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ABSTRACT 

In this paper, algorithms for the simplification and reconstruction of large triangle meshes are described. The 

simplification process creates an edge-collapse hierarchy in external memory, which is used for online recon-

struction. The hierarchy indices are renamed after simplification, in order to allow fast reconstructions and the 

hierarchy is extended with information for view-dependent rendering. 

The simplification makes no restrictions with the production of the hierarchy, but produces the same hierarchy as 

In-Core algorithms. The amount of memory, which is used for the simplification is adjustable. 
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1. INTRODUCTION 
Large polygonal meshes can easily be acquired with 

current 3d scanning hardware [Lev00]. Those meshes 

exceed the internal memory and the rendering capa-

bilities of modern personal computers. For interactive 

visualization only partitions of the mesh can be used. 

In order to offer this, view-dependent approximations 

of the mesh must be fast computable. Such as for In-

Core-meshes, continuous Level of Detail (cLoD) 

methods can be used to create fast view-dependent 

approximations. Because the mesh data does not fit 

into main memory these techniques must be adopted 

for such large meshes. Once created, a cLoD-

hierarchy in external memory can be used for view-

dependent online approximation of the original mesh. 

Therefor only visible parts of the hierarchy are read 

from external into internal memory and refined, until 

a time- or memory-limit is reached. These parts can 

then be visualized with the graphic hardware. In this 

paper a new simplification algorithm is presented, 

which creates cLoD-hierarchies for large meshes. 

This algorithm produces the same simplification hier-

archy such as In-Core methods but it stores only par-

titions of the mesh in internal memory. The maximum 

memory footprint of the mesh is adjustable by the 

user. Furthermore it is demonstrated how to use the 

resulting hierarchy file to generate view-dependent 

approximations of the mesh. 

2. PREVIOUS WORK 
In-Core cLoD Systems often build their hierarchies 

by collapsing edges [Hop96] or contracting vertices 

[Gar97] of the mesh surface. For each col-

lapse/contraction operation an error value is com-

puted, which determines the sequence of the col-

lapses or of the contractions. For each edge collapse 

operation in manifold meshes two triangles are re-

moved from the mesh surface. The two merged verti-

ces and the removed triangles are stored in the LoD-

hierarchy together with the error value. 

For the simplification of large meshes various tech-

niques have been presented. The spanned mesh sim-

plification algorithm [San00] uses an external in-

dexed mesh and an external heap with all collapsible 

edges, in order to determine the simplification se-

quence. The algorithm reads the first k (depending on 

internal memory size) edges from the queue and the 

mesh parts, which belong to the edges. Afterwards all 
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possible simplification operations for the edges, 

which are in memory, can be accomplished. Due to 

the nearly uniform distribution of the edges with 

small collapse errors, there will be hardly advantages 

from the locality of the read mesh parts. This will 

result in frequent mesh updates and load/store opera-

tions and thus long computation times. An advantage 

however is the fact that the simplification sequence is 

identical to In-Core algorithms. 

In order to overcome the problem of the uniform dis-

tribution, hierarchical clustering is used to partition 

the mesh into locally connected blocks. Hoppe 

[Hop98] creates a block hierarchy and simplifies the 

mesh portions in the leaf blocks (edge collapse) ex-

cept the edges, which cross the block borders. After 

the simplification, the leaf blocks are hierarchically 

merged and  then simplified again. This is repeated, 

until the whole mesh is stored in the root cluster. Due 

to the forbidden collapses of edges, which cross the 

cluster-borders, this algorithm cannot limit the inter-

nal memory, used for the clusters. Furthermore the 

simplification sequence is limited by the cluster bor-

ders and might deliver bad results. 

Cignoni [Cig02] suggests an external memory man-

agement based on octree subdivision. The manage-

ment is able to overcome the problems with block 

borders and has a wide field of applications. For their 

simplification example however, they avoid the use 

of a heap structure for the correct simplification se-

quence, in order to take advantage of locality. 

Another approach based on cluster hierarchies was 

presented by Lindstrom [Lin03]. His method consists 

of three steps. First, the mesh is clustered with an 

memory insensitive clustering technique, which is 

based on the clustering schema of Rossignac and 

Borrel [Ros93]. This step produces an uniform grid 

with cells, which contain either one or no vertex. In 

the second step, an octree is constructed over the 

grid, where the position of the merged vertices is de-

termined with the QEM [Gar97]. In the third phase 

the hierarchy is used for view-dependent rendering of 

the mesh. The drawbacks of this method are the ini-

tial clustering, which might remove mesh details, if 

the grid-size is too high, and the octree schema, 

which produces hierarchies of a lower quality as edge 

collapse hierarchies. 

So called “Processing Sequences” for computations 

on large meshes were introduced by Isenburg [Ise03]. 

Their mesh representation allows them to stream the 

mesh through internal memory and to apply changes 

to this local region. They show the simplification of 

large meshes as an example, but they neither produce 

a hierarchy, which can be used for reconstruction, nor 

they use a simplification order similar to In-Core 

methods. 

The algorithm, which is presented in this publication 

produces simplification sequences, which are identi-

cal to In-Core algorithms ,and it takes advantage of 

local surface regions. 

3. OUT OF CORE LOD 

Simplification 
For mesh simplification, the half-edge collapse 

[Kob98] method is used. This means that an edge is 

collapsed to one of its vertices.  

A B C

 

 

 

Figure 1 shows a half-edge collapse operation. The 

edge between vertex A and B is collapsed to vertex 

C. Vertex C is placed on the same position as vertex 

B. The simplification error of each vertex is com-

puted with the Quadric Error Metrics [Gar97]. For 

each vertex all adjacent vertices are tested as poten-

tial collapse targets. The target which causes the 

smallest error value is stored for each vertex. Other 

error metrics, are applicable too. A simplification 

sequence equal to In-Core methods can be reached by 

executing only collapses which are locally minimal. 

That means, all adjacent vertices will cause higher or 

equal collapse errors. By iteratively applying locally 

minimal collapses, the hierarchy will become the 

same as if the collapses are applied in a global se-

quence  (lowest first). 

This fact can be used while simplifying large meshes. 

Local connected portions of the mesh can be read and 

all collapses for locally minimal errors can be ap-

plied.  

Figure 2 shows the distribution of collapse errors for 

the “Stanford Bunny” mesh. The red/orange colors 

indicate high/medium collapse errors, while green 

colors indicate low collapse errors. As noticeable, the 

collapse errors are evenly distributed over the mesh. 

This also leads to an even distribution the locally 

minimal collapse errors (bright green dots). Further-

more the figure shows regions of low collapse errors 

that are surrounded by regions of low collapse errors.  

The surrounding vertices  with high error values will 

not be collapsed until their neighbor vertices reach 

similar values. Higher collapse errors can only be 

reached by applying local simplifications in the low 

error regions. 

Figure 1. Half.-edge collapse 
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Starting with a small partition of the mesh in internal 

memory, all locally minimal collapses in the partition 

are executed or the partition is expanded when no 

locally minimal collapse error can be found. If the 

internal memory limit is reached, the memory data is 

written back to external memory and the process is 

restarted around the vertex with the smallest collapse 

error in the last partition. 

In this implementation, inner-vertices, border-

vertices and near-border-vertices are distinguished.  

For all vertices in internal memory all surrounding 

triangles are also read into the internal memory. For 

border-vertices not all vertices in the neighborhood 

have already been read from external memory. For 

this kind of vertex no collapse weight is computed, 

because not all possible collapse targets remain in 

memory. The near-border-vertices are completely 

surrounded by already loaded vertices but they have 

at least one border-vertex in their neighborhood. 

Because of the complete neighborhood, a collapse-

target and –weight can be computed, but due to the at 

least one border-vertex in the neighborhood, it is 

impossible to determine if the weight is locally mini-

mal. The inner-vertices have only other inner- or 

near-border-vertices around itself. Therefore locally 

minimum collapse errors can only be found among 

inner-vertices. Figure 3 shows a configuration with 

one inner-vertex (black), the surrounding near-

border-vertices (black outline) and the border-

vertices (stippled outline). 

 

 

 

 

Whenever no locally minimal collapse error can be 

found, the border of the local partition has to be ex-

panded. Therefore the near-border-vertex with the 

smallest collapse error is chosen and all of its linked 

border-vertices are updated to near-border-

vertices, by reading their neighborhood from external 

memory. This changes the state of the prior near-

border-vertex to an inner-vertex, which can be 

checked for a locally minimal collapse error. Figure 4 

shows the expansion of  the upper right near-border 

vertex from figure 3. 

 

 

 

 

 

Because always the near-border-vertex with the 

smallest collapse error is chosen, the In-Core part 

will always grow towards vertices with locally mini-

Figure 3. Local mesh partition with one inner 

vertex 

Figure 4. Local mesh partition with two inner 

vertices 

Figure 2. Collapse error distribution for the 

“Stanford Bunny” mesh 
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mal collapse errors.  If a maximum number of verti-

ces or triangles is exceeded in main memory, the In-

Core vertices and triangles are written back to exter-

nal memory. The simplification process then contin-

ues with the prior near-border-vertex, which would 

cause the smallest collapse error. 

The original data is presented as an array of triangles 

and an array of vertices in external memory. For each 

vertex we also store the list of adjacent triangles. 

Changed and new vertices are stored separately and 

provided with hierarchy informations.  

For each collapse operation the pair of merged verti-

ces is stored in the resulting vertex. Furthermore the 

collapsed triangles are referenced in the resulting 

vertex. The collapsed vertices and triangles are re-

moved from internal memory and all vertices, whose 

neighborhood changed (including the new vertex), 

are updated and checked for locally minimal collapse 

errors. 

The simplification algorithm can be summarized as 

follows: 

1. Choose and read a start vertex. 

2. Read the adjacent vertices of the start vertex. 

(Make the start vertex to near-border-vertex.) 

3. Expand the local partition by choosing the near-

border-vertex with the smallest collapse error 

and update all border-vertices around it to near-

border-vertices. 

4. Execute all possible collapses among inner-

vertices. 

5. If the internal memory limit is reached, write in-

ternal data to external memory. Choose the near-

border-vertex with the smallest error as new start 

vertex, read it and continue with step 2. 

6. If further simplification is required, continue with 

step 3. 

In the first step the vertex with the index 0 is nor-

mally chosen as start vertex. The second step reads 

the local neighborhood of the start vertex (triangles 

and vertices). After the second step, the start vertex is 

in the near-neighbor-vertex group and the other 

vertices are in the border-vertices group. The third 

step always expands the partition in internal memory, 

to find inner-vertices, whose collapse error is locally 

minimal. The fourth step executes all possible col-

lapses within the inner-vertices. After that, a mem-

ory check is performed, to limit the use of internal 

memory. If no further local minimal collapse errors 

could be found, the algorithm restarts at the best posi-

tion to find a local minimal collapse error. The last 

steps are repeated until a stop condition is reached. 

This can be for instance a maximum simplification 

error or a minimum number of triangles. 

The indexed vertices and triangles of the internal 

partition are stored in AVL-Trees for fast access. 

With these trees, fast search operations can be per-

formed in the local partition of the indexed mesh. The 

near-border-vertices are referenced in additional 

priority queues, for fast access to the vertex that will 

cause the smallest collapse error. 

After the simplification, the remaining vertices and 

triangles are written to the hierarchy file for the use as 

approximation root. 

Vertex Index Translation 
In order to use the hierarchy file for the approxima-

tion of the original mesh, it has to be reconstructed 

top-down. This demands fast decisions how to dis-

tribute the triangles after each vertex split. This step 

can be accelerated by translating the hierarchy indices 

to an inorder structure. That means, the left subtree 

always contains only vertex indices which are smaller 

than, and the right subtree contains only vertices, 

which are greater than the according root node. To-

gether with the information of the triangle vertices in 

the finest level, one can decide the correct child ver-

tex in each split by only comparing vertex indices. 

All vertex indices in the left subtree are applied to the 

left child and the same is true for the right subtree. 

View Dependent Rendering 
After the translation of the hierarchy indices, some 

information for view-dependent rendering is added to 

the hierarchy. Fast view-frustum culling for each ver-

tex in the hierarchy is supported with bounding-

spheres. As soon as the bounding sphere of a vertex 

is outside the frustum, its complete subtree can be 

culled. For backface-culling and contour-based ap-

proximations, normal-cones [Xia96] for each vertex 

are computed. Whenever the cone points away from 

the viewer in the whole bounding-volume, the associ-

ated subtree can be culled. 

The rendering process starts with the root of the hier-

archy. All vertices, which were not collapsible and 

the triangles, which were not collapsed in the simpli-

fication process, construct the base mesh. These base 

vertices are put into a priority queue sorted according 

to their collapse error, which is divided by the dis-

tance to the viewer plane (greatest weight first). Ver-

tices, which does not pass the view frustum test or the 

normal cone test are not put into the queue. Now the 

first vertex from the queue can be split into its child 

vertices iteratively and be replaced in the queue by its 

child vertices. The two associated triangles are ap-

pended to the triangle list during  each split. Before 

the split, it is examined whether the child vertices are 

already in internal memory. If not, they are loaded 

from external memory. For internal memory man-

agement, an individual frame number is assigned to 
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all internal vertices. This variable is always set to the 

number of the frame, in which its associated vertex 

was last split. All parent vertices of a pair of leaf-

nodes in the internal vertex tree remain in a priority 

queue, sorted by their frame number (smallest first). 

Whenever memory must be reallocated, the first ver-

tex from the queue is used to remove its child vertices 

from memory. After that, its parent vertex is put into 

the queue, if both of its child-vertices are leaf-nodes 

in internal memory. This memory management allows 

to restrict the memory, which is used by the internal 

vertex tree. 

The whole approximation process is terminated when 

a given time period elapses or a desired number of 

triangles is reached. So a minimum frame rate can be 

guaranteed. In order to reach higher frame rates it 

would also be possible to make use of frame-to-frame 

coherency. Therefor one must use the approximated 

vertex tree from the last frame and apply both col-

lapse- and split-operations to it. Furthermore two 

priority queues are required. One for the split-

candidates (greatest error first) and one for the col-

lapse-candidates (smallest error first). Both queues 

must be balanced in each frame depending on the 

view parameters. 

4. RESULTS 

Simplification 
A prototype implementation of the simplification 

algorithm was tested with several meshes. The results 

for small meshes were determined from the “Arma-

dillo” mesh from "Stanford University Computer 

Graphics Laboratory". For medium sized meshes we 

used the “Asian Dragon” from “XYZ RGB Inc”. For 

tests with large meshes the “David” mesh from the 

“Digital Michelangelo Project” and a randomly cre-

ated rough planet surface were used. Table 1 shows 

the data of the meshes. 

Name Vertices Triangle 

Armadillo 172,974 345,944 

Asian Dragon 3,609,455 7,218,906 

Rough Planet 67,108,866 134,217,724 

David1 69,881,083 139,749,343 

Table 1. Test meshes for simplification 

The amount of triangles in internal memory was lim-

ited to 1,500,000 triangles for the local surface por-

tions. This is equal to a memory consumption of 

around 230 MB. Due to the repeated tests for local 

minimal collapse errors, this algorithm executes of 

                                                           
1 Version of the mesh repaired with PolyMender [Ju04] 

written by Tao Ju 

course much slower than In-Core algorithms. Table 2 

shows the minimum, maximum and average "col-

lapses per second", the overall simplification time 

and the hierarchy size in external memory for the test 

models. All test have been done on a Athlon 3800+ 

PC with 4GB of internal memory.  

Name 
Arma-

dillo 

Asian 

Dragon 

Rough 

Planet 

David 

Avrg col/s 1663 1137 672 667 

Min col/s 1397 797 97 103 

Max col/s 1904 1825 1783 1764 

Time h:m 0:02 0:53 27:44 29:14 

Disc size in 

MB 
19.7 413 7680 7855 

Table 2. Simplification test results 

The watertight meshes “Armadillo”, “Asian Dragon” 

and “Rough Planet” were all simplified to a tetrahe-

dron as the base mesh. The base mesh of the “David” 

model consists of 1463 vertices after simplification 

due to small errors in the mesh surface. Small 

meshes, which can be cached completely by the oper-

ating system, show significantly higher collapse rates 

as large meshes. But the average rate of large meshes 

does not fall below 40% of the average rate of small 

meshes. Compared with other methods the achieved 

collapse rates are relatively low. But an implementa-

tion similar to the Spanned Mesh [San00] algorithm, 

which uses the correct collapse sequence, delivered 

much lower ratios, especially for large meshes (e.g 40 

hours for the “Asian Dragon”). The main advantages 

of the new algorithm are, the hierarchy structure, 

which is equal to In-Core simplification algorithms, 

and the use of locality on the mesh surface for simpli-

fication. 

View Dependent Rendering 
The extraction performance for the external collapse 

hierarchy is comparable to In-Core variants. The only 

difference is, that parts of the hierarchy which does 

not remain in internal memory, have to be read during 

some frames from external memory. As soon as the 

desired hierarchy data remains in internal memory, 

there is no difference to InCore algorithms. Due to 

the fine granularity of the hierarchy, the extraction 

wont influence the desired frame rate very much. 

All hierarchies were approximated with a maximum 

of 15,000 triangles. The relatively low number of 

triangles was chosen due to the approximation algo-

rithm that does not make use of frame to frame co-

herency. An improved approximation algorithm 

should easily reach higher numbers of triangles at 

high frame-rates. Figures 5 shows approximated 

views of the four test models. The approximation 

detail can change while the view is moving, because 
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access to external memory may decrease the number 

of triangles, which are visible, in the desired frame 

time temporarily. 

 

 

 

 

 

5. CONCLUSION 
In this paper a new algorithm for the simplification of 

large meshes was described. It was shown how to use 

locally minimal collapse errors on the mesh surface in 

order to create collapse hierarchies, which are equal 

to ones produced by In-Core methods, while making 

use of locality on the mesh surface. The algorithm 

shows good simplification ratios compared with the 

algorithm of El-Sana [San00], which uses collapse 

sequences equal to In-Core algorithms. Furthermore 

it was described how to manipulate the hierarchy for 

fast triangle updates in the reconstruction process and 

its usage the hierarchy for view-depended rendering. 

6. ACKNOWLEDGMENTS 
I would like to thank Mr. Marc Levoy and the people 

working on the Digital Michelangelo Project for pro-

viding their models. 

7. REFERENCES 
[Cig02] P. Cignoni , C. Montani, C. Rocchini, R. 

Scopino, “External memory management and 

simplification of huge meshes”. IEEE Transac-

tions on Visualization and Computer Graphics. 

2002 

[Gar97] M. Garland, P.S. Heckbert, “Surface Simpli-

fication Using Quadric Error Metrics”, SIG-

GRAPH ’97 Conf. Proc., pp. 209-216, 1997 

[Hop96] H. Hoppe, “Progressive meshes“, Computer 

Graphics, 30(Annual Conference Series),pp. 99-

108, 1996 

[Hop98] H. Hoppe, “Smooth View-Dependent Level-

of-Detail Control and its Aplications to Terrain 

Rendering,” Proc. IEEE Visualization ’98 Conf., 

pp. 35-42, 1998 

[Ise03] M. Isenburg, P. Lindstrom, S. Gumhold, and 

J. Snoeyink, “Large Mesh Simplification using 

Processing Sequences”, IEEE Visualization 2003, 

pp. 465-472, 2003 

[Ju04] T. Ju, “Robust Repair of Polygonal Models”, 

Proceedings of ACM SIGGRAPH, pp. 888-895, 

2004 

[Kob98] L. Kobbelt, S. Campagna, J. Vorsatz, and 

H.-P. Seidel. „Interactive multi-resolution model-

ing on arbitrary meshes”,  In Proceedings of the 

25th annual conference on Computer graphics and 

interactive techniques, pp. 105-114, 1998 

[Lev00] M. Levoy, K. Pulli, B. Curless, S. Rus-

inkiewicz, D. Koller, L. Pereira, M. Ginzton, S. 

Anderson, J. Davis, J. Ginsberg, J. Shade, and D. 

Fulk, “The Digital Michelangelo Project: 3D 

Scanning of Large Statues,” SIGGRAPH 2000, 

Computer Graphics Proc., pp. 131-144, 2000 

[Ros93] J. Rossignac and P. Borrel, “Multi-

Resolution 3D Approximation for Rendering 

Complex Scenes,” Geometric Modeling in Com-

puter Graphics,  pp. 455-465, 1993 

[Lind03] P. Lindstrom, “Out-of-core construction and 

visualization of multiresolution surfaces”, Pro-

ceedings of the 2003 symposium on Interactive 

3D graphics, pp. 93-102, 2003 

[San00] J. El-Sana and Y.-J. Chiang, “External 

Memory View-Dependent Simplification,” Com-

puter Graphics Forum, vol. 19, no. 3, pp. 139-

150, 2000 

[Xia96] J. Xia and A.Varshney, “Dynamic View-

dependent Simplification for Polygonal Models”, 

Proceedings of IEEE Visualization, pp. 327-334, 

1996

Figure 5. Approximated views of the test meshes 

(full view and cutout)  

WSCG2006 Full Papers proceedings 100 ISBN 80-86943-03-8


	C73-full.pdf
	F37-full.pdf
	G31-full.pdf
	C73-full.pdf
	INTRODUCTION
	ATLAS OF DISCOIDS AND Z-BUFFER
	The atlas of discoid
	Z-Buffer and fragment

	ADAPTATIONS FOR REAL-TIME VISUALISATION
	Geometrical considerations
	Level of details
	Illumination model

	RESULTS
	CONCLUSION AND FUTURE WORKS
	REFERENCES

	C71-full.pdf
	B29-full.pdf

