
Out of Core continuous LoD-Hierarchies for Large

Triangle Meshes

Hermann Birkholz
Research Assistant

Albert-Einstein-Str. 21
Germany, 18059, Rostock

hb01@informatik.uni-rostock.de

ABSTRACT

In this paper, algorithms for the simplification and reconstruction of large triangle meshes are described. The

simplification process creates an edge-collapse hierarchy in external memory, which is used for online recon-

struction. The hierarchy indices are renamed after simplification, in order to allow fast reconstructions and the

hierarchy is extended with information for view-dependent rendering.

The simplification makes no restrictions with the production of the hierarchy, but produces the same hierarchy as

In-Core algorithms. The amount of memory, which is used for the simplification is adjustable.

Keywords

Out of Core, Level of Detail, triangle meshes, view dependent rendering

1. INTRODUCTION
Large polygonal meshes can easily be acquired with

current 3d scanning hardware [Lev00]. Those meshes

exceed the internal memory and the rendering capa-

bilities of modern personal computers. For interactive

visualization only partitions of the mesh can be used.

In order to offer this, view-dependent approximations

of the mesh must be fast computable. Such as for In-

Core-meshes, continuous Level of Detail (cLoD)

methods can be used to create fast view-dependent

approximations. Because the mesh data does not fit

into main memory these techniques must be adopted

for such large meshes. Once created, a cLoD-

hierarchy in external memory can be used for view-

dependent online approximation of the original mesh.

Therefor only visible parts of the hierarchy are read

from external into internal memory and refined, until

a time- or memory-limit is reached. These parts can

then be visualized with the graphic hardware. In this

paper a new simplification algorithm is presented,

which creates cLoD-hierarchies for large meshes.

This algorithm produces the same simplification hier-

archy such as In-Core methods but it stores only par-

titions of the mesh in internal memory. The maximum

memory footprint of the mesh is adjustable by the

user. Furthermore it is demonstrated how to use the

resulting hierarchy file to generate view-dependent

approximations of the mesh.

2. PREVIOUS WORK
In-Core cLoD Systems often build their hierarchies

by collapsing edges [Hop96] or contracting vertices

[Gar97] of the mesh surface. For each col-

lapse/contraction operation an error value is com-

puted, which determines the sequence of the col-

lapses or of the contractions. For each edge collapse

operation in manifold meshes two triangles are re-

moved from the mesh surface. The two merged verti-

ces and the removed triangles are stored in the LoD-

hierarchy together with the error value.

For the simplification of large meshes various tech-

niques have been presented. The spanned mesh sim-

plification algorithm [San00] uses an external in-

dexed mesh and an external heap with all collapsible

edges, in order to determine the simplification se-

quence. The algorithm reads the first k (depending on

internal memory size) edges from the queue and the

mesh parts, which belong to the edges. Afterwards all

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy oth-

erwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8

WSCG’2006, January 30-February 3, 2006

Plzen, Czech Republic.

Copyright UNION Agency – Science Press

WSCG2006 Full Papers proceedings 95 ISBN 80-86943-03-8

possible simplification operations for the edges,

which are in memory, can be accomplished. Due to

the nearly uniform distribution of the edges with

small collapse errors, there will be hardly advantages

from the locality of the read mesh parts. This will

result in frequent mesh updates and load/store opera-

tions and thus long computation times. An advantage

however is the fact that the simplification sequence is

identical to In-Core algorithms.

In order to overcome the problem of the uniform dis-

tribution, hierarchical clustering is used to partition

the mesh into locally connected blocks. Hoppe

[Hop98] creates a block hierarchy and simplifies the

mesh portions in the leaf blocks (edge collapse) ex-

cept the edges, which cross the block borders. After

the simplification, the leaf blocks are hierarchically

merged and then simplified again. This is repeated,

until the whole mesh is stored in the root cluster. Due

to the forbidden collapses of edges, which cross the

cluster-borders, this algorithm cannot limit the inter-

nal memory, used for the clusters. Furthermore the

simplification sequence is limited by the cluster bor-

ders and might deliver bad results.

Cignoni [Cig02] suggests an external memory man-

agement based on octree subdivision. The manage-

ment is able to overcome the problems with block

borders and has a wide field of applications. For their

simplification example however, they avoid the use

of a heap structure for the correct simplification se-

quence, in order to take advantage of locality.

Another approach based on cluster hierarchies was

presented by Lindstrom [Lin03]. His method consists

of three steps. First, the mesh is clustered with an

memory insensitive clustering technique, which is

based on the clustering schema of Rossignac and

Borrel [Ros93]. This step produces an uniform grid

with cells, which contain either one or no vertex. In

the second step, an octree is constructed over the

grid, where the position of the merged vertices is de-

termined with the QEM [Gar97]. In the third phase

the hierarchy is used for view-dependent rendering of

the mesh. The drawbacks of this method are the ini-

tial clustering, which might remove mesh details, if

the grid-size is too high, and the octree schema,

which produces hierarchies of a lower quality as edge

collapse hierarchies.

So called “Processing Sequences” for computations

on large meshes were introduced by Isenburg [Ise03].

Their mesh representation allows them to stream the

mesh through internal memory and to apply changes

to this local region. They show the simplification of

large meshes as an example, but they neither produce

a hierarchy, which can be used for reconstruction, nor

they use a simplification order similar to In-Core

methods.

The algorithm, which is presented in this publication

produces simplification sequences, which are identi-

cal to In-Core algorithms ,and it takes advantage of

local surface regions.

3. OUT OF CORE LOD

Simplification
For mesh simplification, the half-edge collapse

[Kob98] method is used. This means that an edge is

collapsed to one of its vertices.

A B C

Figure 1 shows a half-edge collapse operation. The

edge between vertex A and B is collapsed to vertex

C. Vertex C is placed on the same position as vertex

B. The simplification error of each vertex is com-

puted with the Quadric Error Metrics [Gar97]. For

each vertex all adjacent vertices are tested as poten-

tial collapse targets. The target which causes the

smallest error value is stored for each vertex. Other

error metrics, are applicable too. A simplification

sequence equal to In-Core methods can be reached by

executing only collapses which are locally minimal.

That means, all adjacent vertices will cause higher or

equal collapse errors. By iteratively applying locally

minimal collapses, the hierarchy will become the

same as if the collapses are applied in a global se-

quence (lowest first).

This fact can be used while simplifying large meshes.

Local connected portions of the mesh can be read and

all collapses for locally minimal errors can be ap-

plied.

Figure 2 shows the distribution of collapse errors for

the “Stanford Bunny” mesh. The red/orange colors

indicate high/medium collapse errors, while green

colors indicate low collapse errors. As noticeable, the

collapse errors are evenly distributed over the mesh.

This also leads to an even distribution the locally

minimal collapse errors (bright green dots). Further-

more the figure shows regions of low collapse errors

that are surrounded by regions of low collapse errors.

The surrounding vertices with high error values will

not be collapsed until their neighbor vertices reach

similar values. Higher collapse errors can only be

reached by applying local simplifications in the low

error regions.

Figure 1. Half.-edge collapse

WSCG2006 Full Papers proceedings 96 ISBN 80-86943-03-8

Starting with a small partition of the mesh in internal

memory, all locally minimal collapses in the partition

are executed or the partition is expanded when no

locally minimal collapse error can be found. If the

internal memory limit is reached, the memory data is

written back to external memory and the process is

restarted around the vertex with the smallest collapse

error in the last partition.

In this implementation, inner-vertices, border-

vertices and near-border-vertices are distinguished.

For all vertices in internal memory all surrounding

triangles are also read into the internal memory. For

border-vertices not all vertices in the neighborhood

have already been read from external memory. For

this kind of vertex no collapse weight is computed,

because not all possible collapse targets remain in

memory. The near-border-vertices are completely

surrounded by already loaded vertices but they have

at least one border-vertex in their neighborhood.

Because of the complete neighborhood, a collapse-

target and –weight can be computed, but due to the at

least one border-vertex in the neighborhood, it is

impossible to determine if the weight is locally mini-

mal. The inner-vertices have only other inner- or

near-border-vertices around itself. Therefore locally

minimum collapse errors can only be found among

inner-vertices. Figure 3 shows a configuration with

one inner-vertex (black), the surrounding near-

border-vertices (black outline) and the border-

vertices (stippled outline).

Whenever no locally minimal collapse error can be

found, the border of the local partition has to be ex-

panded. Therefore the near-border-vertex with the

smallest collapse error is chosen and all of its linked

border-vertices are updated to near-border-

vertices, by reading their neighborhood from external

memory. This changes the state of the prior near-

border-vertex to an inner-vertex, which can be

checked for a locally minimal collapse error. Figure 4

shows the expansion of the upper right near-border

vertex from figure 3.

Because always the near-border-vertex with the

smallest collapse error is chosen, the In-Core part

will always grow towards vertices with locally mini-

Figure 3. Local mesh partition with one inner

vertex

Figure 4. Local mesh partition with two inner

vertices

Figure 2. Collapse error distribution for the

“Stanford Bunny” mesh

WSCG2006 Full Papers proceedings 97 ISBN 80-86943-03-8

mal collapse errors. If a maximum number of verti-

ces or triangles is exceeded in main memory, the In-

Core vertices and triangles are written back to exter-

nal memory. The simplification process then contin-

ues with the prior near-border-vertex, which would

cause the smallest collapse error.

The original data is presented as an array of triangles

and an array of vertices in external memory. For each

vertex we also store the list of adjacent triangles.

Changed and new vertices are stored separately and

provided with hierarchy informations.

For each collapse operation the pair of merged verti-

ces is stored in the resulting vertex. Furthermore the

collapsed triangles are referenced in the resulting

vertex. The collapsed vertices and triangles are re-

moved from internal memory and all vertices, whose

neighborhood changed (including the new vertex),

are updated and checked for locally minimal collapse

errors.

The simplification algorithm can be summarized as

follows:

1. Choose and read a start vertex.

2. Read the adjacent vertices of the start vertex.

(Make the start vertex to near-border-vertex.)

3. Expand the local partition by choosing the near-

border-vertex with the smallest collapse error

and update all border-vertices around it to near-

border-vertices.

4. Execute all possible collapses among inner-

vertices.

5. If the internal memory limit is reached, write in-

ternal data to external memory. Choose the near-

border-vertex with the smallest error as new start

vertex, read it and continue with step 2.

6. If further simplification is required, continue with

step 3.

In the first step the vertex with the index 0 is nor-

mally chosen as start vertex. The second step reads

the local neighborhood of the start vertex (triangles

and vertices). After the second step, the start vertex is

in the near-neighbor-vertex group and the other

vertices are in the border-vertices group. The third

step always expands the partition in internal memory,

to find inner-vertices, whose collapse error is locally

minimal. The fourth step executes all possible col-

lapses within the inner-vertices. After that, a mem-

ory check is performed, to limit the use of internal

memory. If no further local minimal collapse errors

could be found, the algorithm restarts at the best posi-

tion to find a local minimal collapse error. The last

steps are repeated until a stop condition is reached.

This can be for instance a maximum simplification

error or a minimum number of triangles.

The indexed vertices and triangles of the internal

partition are stored in AVL-Trees for fast access.

With these trees, fast search operations can be per-

formed in the local partition of the indexed mesh. The

near-border-vertices are referenced in additional

priority queues, for fast access to the vertex that will

cause the smallest collapse error.

After the simplification, the remaining vertices and

triangles are written to the hierarchy file for the use as

approximation root.

Vertex Index Translation
In order to use the hierarchy file for the approxima-

tion of the original mesh, it has to be reconstructed

top-down. This demands fast decisions how to dis-

tribute the triangles after each vertex split. This step

can be accelerated by translating the hierarchy indices

to an inorder structure. That means, the left subtree

always contains only vertex indices which are smaller

than, and the right subtree contains only vertices,

which are greater than the according root node. To-

gether with the information of the triangle vertices in

the finest level, one can decide the correct child ver-

tex in each split by only comparing vertex indices.

All vertex indices in the left subtree are applied to the

left child and the same is true for the right subtree.

View Dependent Rendering
After the translation of the hierarchy indices, some

information for view-dependent rendering is added to

the hierarchy. Fast view-frustum culling for each ver-

tex in the hierarchy is supported with bounding-

spheres. As soon as the bounding sphere of a vertex

is outside the frustum, its complete subtree can be

culled. For backface-culling and contour-based ap-

proximations, normal-cones [Xia96] for each vertex

are computed. Whenever the cone points away from

the viewer in the whole bounding-volume, the associ-

ated subtree can be culled.

The rendering process starts with the root of the hier-

archy. All vertices, which were not collapsible and

the triangles, which were not collapsed in the simpli-

fication process, construct the base mesh. These base

vertices are put into a priority queue sorted according

to their collapse error, which is divided by the dis-

tance to the viewer plane (greatest weight first). Ver-

tices, which does not pass the view frustum test or the

normal cone test are not put into the queue. Now the

first vertex from the queue can be split into its child

vertices iteratively and be replaced in the queue by its

child vertices. The two associated triangles are ap-

pended to the triangle list during each split. Before

the split, it is examined whether the child vertices are

already in internal memory. If not, they are loaded

from external memory. For internal memory man-

agement, an individual frame number is assigned to

WSCG2006 Full Papers proceedings 98 ISBN 80-86943-03-8

all internal vertices. This variable is always set to the

number of the frame, in which its associated vertex

was last split. All parent vertices of a pair of leaf-

nodes in the internal vertex tree remain in a priority

queue, sorted by their frame number (smallest first).

Whenever memory must be reallocated, the first ver-

tex from the queue is used to remove its child vertices

from memory. After that, its parent vertex is put into

the queue, if both of its child-vertices are leaf-nodes

in internal memory. This memory management allows

to restrict the memory, which is used by the internal

vertex tree.

The whole approximation process is terminated when

a given time period elapses or a desired number of

triangles is reached. So a minimum frame rate can be

guaranteed. In order to reach higher frame rates it

would also be possible to make use of frame-to-frame

coherency. Therefor one must use the approximated

vertex tree from the last frame and apply both col-

lapse- and split-operations to it. Furthermore two

priority queues are required. One for the split-

candidates (greatest error first) and one for the col-

lapse-candidates (smallest error first). Both queues

must be balanced in each frame depending on the

view parameters.

4. RESULTS

Simplification
A prototype implementation of the simplification

algorithm was tested with several meshes. The results

for small meshes were determined from the “Arma-

dillo” mesh from "Stanford University Computer

Graphics Laboratory". For medium sized meshes we

used the “Asian Dragon” from “XYZ RGB Inc”. For

tests with large meshes the “David” mesh from the

“Digital Michelangelo Project” and a randomly cre-

ated rough planet surface were used. Table 1 shows

the data of the meshes.

Name Vertices Triangle

Armadillo 172,974 345,944

Asian Dragon 3,609,455 7,218,906

Rough Planet 67,108,866 134,217,724

David1 69,881,083 139,749,343

Table 1. Test meshes for simplification

The amount of triangles in internal memory was lim-

ited to 1,500,000 triangles for the local surface por-

tions. This is equal to a memory consumption of

around 230 MB. Due to the repeated tests for local

minimal collapse errors, this algorithm executes of

1 Version of the mesh repaired with PolyMender [Ju04]

written by Tao Ju

course much slower than In-Core algorithms. Table 2

shows the minimum, maximum and average "col-

lapses per second", the overall simplification time

and the hierarchy size in external memory for the test

models. All test have been done on a Athlon 3800+

PC with 4GB of internal memory.

Name
Arma-

dillo

Asian

Dragon

Rough

Planet

David

Avrg col/s 1663 1137 672 667

Min col/s 1397 797 97 103

Max col/s 1904 1825 1783 1764

Time h:m 0:02 0:53 27:44 29:14

Disc size in

MB
19.7 413 7680 7855

Table 2. Simplification test results

The watertight meshes “Armadillo”, “Asian Dragon”

and “Rough Planet” were all simplified to a tetrahe-

dron as the base mesh. The base mesh of the “David”

model consists of 1463 vertices after simplification

due to small errors in the mesh surface. Small

meshes, which can be cached completely by the oper-

ating system, show significantly higher collapse rates

as large meshes. But the average rate of large meshes

does not fall below 40% of the average rate of small

meshes. Compared with other methods the achieved

collapse rates are relatively low. But an implementa-

tion similar to the Spanned Mesh [San00] algorithm,

which uses the correct collapse sequence, delivered

much lower ratios, especially for large meshes (e.g 40

hours for the “Asian Dragon”). The main advantages

of the new algorithm are, the hierarchy structure,

which is equal to In-Core simplification algorithms,

and the use of locality on the mesh surface for simpli-

fication.

View Dependent Rendering
The extraction performance for the external collapse

hierarchy is comparable to In-Core variants. The only

difference is, that parts of the hierarchy which does

not remain in internal memory, have to be read during

some frames from external memory. As soon as the

desired hierarchy data remains in internal memory,

there is no difference to InCore algorithms. Due to

the fine granularity of the hierarchy, the extraction

wont influence the desired frame rate very much.

All hierarchies were approximated with a maximum

of 15,000 triangles. The relatively low number of

triangles was chosen due to the approximation algo-

rithm that does not make use of frame to frame co-

herency. An improved approximation algorithm

should easily reach higher numbers of triangles at

high frame-rates. Figures 5 shows approximated

views of the four test models. The approximation

detail can change while the view is moving, because

WSCG2006 Full Papers proceedings 99 ISBN 80-86943-03-8

access to external memory may decrease the number

of triangles, which are visible, in the desired frame

time temporarily.

5. CONCLUSION
In this paper a new algorithm for the simplification of

large meshes was described. It was shown how to use

locally minimal collapse errors on the mesh surface in

order to create collapse hierarchies, which are equal

to ones produced by In-Core methods, while making

use of locality on the mesh surface. The algorithm

shows good simplification ratios compared with the

algorithm of El-Sana [San00], which uses collapse

sequences equal to In-Core algorithms. Furthermore

it was described how to manipulate the hierarchy for

fast triangle updates in the reconstruction process and

its usage the hierarchy for view-depended rendering.

6. ACKNOWLEDGMENTS
I would like to thank Mr. Marc Levoy and the people

working on the Digital Michelangelo Project for pro-

viding their models.

7. REFERENCES
[Cig02] P. Cignoni , C. Montani, C. Rocchini, R.

Scopino, “External memory management and

simplification of huge meshes”. IEEE Transac-

tions on Visualization and Computer Graphics.

2002

[Gar97] M. Garland, P.S. Heckbert, “Surface Simpli-

fication Using Quadric Error Metrics”, SIG-

GRAPH ’97 Conf. Proc., pp. 209-216, 1997

[Hop96] H. Hoppe, “Progressive meshes“, Computer

Graphics, 30(Annual Conference Series),pp. 99-

108, 1996

[Hop98] H. Hoppe, “Smooth View-Dependent Level-

of-Detail Control and its Aplications to Terrain

Rendering,” Proc. IEEE Visualization ’98 Conf.,

pp. 35-42, 1998

[Ise03] M. Isenburg, P. Lindstrom, S. Gumhold, and

J. Snoeyink, “Large Mesh Simplification using

Processing Sequences”, IEEE Visualization 2003,

pp. 465-472, 2003

[Ju04] T. Ju, “Robust Repair of Polygonal Models”,

Proceedings of ACM SIGGRAPH, pp. 888-895,

2004

[Kob98] L. Kobbelt, S. Campagna, J. Vorsatz, and

H.-P. Seidel. „Interactive multi-resolution model-

ing on arbitrary meshes”, In Proceedings of the

25th annual conference on Computer graphics and

interactive techniques, pp. 105-114, 1998

[Lev00] M. Levoy, K. Pulli, B. Curless, S. Rus-

inkiewicz, D. Koller, L. Pereira, M. Ginzton, S.

Anderson, J. Davis, J. Ginsberg, J. Shade, and D.

Fulk, “The Digital Michelangelo Project: 3D

Scanning of Large Statues,” SIGGRAPH 2000,

Computer Graphics Proc., pp. 131-144, 2000

[Ros93] J. Rossignac and P. Borrel, “Multi-

Resolution 3D Approximation for Rendering

Complex Scenes,” Geometric Modeling in Com-

puter Graphics, pp. 455-465, 1993

[Lind03] P. Lindstrom, “Out-of-core construction and

visualization of multiresolution surfaces”, Pro-

ceedings of the 2003 symposium on Interactive

3D graphics, pp. 93-102, 2003

[San00] J. El-Sana and Y.-J. Chiang, “External

Memory View-Dependent Simplification,” Com-

puter Graphics Forum, vol. 19, no. 3, pp. 139-

150, 2000

[Xia96] J. Xia and A.Varshney, “Dynamic View-

dependent Simplification for Polygonal Models”,

Proceedings of IEEE Visualization, pp. 327-334,

1996

Figure 5. Approximated views of the test meshes

(full view and cutout)

WSCG2006 Full Papers proceedings 100 ISBN 80-86943-03-8

	C73-full.pdf
	F37-full.pdf
	G31-full.pdf
	C73-full.pdf
	INTRODUCTION
	ATLAS OF DISCOIDS AND Z-BUFFER
	The atlas of discoid
	Z-Buffer and fragment

	ADAPTATIONS FOR REAL-TIME VISUALISATION
	Geometrical considerations
	Level of details
	Illumination model

	RESULTS
	CONCLUSION AND FUTURE WORKS
	REFERENCES

	C71-full.pdf
	B29-full.pdf

