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Abstract: Out-of-Distribution (OOD) detection separates ID (In-Distribution) data and OOD data
from input data through a model. This problem has attracted increasing attention in the area of
machine learning. OOD detection has achieved good intrusion detection, fraud detection, system
health monitoring, sensor network event detection, and ecosystem interference detection. The method
based on deep learning is the most studied in OOD detection. In this paper, related basic information
on OOD detection based on deep learning is described, and we categorize methods according to the
training data. OOD detection is divided into supervised, semisupervised, and unsupervised. Where
supervised data are used, the methods are categorized according to technical means: model-based,
distance-based, and density-based. Each classification is introduced with background, examples, and
applications. In addition, we present the latest applications of OOD detection based on deep learning
and the problems and expectations in this field.

Keywords: anomaly detection; deep learning; neural networks; novelty detection; Out-of-Distribution
detection; outlier detection

1. Introduction

Although machine learning based on a neural network has made great progress, even
surpassing human beings under experimental conditions, the many failed examples reveal
the vulnerability of the model when dealing with different distributed data [1]. Therefore,
Out-of-Distribution (OOD) detection based on deep learning has received more and more
attention in machine learning [2]. In order to separate OOD samples more effectively,
various improvement methods have been proposed by researchers.

In general, a new research direction has to go from simple to complex, from point to
surface. OOD detection is still in the initial stage. Most studies use specific data. Therefore,
according to the number of labeled data, they are divided into supervised, semisuper-
vised, and unsupervised. In the supervised methods, all the training data are labeled.
In unsupervised methods, all the training data are not labeled. In the semisupervised
method, part of the training data is labeled and the other part is not labeled. Among them,
supervised methods are the most common. In these supervised methods, model-based
OOD detection methods usually rely on the Softmax scoring function from the penulti-
mate layer or output layer of the neural network [3]. For any given test time input, all
existing solutions require a complete feedforward channel and use a fixed amount of cal-
culation [4]. Distance-based methods usually define proximity metrics between objects.
OOD data are far away from most other objects. When the data can be presented in two-
dimensional or three-dimensional scatter diagrams, distance-based Out-of-Distribution
points can be visually detected [5]. In addition, the density estimation of objects can be
calculated relatively directly, especially when there is a proximity measure between objects.
Objects in low-density areas are relatively far from their neighbors and may be considered
out-of-distribution points. This type of method is called density-based.
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OOD detection is similar to a binary classification problem in output form. ID samples
are easy to obtain, but OOD samples are difficult to obtain, so the number of pieces is
imbalanced. In special cases, there may be no OOD samples at all in the training stage,
and only ID samples participate in model training. To solve this problem, we need to
use semisupervised methods, of which the most common is the autoencoder [6–8]. In
recent years, with the continuous development of OOD detection, researchers are no longer
satisfied with detecting specific samples. They hope that the model has good generalization
capability. Zhou et al. [9] proposed to solve the problem of data generalization by Out-
of-Distribution Knowledge Distillation (OKD) and achieved good results. Rather than
focusing on the model structure, most recent works [10–14] have targeted improvements in
the objective function over ERM (empirical risk minimization).

In this paper, the background of OOD detection is briefly introduced in Section 2.
Section 3 gives an overview of OOD detection based on deep learning. Sections 4–6 introduce
the different classifications of OOD detection based on deep learning. Section 7 presents the
areas where OOD detection based on deep learning has been applied. Section 8 introduces
the challenges of OOD detection.

2. Background

In this section, we present background information related to OOD detection in this
survey and the dataset and evaluation metrics used.

2.1. Development Background of OOD Detection

OOD detection is developed based on anomaly detection. This paper lists some
representative research results by timeline. In the early 1980s, Hawkins et al. [15] summa-
rized the latest achievements of anomaly detection at that time and proposed the possible
future development direction in combination with the defects of anomaly detection in
several areas. Svante et al. [16] proposed PCA (principal component analysis). PCA is
a dimensionality reduction method that is often used to reduce the dimensionality of
high-dimensional data sets. It converts a large set of variables into a smaller set of variables
while retaining most of the information in the set, so the calculation method is simplified.
Corts et al. [17] proposed the classic support vector machine, which solved the binary
classification problem in supervised learning. Liu et al. [18] presented the Isolation Forest,
solving the problem of slow speed and poor accuracy when processing big data. In 2012,
Krizhevsky et al. [19] presented the AlexNet, solving the vanishing gradient problem of
Sigmaid when the network is deep. Kim et al. [20] combined CNN and NLP for feature
extraction, solving the problem of not being able to capture the key features formed by
continuous data. Schlegl et al. [21] proposed an anomaly detection model based on gen-
erative adversarial networks (GAN), which provides negative training for unsupervised
learning. In 2017, Hendrycks et al. [22] proposed a baseline system for OOD detection.
Liang et al. [23] improved the baseline and proposed the ODIN model, and Devries [4],
Shalev [24], Denouden [6], and Abdelzad et al. [5] improved the baseline in different
directions, ultimately improving the detection effect. Yang et al. [25] expounded on the
definition, method, evaluation, impact, and future direction of the OOD generalization
problem in a review.

2.2. Datasets of Reference
2.2.1. MNIST

The MNIST dataset is a classic dataset in machine learning. It consists of 60,000 training
samples and 10,000 test samples. Each sample is a 28 × 28 pixels grayscale handwritten
digital picture, as shown in Figure 1. Download address: http://yann.lecun.com/exdb/
mnist/ (accessed 19 on September 2022).

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Electronics 2022, 11, 3500 3 of 19

Figure 1. MNIST data set sample image.

2.2.2. CIFAR-10

CIFAR-10 is a color image dataset closer to universal objects. CIFAR-10 is a small
dataset compiled by Hinton students Alex Krizhevsky and Ilya Sutskever for identifying
universal objects. It includes 10 categories of RGB color pictures: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck. The size of each print is 32 × 32, each category
has 6000 images, and there are a total of 50,000 training pictures and 10,000 test pictures in
the dataset, as shown in Figure 2. Download address: http://www.cs.toronto.edu/~kriz/
cifar.html (accessed on 27 October 2022).

Figure 2. CIFAR-10 data set sample image.

2.2.3. CIFAR-100

This dataset is like CIFAR-10, except it has 100 classes, and each class contains 600 im-
ages. Each category has 500 training images and 100 test images. The 100 classes in
CIFAR-100 are divided into 20 superclasses. Each image has a label of its class and its
superclass. Download address: http://www.cs.toronto.edu/~kriz/cifar.html (accessed on
27 October 2022).

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
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2.3. Evaluation Metrics

There are several fixed detection indicators for OOD detection.
The true positive rate (TPR) is calculated as follows, where TP and FN represent true

positives and false negatives, respectively:

TPR =
TP

TP + FN

The false positive rate (FPR) is calculated as follows, where FP and TN indicate false
positives and true negatives, respectively:

FPR =
FP

FP + TN

The Area Under the Receiver Operating Characteristic curve (AUROC) represents the
probability that the model ranks a random positive example more highly than a random
negative example. Under ideal conditions, the expected score of AUROC is 100%. Area
Under Precision–Recall (AUPR) is the area under the precision–recall curve reflecting the
relationship between precision and recall, where precision is equal to TP/(TP + FP), and
the recall rate is TP/(TP + FN). However, Hendrycks et al. [22] proposed that these are not
objective and pointed out that the PR curve is related to identifying positive and negative
samples. Therefore, they created two more modes to evaluate: AUPR In and AUPR Out.
When the in-distribution samples are set to positive, the area under the precision-recall
curve is called AUPR In. When the Out-of-Distribution samples are set to positive, the area
under the precision-recall curve is called AUPR Out.

3. OOD Detection Based on Deep Learning

This section presents the definition of OOD detection based on deep learning and similar
research. In addition, we present the categorization that we use to describe the methods.

3.1. Definition

The present popular deep learning methods include training data and test data. These
data are ID (In Distribution) samples of IID (Independent Identical Distribution), but
the application data re-input after model training is often uncontrollable in an actual
application. In addition to the ID sample, the application data may be an OOD sample [26].
These OOD data may be caused by wrong data and new or unknown types of data. OOD
detection’s main task is to focus on which data are different from all other data and make
sure all such data are data-driven [27].

3.2. Related Works
3.2.1. Anomaly Detection

Anomaly detection (AD) aims to detect any anomalous samples that deviate from
the predefined normality during testing [28]. The deviation can happen due to either a
covariate shift or a semantic shift while assuming the other distribution shift does not
exist. Atha et al. [29] used anomaly detection to evaluate metal surface corrosion. Patel
et al. [30] addressed the problem of face spoof detection against print and replay attacks by
anomaly detection. Other example applications include adversarial defense [31], image
forensics [32], etc.

3.2.2. Novelty Detection

Novelty detection aims to detect any test samples that do not fall into any training
category [33,34]. The rise in the use of police-operated surveillance cameras has outpaced
the ability of humans to monitor them effectively. Idrees et al. [35] solved this problem with
Novelty Detection. Kerner et al. [36] presented a system based on convolutional autoen-
coders for detecting novel features in multispectral images and applied the methodology
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to the detection of novel geological features in multispectral images of the Martian surface
collected by the Mastcam imaging system on the Mars Science Laboratory Curiosity rover.
Al-Behadili et al. [37] proposed an incremental Parzen window kernel density estimator
(IncPKDE) that addresses the problems of data streaming using a model that is insensitive
to the training set size and has the ability to detect novelties within multiclass recogni-
tion systems. Many conventional outlier detection tools are based on the assumption
that the data are identically and independently distributed. Liu et al. [38] proposed an
outlier-resistant data filter–cleaner.

3.2.3. Outlier Detection

Outlier detection aims to detect samples that are markedly different from the others in
the given observation set, due to either covariate or semantic shift. Data closer in time are
more correlated to each other than those farther apart. Basu et al. [39] proposed the problem
of detecting unusual values or outliers from time series data. Machine learning-based
strategies are examined by Xiao et al. [40] and are one type of Outlier Detection method.

3.2.4. Discussion

Anomaly detection is a technique for identifying abnormal situations and mining
nonlogical data. Novelty detection finds novel data in the dataset that may belong to
the classification but have not been seen. Outlier detection focuses on data points that
are significantly different from other observations. Although the names of these terms
are different, the core of their strategy is finding OOD samples. The difference between
them is that the setting may be somewhat different [41]. Anomaly detection is generally a
multicategory dataset (such as CIFAR10, which contains 10 categories). One or several are
considered normal, and the other categories are considered abnormal. Out-of-Distribution
detection usually uses a complete dataset as ID data and another complete dataset as OOD
data (for example, CIFAR10 is ID data, while the SVHN dataset is OOD data).

3.3. Baseline Model

Background: In practical classification tasks, many highly reliable predictions are
absurd and seriously wrong. So, if the classifier cannot accurately indicate when some
errors occurred, which would cause serious problems, this system will be restricted in
practical applications. To solve this problem, Hendrycks et al. [22] proposed an OOD
detection baseline.

Application examples: Hendricks pointed out that the anomaly detection model
gives misclassified samples and OOD samples a high softmax probability, so the softmax
probability value cannot directly represent the confidence level of the model. The properly
classified samples obtained a higher softmax probability value than the incorrectly classified
and OOD samples.

Taking the image processing task as an example in the experimental process, three
training sets were used: MINIST, CIFAR-10, and CIFAR-100. Naturally, the inputs con-
sisting of the distribution of these three datasets were regarded as in-distribution. In
order to construct test sets, Out-of-Distribution datasets for these were selected. The main
contributions of the baseline can be summarized in three aspects:

(1) Use softmax probability values of model predicted samples to detect OOD samples
effectively;

(2) OOD detection tasks and new evaluation indicators are developed;
(3) A novel approach is proposed: determining whether a sample is abnormal by com-

bining the output of a neural network with the quality of reconstructed samples.

Discussion: Experiments prove that the baseline can achieve a good recognition effect
for different designated tasks, providing valuable ideas for end-to-end anomaly detection.
In addition, it can be widely applied in many fields not limited to image processing and
the natural language processing involved in the experiment.
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3.4. Categorization

We refer to the classification method of Pang et al. [42] for anomaly detection. OOD
detection can be classified by considering some criteria, such as:

• The machine learning paradigm used: supervised, semisupervised, or unsupervised;
• The different technical means: model, distance, or density.

The models used in the methods studied in this article are all based on deep learning.
All methods are data-dependent because they have a training step. OOD detection is still in
the initial experimental stage. There are few unsupervised methods in the existing research,
so most of the methods discussed in this survey are supervised.

4. Supervised Methods

In this section, we present the supervised methods proposed in the literature for the
problem of OOD detection according to the categorization adopted in this survey.

4.1. Model-Based Methods
4.1.1. Structure-Based Methods

Background: The probability output of the model does not directly represent the
confidence level of the model. Therefore, the model can carry out OOD detection by
learning the uncertain attributes of input samples. When testing data, if the data entered by
the model are an ID sample, the uncertainty is low. Conversely, if the data entered by the
model are an OOD sample, the uncertainty is high. This type of method needs to modify
the network structure of the model to learn the uncertainty attribute [43].

Representative model: Devries et al. [4] proposed adding another branch to the
original classification: a confidence branch to predict confidence c, where the input is x, the
threshold value is θ, and the predicted probability is p.

p, c = f (x, θ) pi, c ∈ [0, 1],
M

∑
i=1

pi = 1

During the training process, the network is indicated by interpolation, and the confi-
dence is used to adjust the softmax prediction probability. In order to avoid some extreme
situations in the network, for example, c always takes a value of 0, the confidence loss is
added as a logarithmic penalty, and the confidence is always set to 1 (high confidence).
After the training is completed, when the OOD sample is judged by loss estimation, the
function is directly evaluated.

The model continuously improves classification performance through training and
measures whether the input data are an ID sample based on confidence.

Application examples: Guénais et al. [44] proposed a Bayesian framework to obtain
reliable uncertainty estimates for deep classifiers. Their approach consists of a plug-in “gen-
erator” used to augment the data with an additional class of points on the boundary of the
training data, followed by Bayesian inference on top of features trained to distinguish these
“out-of-distribution” points. A new nondistributed classifier based on policy entropy has
been proposed by Andreas et al. [45]. This method uses policy entropy as the classification
score of a class of classifiers, which can reliably detect states that are not encountered in
deep reinforcement learning.

4.1.2. Threshold-Based Methods

Background: The OOD detection baseline uses the pretraining model’s maximum
softmax probability of the output signal to conduct statistical analysis and judge the softmax
probability distribution of OOD samples and ID samples. The distance between OOD
samples and ID samples can be further expanded and then selects an appropriate threshold
to evaluate the sample distribution.
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Representative model: Liang et al. [23] proposed ODIN (Out-of-Distribution detector
for Neural networks) based on the baseline, mainly using temperature scaling and input
processing to improve the performance of OOD detection.

f = ( f1, · · · , fN), where N represents the classification number. ε is the perturba-
tion magnitude.

Temperature scaling:

pi(x; T) =
exp( fi(x)/T)

∑ N
j−1 exp( fi(x)/T)

Input processing:
x = x− εsign(−∇x log pŷ(x; T))

ODIN uses temperature scaling and input processing to expand the softmax distribu-
tion difference between ID samples and OOD samples.

Application examples Hsu et al. [3] proposed a decomposition confidence score and
an improved preprocessing method based on ODIN, making significant breakthroughs
in semantic transfer and nonsemantic transfer. Zhou et al. [46] proposed contrast loss,
which can improve the compactness of the representation so that OOD instances can be
better distinguished from cases in the distribution. Xin et al. [47] proposed a method
that introduced Channel Mean Deviation (CMD), a model-agnostic distance metric, to
evaluate the statistics of the features extracted by the classification model. Single image
detection is achieved by using a lightweight channel sensitivity adjustment model, which
is an improvement on other statistical detection methods. A summary of similar methods
since 2020 for the category is shown in Table 1.

Table 1. Paper summary (2020–2021).

Number Methodology References

1 Generate OOD data by using ID data [48,49]

2 Lightweight Detection of Out-of-Distribution and Adversarial Samples via Channel Mean Discrepancy [50]

3 Learn the weights of training samples to eliminate the dependence between features and false correlations [51]

4 The strong link between discovering the causal structure of the data and finding reliable features [52,53]

5 Holochain-based security and privacy-preserving framework [54]

6 Enhance robustness of Out-of-Distribution [55–58]

7 The (OOD) detection problem in DNN as a statistical hypothesis testing problem [59]

8 The linear classifier obtained by minimizing the cross-entropy loss after the graph convolution generalizes to
out-of-distribution data [45,60,61]

9 Invariant risk minimization (IRM) solves the prediction problem [62]

10 The differences between scenarios and data sets will change the relative performance of the methods [63,64]

11 pre-trains a model on OOD auxiliary outputs and fine-tunes this model with the pseudolabels [65]

12 Nash equilibria of these games are closer to the ideal OOD solutions than the standard empirical risk minimization (ERM) [66]

13 Interval bound propagation (IBP) is used to upper bound the maximal confidence in the l∞-ball and minimize this
upper bound during training time [67]

14 The density of states estimator is proposed [68]

15 A new post-doc confidence calibration method is proposed, called CCAC (Confidence Calibration with an Auxiliary
Class), for DNN classifiers on OOD datasets [69]

16 The author proposes an easy-to-perform method both for group and point-wise anomaly detection via estimating the
total correlation of representations in DGM [70]

17 The author proposes OOD Analyzer, a visual analysis approach for interactively identifying OOD samples and
explaining them in context [71]
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4.2. Distance-Based Methods

Background: This method is relatively straightforward, using a classifier to classify
the extracted features to determine whether it is an OOD sample. Some methods modify the
network structure to be a class classifier, which is the number of categories of the original
classification task, and the first class is the OOD class. Some methods directly extract the
features for classification without modifying the network structure. Although this method
is straightforward, it has achieved good results.

Representative model: Abdelzad et al. [5] proposed the OODL (Out-of-Distribution
discernment layer) method, which can distinguish OOD samples very easily by selecting
specific and easily distinguishable layer output characteristics. Based on this, input and
output data from different layers are extracted. The method uses a one-class SVM classifier,
counts the classification error rate of this layer, and then selects the layer with the smallest
error to detect OOD samples.

A preprocessing method to obtain x′ is also proposed by adding a small perturbation
to each input x. Then, we used the feature x′ for detection.

Denote as Qi the output of network Q for class i. ε is the perturbation magnitude.

x′ = x− ε sign(−∇x log p(maxiQi(x)))

Application examples: Xu et al. [72] constructed a Latent Sequence Gaussian Mixture
(LSGM) model to describe how the latent features in the distribution are generated across
the representation space based on the traces of DNN inference. Chen et al. [73] proposed
learning a shared latent space on a unit hypersphere. By using class centers and boundaries,
invisible samples can be separated from visible samples.

4.3. Density-Based Methods

Background: The softmax confidence of any pretrained neural network could be
replaced with an energy function. Compared with other anomaly detection methods
that use pretrained models, this method does not need to adjust other model parameters
due to the parameter-free feature of the energy measurement. This is different from the
softmax confidence score. The probability density is aligned. Therefore, anomaly detection
performance can be significantly improved.

Representative model: Li et al. [27] proposed an energy-based anomaly detection
framework. OOD detection can be regarded as a binary classification problem. For the
input sample model, a score value needs to be given to measure the degree of deviation of
the current sample from the normal distribution. The intuitive method is to use density
estimation. The energy function is used to build the density function of the model:

E(x; f ) represents the energy score of input x and neural network f . T is the tempera-
ture parameter.

p(x) =
e−E(x; f )/T∫
x e−E(x; f )/T

Application examples: Zisselman et al. [74] introduced the residual flow, a novel flow
architecture that learns the residual distribution from a base Gaussian distribution. Zong
et al. [75] presented a Deep Autoencoding Gaussian Mixture Model (DAGMM) for unsuper-
vised anomaly detection. The joint optimization, which balances autoencoding reconstruction,
density estimation of latent representation, and regularization, helps the autoencoder escape
from less attractive local optima and further reduces reconstruction errors, avoiding the need
for pretraining. Ren et al. [76] proposed a likelihood ratio method for deep generative models,
which effectively corrects for these confounding background statistics.

4.4. Performance Comparison

In this section, many representative models are based on the baseline system. In order
to fully understand the performance, we used the same dataset for comparative experi-
ments. Figures 3–6 show the results of the representative methods of each classification
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under the CIFAR-10 and CIFAR-100 datasets. SMOOD is the OOD detection baseline, and
ODIN, LC, and OODL are the representative models of Section 4.1.2, Section 4.1.1, and
Section 4.2, respectively. The results show that the OODL effect of distinguishing the layer
by finding the appropriate features is the best. Other methods with more classifications
have a worse effect; the most they can reach is double the gap. OODL performance is very
stable. The difference in the impact of the two datasets is about 10%, and OODL achieved a
100% correct effect on multiple projects. Two innovation modules increase the distance be-
tween ID data and OOD data, so the effect of ODIN is better in most cases (except Gaussian
and Uniform). Although there is a gap with OODL, the structure is simpler and does not
re-quire major changes to the original framework. LC focuses on the precise positioning
of the decision boundary. The problem of the data near the classification boundary being
difficult to distinguish has not been solved, so the effect of LC is only better than that of
the baseline system. OODL inherits the advantages of ODIN and traverses all convolution
layers to find the feature layer most suitable for ID and OOD data classification, so it has
achieved the best results.

Figure 3. Comparison of results. The ID data are CIFAR-10, the OOD data are TinyImageNet, LSUN,
and iSUN, and the model is VGG16.
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Figure 4. Comparison of results. The ID data are CIFAR-100, the OOD data are SVHN, Gaussian, and
Uniform, and the model is VGG16.

Figure 5. Cont.
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Figure 5. Comparison of results. The ID data are CIFAR-10, the OOD data are TinyImageNet, LSUN,
and iSUN, and the model is Resnet.

Figure 6. Cont.
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Figure 6. Comparison of results. The ID data are CIFAR-100, the OOD data are SVHN, Gaussian, and
Uniform, and the model is Resnet.

5. Semisupervised Methods

Background: This method mainly uses the reconstruction error of the autoencoder
to determine whether it is an ID sample or an OOD sample. The latent space of the
autoencoder can learn the obvious characteristics (silence vector) of ID data. Still, the OOD
sample cannot, so the OOD sample will produce a higher reconstruction error. This type
of method only focuses on OOD detection performance, without paying attention to the
original task of ID data.

With the method based on VAE reconstruction, it is difficult to capture some specific
abnormal samples. These samples are far from the known samples in the latent space, but
they are very close to the hidden manifold.

The problem can be solved by increasing the dimension of the hidden space to capture
more variation in the original data. However, this slowly deprives the model of the ability
to distinguish between ID samples and OOD samples, because when the hidden space
dimension is large enough, it can theoretically reconstruct any input.

Representative model: Denouden et al. [6] used the Mahalanobis distance to measure
the distance between a sample x and the ID training data in the manifold space:

DM(x) =

√
(x− ∧µ)

T ∧
∑ −1(x− ∧µ)

where µ̂ and Σ̂ are the mean and covariance matrices of the multivariate Gaussian distri-
bution. The Mahalanobis distance is a constant scale and can consider the relationship
between different dimensions. Finally, the reconstruction error and Mahalanobis distance
can be used to detect OOD samples:

Dm represents the Mahalanobis distance. α and β are mixing parameters that were
determined using a validation set of samples.

novelty(x) = α · DM(E(x)) + β · `(x, D(E(x)))

Application examples: In addition to methods based on reconstruction and distance,
another method is to generate some samples to surround the entire ID data manifold, train
a classifier to get the dividing line of the package ID data manifold, and finally detect
the OOD samples through the dividing line. Victor et al. [77], inspired by the success of
variational autoencoders (VAEs) in machine learning, proposed iterative extensions of
VAEs (iVAEs). Ran et al. [78] proposed an improved noise contrast prior (INCP) method to
obtain reliable uncertainty estimates of standard VAE. By combining INCP with VAE, the
differences between OOD and ID input can be captured and distinguished.
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6. Generalization Detection

Background: The generalization problem based on OOD detection has been raised in
recent years. Yang et al. [25] have already conducted a review, so we only give a simple
example to illustrate.

Application examples: Zhang et al. [79] articulated and demonstrated the functional
lottery ticket hypothesis: a full network contains a subnetwork that can achieve better OOD
performance. They provided Modular Risk Minimization (MRM) to find these “tickets”.

The MRM algorithm is divided into four steps:

(1) Determine the logits π of the data, network, and subnetwork. Logit is a random
distribution used to generate the mask. For example, if the network layer l has nl
parameters, then πl ∈ Rni . The mask of this layer is obtained by sampling sigmod(πl),
and the mask m transforms the complete network into a subnetwork;

(2) Initialize the model and then use the ERM target to train N1 steps;
(3) Sample subnetworks from the entire network, combining cross-entropy and sparse

regularization as a loss function to learn an effective subnetwork structure;
(4) It is only necessary to use the weights in the obtained subnet to re-train and fix the

other weights to zero.

Discussion: The major finding of the study is that MRM and the current mainstream
research direction (modifying the objective function) are orthogonal. No matter the objective
function, MRM can find such subnetworks with stronger generalization ability.

7. Already Applied Fields
7.1. Data Migration

With the emergence of more and more machine learning application scenarios and
the existing better-performing supervised learning requiring a large amount of labeled
data, labeling data is a tedious and costly task, so transfer learning is receiving more
and more attention. Transfer learning refers to transferring a neural network originally
used for a specific task to another new field to perform a new task [80]. The difficulty is
finding the characteristic points of the new task. Xu et al. [81] introduced a simple, robust
estimation criterion—transfer risk—specifically geared towards optimizing transfer to new
environments. The criterion amounts to finding a representation that minimizes the risk
of applying any optimal predictor trained on one environment to another. This method
performs well in various Out-of-Distribution generalization tasks.

7.2. Fault Detection

When a machine is working, abnormal vibration can be used as an important feature
to diagnose the working state of the machine. Normally working machines’ vibrations are
smooth and regular. If a machine fails, there will be obvious abnormal vibrations. It is
difficult for us to collect abnormal vibration samples in actual situations. The main reasons
are as follows: (1) The industry that uses large machinery does not allow the machine to
stop suddenly. (2) Most machine failures occur slowly. The uncertainty causes us to be
unable to correctly estimate the time when the fault occurred, making it extremely difficult
to collect data. (3) The complexity of the production environment and the influence of noise
make the results produced by different environments different. Based on the Monte Carlo
dropout method, Jin et al. [82] proposed a novel approach to augmenting the classification
model with an additional unsupervised learning task.

7.3. Medical Image Processing

In medical imaging, the accurate diagnosis and evaluation of diseases depend on the
collection and interpretation of medical images. Image acquisition has significantly im-
proved in recent years, with equipment acquiring data at a faster rate and higher resolution.
However, the image interpretation process has only recently benefited from computer tech-
nology. Doctors mostly perform the interpretation of medical images. However, medical
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image interpretation is limited by physician subjectivity, cognitive differences, and fatigue.
Muhammad et al. [83] proposed an approach to robustly classify OOD samples in skin and
malaria images without accessing labeled OOD samples during training. This method has
reached its most advanced level in detecting skin cancer and malaria.

In addition to the application areas listed, with the continuous maturity of OOD
detection technology based on deep learning, it is being applied in more and more fields.
We summarize these applications in recent years in Table 2.

Table 2. Application Summary (2020–2021).

Number Application Field References

1 Avian note classification [84]
2 Natural language processing (NLP) [85–87]
3 Autonomous Vehicle [88,89]

4 Text and Image classification [90–93]
[94–97]

5 Pedestrian trajectory prediction [98,99]
6 Digital Pathology [100]
7 Medical imaging [101–103]
8 Automated Diabetic Retinopathy Screening [104]
9 Lung lesion segmentation [105]
10 Autonomous robot platform [106]
11 Drone performing vision-based obstacle avoidance [107]
12 Particle physics collider events [108]
13 Minimally invasive surgery (MIS) [109]
14 Adversarial attacks (AA) [110]
15 Automated skin disease classification [111–113]
16 Machine sound monitoring system [114,115]
17 Scene segmentation [116]
18 AI assistance [117,118]
19 Logical reasoning over symbols [119]
20 Self-supervised learning (SSL) [120]
21 Automotive perception [121]

8. Challenges

OOD detection has made great progress. However, some challenges still need to be
addressed to make OOD detection more effective and widely used. As a result, both the
research community and society will benefit.

OOD detection based on deep learning has solved many practical problems but still
faces many challenges, especially in the detection of unsupervised data. How to reduce
false positives and enhance detection recall rates is one of the most important yet difficult
challenges. Unsupervised methods do not have any prior knowledge of true anomalies. They
rely heavily on the assumption of the distribution of anomalies. Moreover, there are unlabeled
data affected by noise in unsupervised data. They may be accurately detected or incorrectly
labeled, and noisy instances may be irregularly distributed in the data space. In addition, OOD
detection based on deep learning works well in low-dimensional space, but OOD features
are not obvious in high-dimensional space, and most methods are for point features. The
detection of conditional features and group features are problems that need to be solved.

9. Conclusions

This work focuses on three categories of OOD detection based on supervised data—
the model method, the distance method, and the density method—showing how each
technique can distinguish OOD data from original data. In addition, we discuss their
performance under the same data and model. In general, approaches are more concerned
with improving the recognition effect, while failing to address space costs and efficiency
issues. In this final section, we will present open issues and future research opportunities.
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With the rise of deep learning, there has been a breakthrough in the performance of many
tasks. OOD detection based on a deep model is of great significance to the development of AI,
especially in the field of AI security. We are in an era of big data, and simply relying on manual
processing speed does not meet the needs of society. Because not all data are supervised data
and identically distributed, OOD detection can identify OOD samples in the input data in
advance, thus helping the model to detect anomalies in the data faster, greatly reducing the
model’s error rate and reducing the loss caused by practical applications. In addition, OOD
detection plays an irreplaceable role in banking, transportation, medical treatment, network,
and other fields. The emerging field of OOD detection is worthy of further research. However,
in reality, there are not many researchers engaged in this field, and the number of related
papers published is small, which leads to the slow development of this field. We hope through
this review to comprehensively introduce OOD detection and attract more people to devote
themselves to research in this field.

Author Contributions: Supervision, Conceptualization, Review, J.W.; Formal analysis, Methodology,
Writing, P.C.; Funding acquisition, P.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Geirhos, R.; Jacobsen, J.-H.; Michaelis, C.; Zemel, R.; Brendel, W.; Bethge, M.; Wichmann, F.A. Shortcut learning in deep neural

networks. Nat. Mach. Intell. 2020, 2, 665–673. [CrossRef]
2. Berend, D.; Xie, X.; Ma, L.; Zhou, L.; Liu, Y.; Xu, C.; Zhao, J. Cats Are Not Fish: Deep Learning Testing Calls for Out-Of-Distribution

Awareness. In Proceedings of the 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE),
Melbourne, VIC, Australia, 24 December 2020; pp. 1041–1052. [CrossRef]

3. Hsu, Y.C.; Shen, Y.; Jin, H.; Kira, Z. Generalized ODIN: Detecting Out-of-Distribution Image Without Learning from Out-of-
Distribution Data. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, 13–19 June 2020; pp. 10948–10957. [CrossRef]

4. Devries, T.; Taylor, G.W. Learning confidence for out-of-distribution detection in neural networks. arXiv 2018, arXiv:1802.04865.
[CrossRef]

5. Abdelzad, V.; Czarnecki, K.; Salay, R.; Denounden, T.; Vernekar, S.; Phan, B. Detecting Out-of-Distribution Inputs in Deep Neural
Networks Using an Early-Layer Output. arXiv 2019, arXiv:1910.10307. [CrossRef]

6. Denouden, T.; Salay, R.; Czarnecki, K.; Abdelzad, V.; Phan, B.; Vernekar, S. Improving reconstruction autoencoder out-of-
distribution detection with mahalanobis distance. arXiv 2018, arXiv:1812.02765. [CrossRef]

7. Dillon, B.M.; Favaro, L.; Plehn, T.; Sorrenson, P.; Krämer, M. A Normalized Autoencoder for LHC Triggers. arXiv 2022,
arXiv:2206.14225. [CrossRef]

8. Hoffman, S.C.; Wadhawan, K.; Das, P.; Sattigeri, P.; Shanmugam, K. Causal Graphs Underlying Generative Models: Path to
Learning with Limited Data. arXiv 2022, arXiv:2207.07174. [CrossRef]

9. Zhou, K.; Zhang, Y.; Zang, Y.; Yang, J.; Change Loy, C.; Liu, Z. On-Device Domain Generalization. arXiv 2022, arXiv:2209.07521.
[CrossRef]

10. Rosenfeld, E.; Ravikumar, P.; Risteski, A. Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for
Out-of-Distribution Generalization. arXiv 2022, arXiv:2202.06856. [CrossRef]

11. Krueger, D.; Caballero, E.; Jacobsen, J.-H.; Zhang, A.; Binas, J.; Zhang, D.; Le Priol, R.; Courville, A. Out-of-Distribution
Generalization via Risk Extrapolation (REx). arXiv 2020, arXiv:2003.00688. [CrossRef]

12. Arjovsky, M.; Bottou, L.; Gulrajani, I. Invariant Risk Minimization Games. In Proceedings of the International Conference on
Machine Learning (ICML), Vienna, Austria, 12–18 July 2020. [CrossRef]

13. Koyama, M.; Yamaguchi, S. When is invariance useful in an Out-of-Distribution Generalization problem? arXiv 2020,
arXiv:2008.01883. [CrossRef]

14. Adragna, R.; Creager, E.; Madras, D.; Zemel, R. Fairness and Robustness in Invariant Learning: A Case Study in Toxicity
Classification. arXiv 2020, arXiv:2011.06485. [CrossRef]

15. Auth, H.D.M. Identification of Outliers; Springer Dodrecht: Dodrecht, The Netherlands, 1980. [CrossRef]
16. Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. In Chemometrics & Intelligent Laboratory Systems; Elsevier:

Amsterdam, The Netherlands, 1987. [CrossRef]

http://doi.org/10.1038/s42256-020-00257-z
http://doi.org/10.1145/3324884.3416609
http://doi.org/10.1109/CVPR42600.2020.01096
http://doi.org/10.48550/arXiv.1802.04865
http://doi.org/10.48550/arXiv.1910.10307
http://doi.org/10.48550/arXiv.1812.02765
http://doi.org/10.48550/arXiv.2206.14225
http://doi.org/10.48550/arXiv.2207.07174
http://doi.org/10.48550/arXiv.2209.07521
http://doi.org/10.48550/arXiv.2202.06856
http://doi.org/10.48550/arXiv.2003.00688
http://doi.org/10.48550/arXiv.2002.04692
http://doi.org/10.48550/arXiv.2008.01883
http://doi.org/10.48550/arXiv.2011.06485
http://doi.org/10.1007/978-94-015-3994-4
http://doi.org/10.1016/0169-7439(87)80084-9


Electronics 2022, 11, 3500 16 of 19

17. Cortes, C.; Vapnik, V.N. Support Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
18. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data

Mining, Pisa, Italy, 15–19 December 2008. [CrossRef]
19. Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 1097–1105. [CrossRef]
20. Kim, Y. Convolutional Neural Networks for Sentence Classification. arXiv 2014, arXiv:1408.5882. [CrossRef]
21. Schlegl, T.; Seebck, P.; Waldstein, S.M.; Langs, G.; Schmidt-Erfurth, U. f-AnoGAN: Fast Unsupervised Anomaly Detection with

Generative Adversarial Networks. Med. Image Anal. 2019, 54, 30–44. [CrossRef]
22. Hendrycks, D.; Gimple, K. A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks. ICLR.

April arXiv 2016, arXiv:1610.02136. [CrossRef]
23. Liang, S.; Li, Y.; Srikant, R. Principled detection of out-of-distribution examples in neural networks. arXiv 2017, arXiv:1706.02690.

[CrossRef]
24. Shalev, G.; Adi, Y.; Keshet, J. Out-of-distribution Detection using Multiple Semantic Label Representations. Adv. Neural Inf.

Process. Syst 2018, 31, 7375–7385. [CrossRef]
25. Yang, J.; Zhou, K.; Li, Y.; Liu, Z. Generalized Out-of-Distribution Detection: A Survey. arXiv 2021, arXiv:2110.11334. [CrossRef]
26. Ye, H.; Xie, C.; Cai, T.; Li, R.; Li, Z.; Wang, L. Towards a Theoretical Framework of Out-of-Distribution Generalization. arXiv 2021,

arXiv:2106.04496v2. [CrossRef]
27. Liu, W.; Wang, X.; Owens, J.D.; Li, Y. Energy-based Out-of-distribution Detection. arXiv 2020, arXiv:2010.03759v4. [CrossRef]
28. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. Acm Comput. Surv. 2009, 41, 1–58. [CrossRef]
29. Atha, D.J.; Jahanshahi, M.R. Evaluation of deep learning approaches based on convolutional neural networks for corrosion

detection. Struct. Health Monit. 2018, 17, 1110–1128. [CrossRef]
30. Patel, K.; Han, H.; Jain, A.K. Secure face unlock: Spoof detection on smartphones. IEEE Trans. Inf. Forensics Secur. 2016, 10,

2268–2283. [CrossRef]
31. Akcay, S.; Atapour-Abarghouei, A.; Breckon, T.P. GANomaly: Semi-supervised Anomaly Detection via Adversarial Training.

In Proceedings of the 14th Asian Conference on Computer Vision (ACCV), Perth, Australia, 2–6 December 2018; pp. 622–637.
[CrossRef]

32. Zhao, Y.; Deng, B.; Shen, C.; Liu, Y.; Lu, H.; Hua, X.S. Spatio-temporal autoencoder for video anomaly detection. In Proceedings of
the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1933–1941. [CrossRef]

33. Hodge, V.J.; Austin, J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22, 85–126. [CrossRef]
34. Pimentel, M.A.F.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Proces. 2014, 99, 215–249.

[CrossRef]
35. Idrees, H.; Shah, M.; Surette, R. Enhancing camera surveillance using computer vision: A research note. Polic. Int. J. 2018, 41,

292–307. [CrossRef]
36. Kerner, H.R.; Wellington, D.F.; Wagstaff, K.L.; Bell, J.F.; Kwan, C.; Amor, H.B. Novelty detection for multispectral images with

application to planetary exploration. In Proceedings of the AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 8–12
October 2019; Volume 33, pp. 9484–9491. [CrossRef]

37. Al-Behadili, H.; Grumpe, A.; Wohler, C. Incremental learning and novelty detection of gestures in a multi-class system. In
Proceedings of the AIMS, Kota Kinabalu, Malaysia, 2–4 December 2015. [CrossRef]

38. Liu, H.; Shah, S.; Jiang, W. On-line outlier detection and data cleaning. Comput. Chem. Eng. 2004, 28, 1635–1647. [CrossRef]
39. Basu, S.; Meckesheimer, M. Automatic outlier detection for time series: An application to sensor data. Knowl. Inf. Syst 2007, 11,

137–154. [CrossRef]
40. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,

arXiv:1708.07747. [CrossRef]
41. Garitano, I.; Uribeetxeberria, R.; Zurutuza, U. A review of SCADA anomaly detection systems. In Proceedings of the 6th Springer

International Conference on Soft Computing Models in Industrial and Environmental Applications, Berlin/Heidelberg, Germany,
April 2011; pp. 357–366. [CrossRef]

42. Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. Acm Comput. Surv. 2021, 54, 1–38.
[CrossRef]

43. Vernekar, S.; Gaurav, A.; Abdelzad, V.; Denouden, T.; Salay, R.; Czarnecki, K. Out-of-distribution Detection in Classifiers via
Generation. arXiv 2019, arXiv:1910.04241. [CrossRef]

44. Guénais, T.; Vamvourellis, D.; Yacoby, Y.; Doshi-Velez, F.; Pan, W. BaCOUn: Bayesian Classifers with Out-of-Distribution
Uncertainty. arXiv 2020, arXiv:2007.06096. [CrossRef]

45. Sedlmeier, A.; Muller, R.; Illium, S.; Linnhoff-Popien, C. Policy Entropy for Out-of-Distribution Classification. In Proceedings
of the 29th International Conference on Artificial Neural Networks (ICANN), Bratislava, Slovakia, 15–18 September 2020;
pp. 420–431. [CrossRef]

46. Zhou, K.; Yang, Y.; Qiao, Y.; Xiang, T. MixStyle Neural Networks for Domain Generalization and Adaptation. arXiv 2021,
arXiv:2107.02053. [CrossRef]

47. Dong, X.; Guo, J.; Li, A.; Ting, W.-T.; Liu, C.; Kung, H.T. Neural Mean Discrepancy for Efficient Out-of-Distribution Detection.
arXiv 2021, arXiv:2104.11408v4.

http://doi.org/10.1007/BF00994018
http://doi.org/10.1109/ICDM.2008.17
http://doi.org/10.1145/3065386
http://doi.org/10.48550/arXiv.1408.5882
http://doi.org/10.1016/j.media.2019.01.010
http://doi.org/10.48550/arXiv.1610.02136
http://doi.org/10.48550/arXiv.1706.02690
http://doi.org/10.48550/arXiv.1808.06664
http://doi.org/10.48550/arXiv.2110.11334
http://doi.org/10.48550/arXiv.2106.04496
http://doi.org/10.48550/arXiv.2010.03759
http://doi.org/10.1145/1541880.1541882
http://doi.org/10.1177/1475921717737051
http://doi.org/10.1109/TIFS.2016.2578288
http://doi.org/10.1007/978-3-030-20893-6_39
http://doi.org/10.1145/3123266.3123451
http://doi.org/10.1023/B:AIRE.0000045502.10941.a9
http://doi.org/10.1016/j.sigpro.2013.12.026
http://doi.org/10.1108/PIJPSM-11-2016-0158
http://doi.org/10.1609/aaai.v33i01.33019484
http://doi.org/10.1109/AIMS.2015.55
http://doi.org/10.1016/j.compchemeng.2004.01.009
http://doi.org/10.1007/s10115-006-0026-6
http://doi.org/10.48550/arXiv.1708.07747
http://doi.org/10.1007/978-3-642-19644-7_38
http://doi.org/10.1145/3439950
http://doi.org/10.48550/arXiv.1910.04241
http://doi.org/10.48550/arXiv.2007.06096
http://doi.org/10.1007/978-3-030-61616-8_34
http://doi.org/10.48550/arXiv.2107.02053


Electronics 2022, 11, 3500 17 of 19

48. Moller, F.; Botache, D.; Huseljic, D.; Heidecker, F.; Bieshaar, M.; Sick, B. Out-of-distribution Detection and Generation using Soft
Brownian Offset Sampling and Autoencoders. In Proceedings of the CVPRW, Electr Network, Virtual, 19–25 June 2021; pp. 46–55.
[CrossRef]

49. Lee, K.; Lee, H.; Lee, K.; Shin, J. Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples. arXiv 2017,
arXiv:1711.09325. [CrossRef]

50. Dong, X.; Guo, J.; Ting, W.T.; Kung, H.T. Lightweight Detection of Out-of-Distribution and Adversarial Samples via Channel
Mean Discrepancy. arXiv 2021, arXiv:2104.11408v1.

51. Zhang, X.; Cui, P.; Xu, R.; Zhou, L.; He, Y.; Shen, Z. Deep Stable Learning for Out-Of-Distribution Generalization. In Proceedings
of the CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 5368–5378. [CrossRef]

52. Arjovsky, M. Out of Distribution Generalization in Machine Learning. arXiv 2021, arXiv:2103.02667. [CrossRef]
53. Mundt, M.; Pliushch, I.; Majumder, S.; Ramesh, V. Open Set Recognition Through Deep Neural Network Uncertainty: Does

Out-of-Distribution Detection Require Generative Classifiers? In Proceedings of the 2019 IEEE/CVF International Conference on
Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019; pp. 753–757. [CrossRef]

54. Zaman, S.; Khandaker, M.; Khan, R.T.; Tariq, F.; Wong, K.K. Thinking Out of the Blocks: Holochain for Distributed Security in IoT
Healthcare. IEEE Access. 2022, 10, 37064–37081. [CrossRef]

55. Kuijs, M.; Jutzeler, C.R.; Rieck, B.; Bruningk, S. Interpretability Aware Model Training to Improve Robustness against Out-of-
Distribution Magnetic Resonance Images in Alzheimer’s Disease Classification. arXiv 2021, arXiv:2111.08701. [CrossRef]

56. Chen, J.; Li, Y.; Wu, X.; Liang, Y.; Jha, S. ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining. arXiv 2020,
arXiv:2006.15207. [CrossRef]

57. Antonello, N.; Garner, P.N. At-Distribution Based Operator for Enhancing Out of Distribution Robustness of Neural Network
Classifiers. IEEE Signal Proce. Lett. 2020, 27, 1070–1074. [CrossRef]

58. Henriksson, J.; Berger, C.; Borg, M.; Tornberg, L.; Sathyamoorthy, S.R.; Englund, C. Performance Analysis of Out-of-Distribution
Detection on Various Trained Neural Networks. In Proceedings of the 45th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA)/22nd Euromicro Conference on Digital System Design (DSD), Kallithea, Greece, 28–30 August
2019; pp. 113–120. [CrossRef]

59. Haroush, M.; Frostig, T.; Heller, R.; Soudry, D. Statistical Testing for Efficient Out of Distribution Detection in Deep Neural
Networks. arXiv 2021, arXiv:2102.12967.

60. Baranwal, A.; Fountoulakis, K.; Jagannath, A. Graph Convolution for Semi-Supervised Classification: Improved Linear Separabil-
ity and Out-of-Distribution Generalization. In Proceedings of the ICML, Virtual, 18–24 July 2021. [CrossRef]

61. Vyas, A.; Jammalamadaka, N.; Zhu, X.; Das, D.; Kaul, B.; Willke, T.L. Out-of-Distribution Detection Using an Ensemble of
Self Supervised Leave-Out Classifiers. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich,
Germany, 8–14 September 2018; pp. 560–574. [CrossRef]

62. Guo, R.; Zhang, P.; Liu, H.; Kiciman, E. Out-of-distribution Prediction with Invariant Risk Minimization: The Limitation and An
Effective Fix. arXiv 2021, arXiv:2101.07732. [CrossRef]

63. Techapanurak, E.; Okatani, T. Practical Evaluation of Out-of-Distribution Detection Methods for Image Classification. arXiv 2021,
arXiv:2101.02447. [CrossRef]

64. Sedlmeier, A.; Gabor, T.; Phan, T.; Belzner, L.; Linnhoff-Popien, C. Uncertainty-based Out-of-Distribution Classification in Deep
Reinforcement Learning. In Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART),
Valletta, Malta, 22–24 February 2020; pp. 522–529. [CrossRef]

65. Xie, S.M.; Kumar, A.; Jones, R.; Khani, F.; Ma, T.; Liang, P. In-N-Out: Pre-Training and Self-Training using Auxiliary Information
for Out-of-Distribution Robustness. arXiv 2020, arXiv:2012.04550. [CrossRef]

66. Ahuja, K.; Shanmugam, K.; Dhurandhar, A. Linear Regression Games: Convergence Guarantees to Approximate Out-of-
Distribution Solutions. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Virtual, 13–15 April
2021; pp. 1270–1278. [CrossRef]

67. Bitterwolf, J.; Meinke, A.; Hein, M. Certifiably Adversarially Robust Detection of Out-of-Distribution Data. arXiv 2020,
arXiv:2007.08473. [CrossRef]

68. Morningstar, W.; Ham, C.; Gallagher, A.; Lakshminarayanan, B.; Alemi, A.; Dillon, J. Density of States Estimation for Out-
of-Distribution Detection. In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, Electr
Network, Virtual, 13–15 April 2021; pp. 232–3240. [CrossRef]

69. Shao, Z.; Yang, J.; Ren, S. Calibrating Deep Neural Network Classifiers on Out-of-Distribution Datasets. arXiv 2020,
arXiv:2006.08914. [CrossRef]

70. Zhang, Y.; Liu, W.; Chen, Z.; Wang, J.; Liu, Z.; Li, K.; Wei, H. Towards Out-of-Distribution Detection with Divergence Guarantee
in Deep Generative Models. arXiv 2020, arXiv:2002.03328.

71. Chen, C.; Yuan, J.; Lu, Y.; Liu, Z.; Su, H.; Yuan, S.; Liu, S. OoDAnalyzer: Interactive Analysis of Out-of-Distribution Samples. IEEE
Trans. Vis. Comput. Graph. 2021, 27, 3335–3349. [CrossRef] [PubMed]

72. Xu, J.; Zhu, S.; Li, Z.; Xu, C. Joint Distribution across Representation Space for Out-of-Distribution Detection. arXiv 2021,
arXiv:2103.12344.

http://doi.org/10.48550/arXiv.2105.02965
http://doi.org/10.48550/arXiv.1711.09325
http://doi.org/10.1109/CVPR46437.2021.00533
http://doi.org/10.48550/arXiv.2103.02667
http://doi.org/10.1109/ICCVW.2019.00098
http://doi.org/10.1109/ACCESS.2022.3163580
http://doi.org/10.48550/arXiv.2111.08701
http://doi.org/10.48550/arXiv.2006.15207
http://doi.org/10.1109/LSP.2020.3001843
http://doi.org/10.1109/SEAA.2019.00026
http://doi.org/10.48550/arXiv.2102.06966
http://doi.org/10.1007/978-3-030-01237-3_34
http://doi.org/10.48550/arXiv.2101.07732
http://doi.org/10.48550/arXiv.2101.02447
http://doi.org/10.5220/0008949905220529
http://doi.org/10.48550/arXiv.2012.04550
http://doi.org/10.48550/arXiv.2010.15234
http://doi.org/10.48550/arXiv.2007.08473
http://doi.org/10.48550/arXiv.2006.09273
http://doi.org/10.48550/arXiv.2006.08914
http://doi.org/10.1109/TVCG.2020.2973258
http://www.ncbi.nlm.nih.gov/pubmed/32070976


Electronics 2022, 11, 3500 18 of 19

73. Chen, X.; Lan, X.; Sun, F.; Zheng, N. A Boundary Based Out-of-Distribution Classifier for Generalized Zero-Shot Learning.
In Proceedings of the Computer Vision—ECCV 2020, Lecture Notes in Computer Science, Glasgow, UK, 23–28 August 2020;
Springer: Cham, Switzlerland, 2020; pp. 572–588. [CrossRef]

74. Zisselman, E.; Tamar, A. Deep Residual Flow for Out of Distribution Detection. In Proceedings of the 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 13991–14000. [CrossRef]

75. Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep Autoencoding Gaussian Mixture Model for
Unsupervised Anomaly Detection. In Proceedings of the ICLR, Vancouver, BC, Canada, 30 April–3 May 2018.

76. Ren, J.; Liu, P.J.; Fertig, E.A.; Snoek, J.R.; Poplin, R.; Depristo, M.; Dillon, J.; Lakshminarayanan, B. Likelihood Ratios for
Out-of-Distribution Detection. In Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada, 8–14
December 2019.

77. Boutin, V.; Zerroug, A.; Jung, M.; Serre, T. Iterative VAE as a predictive brain model for out-of-distribution generalization. arXiv
2020, arXiv:2012.00557. [CrossRef]

78. Ran, X.; Xu, M.; Mei, L.; Xu, Q.; Liu, Q. Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable
Uncertainty Estimation. arXiv 2020, arXiv:2007.08128. [CrossRef]

79. Zhang, D.; Ahuja, K.; Xu, Y.; Wang, Y.; Courville, A. Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
arXiv 2021, arXiv:2106.02890. [CrossRef]

80. Pan, S.J.; Qiang, Y. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
81. Xu, Y.; Jaakkola, T. Learning Representations that Support Robust Transfer of Predictors. arXiv 2021, arXiv:2110.09940. [CrossRef]
82. Jin, B.; Tan, Y.; Chen, Y.; Sangiovanni-Vincentelli, A. Augmenting Monte Carlo Dropout Classification Models with Unsupervised

Learning Tasks for Detecting and Diagnosing Out-of-Distribution Faults. arXiv 2019, arXiv:1909.04202. [CrossRef]
83. Zaida, M.; Ali, S.; Ali, M.; Hussein, S.; Saadia, A.; Sultani, W. Out of distribution detection for skin and malaria images. arXiv

2021, arXiv:2111.01505. [CrossRef]
84. Kalantari, L.; Principe, J.; Sieving, K.E. Uncertainty quantification for multiclass data description. arXiv 2021, arXiv:2108.12857.

[CrossRef]
85. Li, X.; Wang, C.; Tang, Y.; Tran, C.; Auli, M. Multilingual Speech Translation from Efficient Finetuning of Pretrained Models.

In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), Virtual, 1–6 August 2021.

86. Yao, M.; Gao, H.; Zhao, G.; Wang, D.; Lin, Y.; Yang, Z.; Li, G. Semantically Coherent Out-of-Distribution Detection. In Proceedings
of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV) Montreal, QC, Canada, 10–17 October 2021; pp.
8281–8289. [CrossRef]

87. Oberdiek, P.; Rottmann, M.; Fink, G.A. Detection and Retrieval of Out-of-Distribution Objects in Semantic Segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Electr Network, Seattle, WA,
USA, 14–19 June 2020; pp. 1331–1340. [CrossRef]

88. Ramakrishna, S.; Rahiminasab, Z.; Karsai, G.; Easwaran, A.; Dubey, A. Efficient Out-of-Distribution Detection Using Latent Space
of β-VAE for Cyber-Physical Systems. arXiv 2021, arXiv:2108.11800. [CrossRef]

89. Feng, Y.; Easwaran, A. WiP. Abstract: Robust Out-of-distribution Motion Detection and Localization in Autonomous CPS. arXiv
2021, arXiv:2107.11736. [CrossRef]

90. Dery, L.M.; Dauphin, Y.; Grangier, D. Auxiliary Task Update Decomposition: The Good, The Bad and The Neutral. arXiv 2021,
arXiv:2108.11346. [CrossRef]

91. Chen, J.; Asma, E.; Chan, C. Targeted Gradient Descent: A Novel Method for Convolutional Neural Networks Fine-tuning and
Online-learning. arXiv 2021, arXiv:2109.14729. [CrossRef]

92. Gawlikowski, J.; Saha, S.; Kruspe, A.; Zhu, X.X. Out-of-distribution detection in satellite image classification. arXiv 2021,
arXiv:2104.05442. [CrossRef]

93. Asami, T.; Masumura, R.; Aono, Y.; Shinoda, K. Recurrent out-of-vocabulary word detection based on distribution of features. In
Comput. Speech Lang. 2019, 58, 247–259. [CrossRef]

94. Bayer, J.; Münch, D.; Arens, M. Image-Based Out-of-Distribution-Detector Principles on Graph-Based Input Data in Human
Action Recognition. In Pattern Recognition. ICPR International Workshops and Challenges. Lecture Notes in Computer Science; Springer:
Cham, Switzerland, 2021; Volume 12661, pp. 26–40. [CrossRef]

95. Kim, Y.; Cho, D.; Lee, J.H. Wafer Map Classifier using Deep Learning for Detecting Out-of-Distribution Failure Patterns. In
Proceedings of the 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA),
Singapore, 20–23 July 2020; pp. 1–5. [CrossRef]

96. Mensink, T.; Verbeek, J.; Perronnin, F.; Csurka, G. Distance-Based Image Classification: Generalizing to New Classes at Near-Zero
Cost. Ieee Trans. Pattern Anal. Mach. Intell. 2013, 35, 2624–2637. [CrossRef]

97. Yu, C.; Zhu, X.; Lei, Z.; Li, S.Z. Out-of-Distribution Detection for Reliable Face Recognition. IEEE Signal Process. Lett. 2020,
27, 710–714. [CrossRef]

98. Dendorfer, P.; Elflein, S.; Leal-Taixé, L. MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian
Trajectory Prediction. arXiv 2021, arXiv:2108.09274. [CrossRef]

http://doi.org/10.1007/978-3-030-58586-0_34
http://doi.org/10.1109/CVPR42600.2020.01401
http://doi.org/10.48550/arXiv.2012.00557
http://doi.org/10.1016/j.neunet.2021.10.020
http://doi.org/10.48550/arXiv.2106.02890
http://doi.org/10.1109/TKDE.2009.191
http://doi.org/10.48550/arXiv.2110.09940
http://doi.org/10.48550/arXiv.1909.04202
http://doi.org/10.48550/arXiv.2111.01505
http://doi.org/10.48550/arXiv.2108.12857
http://doi.org/10.1109/ICCV48922.2021.00819
http://doi.org/10.1109/CVPRW50498.2020.00172
http://doi.org/10.1145/3491243
http://doi.org/10.1145/3450267.3452000
http://doi.org/10.48550/arXiv.2108.11346
http://doi.org/10.1007/978-3-030-87199-4_3
http://doi.org/10.48550/arXiv.2104.05442
http://doi.org/10.1016/j.csl.2019.04.007
http://doi.org/10.1007/978-3-030-68763-2_3
http://doi.org/10.1109/IPFA49335.2020.9260877
http://doi.org/10.1109/TPAMI.2013.83
http://doi.org/10.1109/LSP.2020.2988140
http://doi.org/10.1109/LSP.2020.2988140


Electronics 2022, 11, 3500 19 of 19

99. Mandal, D.; Narayan, S.; Dwivedi, S.; Gupta, V.; Ahmed, S.; Khan, F.S.; Shao, L.; Soc, I.C. Out-of-Distribution Detection for
Generalized Zero-Shot Action Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 9977–9985. [CrossRef]

100. Srinidhi, C.L.; Martel, A.L. Improving Self-supervised Learning with Hardness-aware Dynamic Curriculum Learning: An
Application to Digital Pathology. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops
(ICCVW), Virtual, 11–17 October 2021; pp. 562–571. [CrossRef]

101. Baltatzis, V.; Le Folgoc, L.; Ellis, S.; Manzanera, O.E.M.; Bintsi, K.-M.; Nair, A.; Desai, S.; Glocker, B.; Schnabel, J.A. The Effect of the
Loss on Generalization: Empirical Study on Synthetic Lung Nodule Data; Springer: Cham, Switzerland, 2021; pp. 56–64. [CrossRef]

102. Gao, L.; Wu, S.D. Response score of deep learning for out-of-distribution sample detection of medical images. J. Biomed. Inform.
2020, 107, 103442. [CrossRef]

103. Martensson, G.; Ferreira, D.; Granberg, T.; Cavallin, L.; Oppedal, K.; Padovani, A.; Rektorova, I.; Bonanni, L.; Pardini, M.;
Kramberger, M.G.; et al. The reliability of a deep learning model in clinical out-of-distribution MRI data: A multicohort study.
Med. Image Anal. 2020, 66, 101714. [CrossRef]

104. Nandy, J.; Hs, W.; Le, M.L. Distributional Shifts In Automated Diabetic Retinopathy Screening. In Proceedings of the 2021 IEEE
International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 255–259. [CrossRef]

105. Gonzalez, C.; Gotkowski, K.; Bucher, A.; Fischbach, R.; Kaltenborn, I.; Mukhopadhyay, A. Detecting When Pre-trained nnU-Net
Models Fail Silently for Covid-19 Lung Lesion Segmentation; Springer: Cham, Switzerland, 2021; pp. 304–314. [CrossRef]

106. Yuhas, M.; Feng, Y.; Xian Ng, D.J.; Rahiminasab, Z.; Easwaran, A. Embedded out-of-distribution detection on an autonomous
robot platform. arXiv 2021, arXiv:2106.15965. [CrossRef]

107. Farid, A.; Veer, S.; Pachisia, D.; Majumdar, A. Task-Driven Detection of Distribution Shifts with Statistical Guarantees for Robot
Learning. arXiv 2021, arXiv:2106.13703. [CrossRef]

108. Caron, L.S.; Hendriks, L.; Verheyen, V. Rare and different: Anomaly scores from a combination of likelihood and out-of-
distribution models to detect new physics at the LHC. SciPost Phys. 2022, 12, 77. [CrossRef]

109. Jonmohamadi, Y.; Ali, S.; Liu, F.; Roberts, J.; Crawford, R.; Carneiro, G.; Pandey, A.K. 3D Semantic Mapping from Arthroscopy Using
Out-of-Distribution Pose and Depth and In-Distribution Segmentation Training; Springer: Cham, Switzerland, 2021; pp. 383–393.
[CrossRef]

110. Lee, K.; Lee, K.; Lee, H.; Shin, J. A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks. In
Proceedings of the 32nd Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 2–8 December 2018.

111. Li, X.; Lu, Y.; Desrosiers, C.; Liu, X. Out-of-Distribution Detection for Skin Lesion Images with Deep Isolation Forest; Springer: Cham,
Switzerland, 2020; pp. 91–100. [CrossRef]

112. Kim, H.; Tadesse, G.A.; Cintas, C.; Speakman, S.; Varshney, K. Out-of-Distribution Detection In Dermatology Using Input
Perturbation and Subset Scanning. In Proceedings of the 19th IEEE International Symposium on Biomedical Imaging (IEEE ISBI),
Kolkata, India, 28–31 March 2022. [CrossRef]

113. Pacheco, A.G.C.; Sastry, C.S.; Trappenberg, T.; Oore, S.; Krohling, R.A. On Out-of-Distribution Detection Algorithms with Deep
Neural Skin Cancer Classifiers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Electr Network, Seattle, WA, USA, 14–19 June 2020; pp. 3152–3161. [CrossRef]

114. Dohi, K.; Endo, T.; Purohit, H.; Tanabe, R.; Kawaguchi, Y. Flow-Based Self-Supervised Density Estimation for Anomalous Sound
Detection. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Electr
Network, Toronto, ON, Canada, 6–11 June 2021; pp. 336–340. [CrossRef]

115. Iqbal, T.; Cao, Y.; Kong, Q.Q.; Plumbley, M.D.; Wang, W.W. Learning with Out-Of-Distribution data For Audio Classification. In
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, Spain, 4–8
May 2020; pp. 636–640. [CrossRef]

116. Williams, D.S.W.; Gadd, M.; De Martini, D.; Newman, P. Fool Me Once: Robust Selective Segmentation via Out-of-Distribution
Detection with Contrastive Learning. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Xian, China, 30 May–5 June 2021; pp. 9536–9542. [CrossRef]

117. Liu, H.; Lai, V.; Tan, C. Understanding the Effect of Out-of-distribution Examples and Interactive Explanations on Human-AI
Decision Making. arXiv 2021, arXiv:2101.05303. [CrossRef]

118. Cai, F.; Koutsoukos, X. Real-time Out-of-distribution Detection in Learning-Enabled Cyber- Physical Systems. In Proceedings of
the 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS), ACM, Sydney, NSW, Australia, 21–25
April 2020; pp. 174–183. [CrossRef]

119. Kim, S.; Nam, H.; Kim, J.; Jung, K.; Association for the Advancement of Artificial Intelligence. Neural Sequence-to-grid Module
for Learning Symbolic Rules. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, Electr Network, 2–9 February
2021; pp. 8163–8171. [CrossRef]

120. Chen, J.; Zhu, C.; Dai, B. Understanding the Role of Self-Supervised Learning in Out-of-Distribution Detection Task. arXiv 2021,
arXiv:2110.13435. [CrossRef]

121. Nitsch, J.; Itkina, M.; Senanayake, R.; Nieto, J.; Schmidt, M.; Siegwart, R.; Kochenderfer, M.J.; Cadena, C. Out-of-Distribution
Detection for Automotive Perception. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 2938–2943. [CrossRef]

http://doi.org/10.1109/CVPR.2019.01022
http://doi.org/10.48550/arXiv.2108.07183
http://doi.org/10.1007/978-3-030-87444-5_6
http://doi.org/10.1016/j.jbi.2020.103442
http://doi.org/10.1016/j.media.2020.101714
http://doi.org/10.1109/ICIP42928.2021.9506635
http://doi.org/10.1007/978-3-030-87234-2_29
http://doi.org/10.1145/3445034.3460509
http://doi.org/10.48550/arXiv.2106.13703
http://doi.org/10.21468/SciPostPhys.12.2.077
http://doi.org/10.1007/978-3-030-87196-3_36
http://doi.org/10.1007/978-3-030-59861-7_10
http://doi.org/10.1109/ISBI52829.2022.9761412
http://doi.org/10.1109/CVPRW50498.2020.00374
http://doi.org/10.1109/ICASSP39728.2021.9414662
http://doi.org/10.1109/ICASSP40776.2020.9054444
http://doi.org/10.1109/ICRA48506.2021.9561165
http://doi.org/10.1145/3479552
http://doi.org/10.1109/ICCPS48487.2020.00024
http://doi.org/10.1609/aaai.v35i9.16994
http://doi.org/10.48550/arXiv.2110.13435
http://doi.org/10.1109/ITSC48978.2021.9564545

	Introduction 
	Background 
	Development Background of OOD Detection 
	Datasets of Reference 
	MNIST 
	CIFAR-10 
	CIFAR-100 

	Evaluation Metrics 

	OOD Detection Based on Deep Learning 
	Definition 
	Related Works 
	Anomaly Detection 
	Novelty Detection 
	Outlier Detection 
	Discussion 

	Baseline Model 
	Categorization 

	Supervised Methods 
	Model-Based Methods 
	Structure-Based Methods 
	Threshold-Based Methods 

	Distance-Based Methods 
	Density-Based Methods 
	Performance Comparison 

	Semisupervised Methods 
	Generalization Detection 
	Already Applied Fields 
	Data Migration 
	Fault Detection 
	Medical Image Processing 

	Challenges 
	Conclusions 
	References

