buddha was simplified on a PC, while the other models were simplified on an SGI Onyx2.

9 Results

In this section we present experimental results of running our al-
gorithms. We used a number of polygonal test models, including a
massive 373 million triangle model of Michelangelo’s St. Matthew
statue [Levoy et al. 2000]. All models, except the Buddha, were
simplified on one processor of a 250 MHz R10000 SGI Onyx2 with
40.5 GB of main memory. The Buddha model was simplified on a
Linux PC with two 800 MHz Pentium III processors, 880 MB of
RAM, and a GeForce3 graphics card. We used this PC for the ac-
companying video of the Lucy data set. To stress the out-of-core
aspect of our system, we used a lower-end dual-processor PC, with
256 MB of RAM and GeForce2 graphics, for the Isosurface video.

Animations We have prepared animations to illustrate the run-
time performance of our system.3 Frames from these videos and
other images are shown in Figures 3–5. As is evident in the Lucy
sequence, we obtain a throughput of up to three million rendered tri-
angles per second using a GeForce3 graphics card and immediate
mode rendering. Notice the ability to adapt the mesh to the view
frustum, the shape of the surface, and the presence of silhouettes
(see, for example, the neck of the statue). The second animation
shows a very dense and complex isosurface of the turbulent bound-
ary between two mixing fluids. Because we used backface culling,
it is possible to see through much of the back side of the surface
(the majority of the video sequence). This video illustrates the pro-
gressive nature of the refinement, as mesh updates are made at least
once per second, and the paging of data from disk as the mesh is
navigated at various scales. The slower rendering speed can be at-
tributed to a lower performance graphics card, as well as memory
contention due to the limited amount of memory available (less than
one sixth the on-disk size of the data set). Note that we were careful
to invalidate the operating system’s disk cache before creating these
animations to ensure that no data was memory-resident at startup.

Disk and Memory Usage Table 6 lists numerical results for
our off-line method, including the number of triangles, grid size
(2n), execution time, effective triangle processing rate, and disk us-
age. Not included in this table is the maximum memory usage. Our
method uses only a constant O(1) amount of memory: 5 MB for
the PC and 8 MB for the SGI (the difference is due to different size
executables). Note, however, that the operating system may use ad-
ditional memory to cache parts of the intermediate files generated
by our system, e.g. during sorting. The temporary disk usage of our
method can be shown to be a constant multiple (roughly a factor of
5) of the size of the input mesh. While the theoretical usage is linear
in both the size of the input and the output, the simplification phase
often reduces the mesh to the extent that the overall temporary disk
space is entirely dominated by the plane file (which is removed be-
fore the octree construction begins) and any disk space used while
sorting this file. As can be seen from the last column, the size of the
octree output file is on average only a few percent larger (in bytes

3 Available from http://www.llnl.gov/icc/sdd/img/images.shtml.

per triangle) than the size of the input, and ranges from 35–45 bytes
per triangle. For the sake of fairness, our triangle soup input format
is not as efficient as the more common indexed mesh representa-
tion, which requires only half as much storage. The indexed mesh,
on the other hand, is impractical for external memory algorithms
since it requires random access.

Execution Time As can be seen from the table, for small oc-
trees the total time is dominated by the external sort phase of the
simplification. As the octree (and thus size of the output) grows
larger, the output phase of the octree construction becomes more
significant, but generally requires only a small additional fraction
of the simplification time. Even though the off-line construction
is done entirely on disk, our memory insensitive algorithm is re-
markably fast, and yields an effective triangle processing rate (mea-
sured as the size of the input over the total time) of roughly 20,000–
60,000 triangles per second (tps). As a point of reference, El-Sana
and Chiang [2000] report a reduction rate of roughly 5,300 tps for
their largest model, consisting of 1.2 million triangles. This model
is considerably smaller than some of those simplified here, and the
nature of their method suggests that it would steadily decline in
performance as the input grows larger. The method proposed by
Prince [2000], while producing high quality meshes, yields about
1,000 tps for the largest model used (11.4 million triangles). Mean-
while, his method requires more than 512 MB of RAM to simplify
this model, whereas we use a constant 8 MB. Closest in perfor-
mance to our method is the one by Cignoni et al. [2002], with up to
13 thousand tps.4 However, the output of their method is not in a
form that is directly usable for view-dependent refinement.

The theoretical execution time of our off-line processing is
O(Tin +Tout), assuming the external sort is implemented as a radix

sort,5 which suggests that our method scales well.

10 Summary and Future Work

We have described a method for constructing a level-of-detail hier-
archy for large polygonal meshes. This method performs all com-
putations on disk, and requires only a small, constant amount of
RAM. The method uses temporary disk space linear in the size of
the input and output, and runs in linear time. Even though virtu-
ally no RAM is used, our method executes one to two orders of
magnitude faster than previous methods, and achieves a peak sim-
plification rate of over 60,000 triangles per second. We have also
presented compact data structures and a suitable error metric for
performing out-of-core view-dependent refinement of the resulting
mesh hierarchy. Our results show that we obtain interactive frame
rates and a throughput of up to three million triangles per second
using immediate mode rendering.

4 The performance of their method drops to around 6 thousand tps when

their one-time external mesh construction phase is accounted for.
5 Our external sort rsort is a combination of radix and merge sort.

http://www.llnl.gov/icc/sdd/img/images.shtml


We see several avenues for future work. One limitation of our
approach is that the multiresolution surface constructed does not
retain the fidelity of the original mesh. One possible solution to this
problem is to keep the triangles that degenerate during simplifica-
tion and store them with their corresponding leaf nodes. Another
limitation is that our 32-bit octcodes support a maximum octree
height of 10. Using 64-bit codes would allow a finer grid and less
coarsening of the input mesh, although at the expense of larger files.
Our run-time system could be improved by using geomorphing to
smooth out popping artifacts and prefetching to increase the paging
performance, e.g. using separate threads that visit nodes below the
active front. We will also investigate how to extend our metric to
guarantee nested screen space errors, and how to account for the
visual impact of simplification on the shading of the surface.

Finally, we envision that our off-line algorithms can be further
enhanced. As noted in [Lindstrom and Silva 2001], the greatest po-
tential for reducing the disk usage lies in using a compressed rep-
resentation for the rather large plane file, which by far dominates
the temporary storage needed. We also see untapped potential in
increasing the speed of our out-of-core method through paralleliza-
tion. The locality of our data accesses and the octree partitioning of
space and work naturally lend themselves to parallel execution.
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Out-of-Core Construction and Visualization of Multiresolution Surfaces: Lindstrom

(a) (b) (c)

Figure 3: Frames from the Lucy video. View frustum culling is done against the violet rectangle. (c) The hand is moving into the view, but
has not been fully refined yet.

(a) (b) (c)

Figure 4: Frames from the Isosurface video. The full multiresolution mesh contains 47 million triangles. (a) The relatively smooth top layer
of the dense surface. (b), (c) Close-ups of fine structure on the back side.

(a) τ = 0.3; 1,803,954 triangles (b) τ = 0.6; 349,892 triangles (c) τ = 1.0; 89,967 triangles

(d) τ = 0.3; 396,728 triangles

(e) τ = 0.3; 150,055 triangles

Figure 5: View-dependent renderings of the St. Matthew data set for various error thresholds and viewpoints. The original model contains
373 million triangles. (a), (b) Gouraud shaded meshes. (c), (d), (e) Flat shaded meshes and close-ups of the face.
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