
Out-of-Order Commit Processors

Adrian Cristal†, Daniel Ortega�, Josep Llosa† and Mateo Valero†
†Depto. de Arquitectura de Computadores, �Barcelona Research Office

Universidad Politécnica de Cataluña Hewlett Packard Labs,

{adrian,josepll,mateo}@ac.upc.es daniel.ortega@hp.com

Abstract

Modern out-of-order processors tolerate long latency
memory operations by supporting a large number of in-
flight instructions. This is particularly useful in numerical
applications where branch speculation is normally not a
problem and where the cache hierarchy is not capable of
delivering the data soon enough. In order to support more
in-flight instructions, several resources have to be up-sized,
such as the Reorder Buffer (ROB), the general purpose in-
structions queues, the Load/Store queue and the number of
physical registers in the processor. However, scaling-up the
number of entries in these resources is impractical because
of area, cycle time, and power consumption constraints.

In this paper we propose to increase the capac-
ity of future processors by augmenting the number of
in-flight instructions. Instead of simply up-sizing re-
sources, we push for new and novel microarchitectural
structures that achieve the same performance bene-
fits but with a much lower need for resources. Our main
contribution is a new checkpointing mechanism that is ca-
pable of keeping thousands of in-flight instructions at a
practically constant cost. We also propose a queuing mech-
anism that takes advantage of the differences in waiting
time of the instructions in the flow.

Using these two mechanisms our processor has a per-
formance degradation of only 10% for SPEC2000fp over
a conventional processor requiring more than an order of
magnitude additional entries in the ROB and instruction
queues, and about a 200% improvement over a current pro-
cessor with a similar number of entries.

1. Introduction

The ever increasing gap between processor speed and
memory speed is steadily increasing memory latencies with
each new processor generation. In order to tolerate these la-
tencies, caches and prefetching are very useful techniques,
but do not solve the problem completely. Numerical appli-

cations which work with great amounts of data are specially
sensitive to these scenarios. It is common place that in or-
der to sustain high ILP under these circumstances, a higher
number of in-flight instructions must be maintained. At cur-
rent memory latency trends, processors cannot keep up with
this growing disparity, and as a result, long latency opera-
tions are increasingly more crucial for performance.

0

0.5

1

1.5

2

2.5

3

3.5

4

128 256 512 1024 2048 4096

In-flight Instructions

IP
C

L2 Perfect 100 500 1000

Figure 1. IPC relative to the # of in-flight insts.
and the latency to memory for SPEC2000fp
(other resources have been scaled)

In figure 1 we can see the average relation between IPC
and in-flight instructions for SPEC2000fp applications1.
Each number of in-flight instructions contains four bars rel-
ative to four different architectural configurations. The first
one is the IPC achieved by a machine with those resources
and perfect L2 cache behavior, while the other three repre-
sent different L2-main memory latencies (100 cycles, 500
cycles and 1000 cycles). From this figure we can see that
increasing the number of in-flight instructions is capable
of achieving nearly perfect memory behavior (this does not
happen so much in integer applications due to branch spec-
ulation problems and pointer chasing references).

1 These numbers were obtained with the simulation framework ex-
plained in section 4.

Two major conclusions can be stated from this figure.
First of all, future processors with 1000 cycles to main
memory will severely suffer with present microarchitectural
configurations. This can be noted from the difference be-
tween the first two bars of the 128 group with respect to
the fourth bar, the one representing 1000 cycles to main
memory. The relative difference is on the order of 3.5 times
slower! The second important conclusion is that an increase
in the amount of in-flight instructions allows to tolerate a
higher memory latency. This is not at all new, to tolerate
the 1000 cycles of a particular missing load, we must have
enough instructions from which to extract ILP [13]. If the
issue width of the processor is 4 instructions per cycle, this
means that over 4000 instructions will be needed to execute
if we want to continue full speed. All this forces the proces-
sor to have plenty of in-flight instructions in order to main-
tain performance.

The simple way of allowing for thousands of in-flight in-
structions would be to scale all the resources involved, i.e.
ROB size, physical register file, general purpose instruc-
tion queues (integer and floating point ones) and load/store
queue. Unfortunately, this is not at all simple, since these
resources often determine the cycle time of the processor
[24]. Moreover, these four resources are mingled, improv-
ing one of them will surely leave it out of the critical path,
bringing another one to occupy its place as the most criti-
cal resource. Nevertheless, we believe that particular solu-
tions to each one of them can be attacked in an orthogonal
way. Several researchers do also think the same, and have
focused their particular solutions on each one of these prob-
lems one at a time. For instance, in [9] we describe a tech-
nique to optimize the register file usage which can be or-
thogonally combined with any of the proposals of this pa-
per.

In this paper we are going to propose solutions to two
of these four important resources, the reorder buffer and the
general purpose instruction queues2. Our proposal is based
on the fact that the resources of a processor supporting a
large number of in-flight instructions are underutilized, as
stated in [8]. We will introduce mechanisms that effectively
allow for thousands of in-flight instructions to co-exist with
feasible implementations of the microarchitectural require-
ments of both types of resources. The other two critical
resources named above, the physical register file and the
load/store queue will be modeled in a pseudo-perfect way,
leaving them out of the critical path in order to analyze the
impact of our changes.

The first mechanism presented will focus on allowing for
larger virtual ROBs in a superscalar out of order processor.

2 Load/Store queues take care of memory disambiguation by keeping
instruction order, which clearly makes them totally different to nor-
mal general purpose instruction queues

The ROB itself is a critical resource as has been pointed
out in [11, 23]. We call this mechanism Out-of-Order Com-
mit. With the use of checkpointing we allow for the com-
mit of instructions in an out-of-order fashion, while preserv-
ing correctness and exception preciseness by committing
checkpoints in-order. The mechanism will be thouroughly
explained in section 2. The second mechanism presented
will explain how to implement general purpose instruction
queues that allow for high ILP while being simple and not
affecting cycle time. We will accomplish this by storing
those instructions which are not going to be ready in a long
time in a secondary buffer. This will leave important in-
structions the necessary resources to complete as soon as
possible. Due to the insertion of this secondary buffer, we
have called this mechanism Slow Lane Instruction Queu-
ing. This mechanism is coupled with the previous one for
presentation purposes, but we believe that independent im-
plementations of both of them are feasible. Other mecha-
nisms that try to achieve similar results have already been
presented [18, 7]. With these two mechanisms our proces-
sor outperforms by a factor of 3 a current processor with a
similar amount of hardware devoted to these tasks.

The rest of this paper is organized as follows. Section
2 describes our out-of-order commit mechanism. We deal
with instruction queues in section 3. In section 4 we explain
our simulation framework and the different experiments run
to state our results. In section 6 and 5 we discuss the related
work and the links with our present work. We conclude the
paper in section 7.

2. Out-of-Order Commit

After an instruction is fetched and decoded in a su-
perscalar out-of-order processor, it is inserted in both its
corresponding instruction queue and in the re-order buffer
(ROB). The purposes of the ROB are multiple. First of all, it
allows for precise interrupts by implementing in-order com-
mit. In addition, it is mingled with the recovery mechanisms
associated with some kinds of speculation such as branch
or load speculation. The ROB controls exactly when stores
may change the memory state and thus the machine state. It
also correctly frees the physical registers when they are no
longer in use.

Basically a ROB can be understood as the microarchitec-
tural mechanism that keeps a history window of all in-flight
instructions, allowing for the precise recovery of the pro-
gram state at any of those in-flight instructions. As the la-
tency of memory operations increases, it is needed to sup-
port a larger number of in-flight instructions to hide this ac-
cess latency and achieve high performance. In this context,
a centralized structure like the ROB becomes a problem,
since scaling-up the number of entries in this structure is
impractical, mainly due to cycle time limitations.

In this paper, we propose to replace a normal ROB
structure with a mechanism oriented at making checkpoints
at specific instructions of the code. Our checkpoints are
very similar to the checkpoints taken by branch specula-
tion mechanism. A checkpoint can be thought of as a snap-
shot of the state of the machine, which allows us to recover
execution at that point.

Checkpoint

Not Executed Instruction

Executed Instruction

Miss Predicted InstructionA

B

C

D

Figure 2. Checkpointing process

Figure 2 presents the checkpointing process. In timeline
A we can see that there always exists at least one checkpoint
in the system. The processor will bring and issue follow-
ing instructions and at interesting locations it will take new
checkpoints. If a particular instruction is mis-speculated
(timeline B) the processor rolls back to the previous check-
point and resumes execution from there. When all instruc-
tions between the last two checkpoints have executed (C),
the last checkpoint is eliminated and its resources are freed
(D).

 CAM Register Mapping

Physical 1 2 3 4 5 6 7 …

Logical 3 4 2 1 8 9 7 …

Valid 1 1 1 1 0 0 0 …

Future Free 0 0 0 0 0 0 0 …

Free List 0 0 0 0 1 1 1 …

Figure 3. Extension to the CAM Register Map-
ping

In figure 3 we see an example of how our Register
Mapping works. Our register mapping structure follows the
CAM scheme such as in the Alpha 21264 [17] and the HAL
Sparc [4]. This figure shows the typical CAM structure of
a renaming mechanism plus another bit per entry which we
call Future Free bit. Besides we can see in figure 3 that there
also exists a Register Free List from where free registers are
taken3. From this diagram we can see that at the present mo-

3 In this paper we are assuming that the free list is implemented with a
bit per physical register

ment only four physical registers are mapped, i.e. the ones
with the valid bit set to one.

Let us assume that in this specific moment we save a
checkpoint. As in a normal branch speculation mechanism,
we are forced to save the valid bits but not the logical map-
pings, since they are not going to change until these regis-
ters are freed and used for a new instruction. Our mecha-
nism also needs to save the current Future Free bits y and
reset them to to compute the new Future Free, which con-
tain the information needed to free registers, as we will de-
scribe shortly. Therefore, the cost of a checkpoint in our
mechanism can be computed as the number of physical reg-
ister times two bits per register, which is very simple in-
deed.

CAM Register Mapping

Physical 1 2 3 4 5 6 7 …

Logical 3 4 2 1 1 9 7 …

Valid 1 1 1 0 1 0 0 …

Future Free 0 0 0 1 0 0 0 …

Free List 0 0 0 0 0 1 1 …

Checkpoint

R1 = R2 + R3

Ph5 Ph3 Ph1

Figure 4. State of our CAM Register Mapping
after a non-checkpointed instruction is de-
coded

In figure 4 we see the state of this CAM register map-
ping after a new instruction is decoded. This new instruc-
tion (a simple add) needs a free register which is taken from
the free list (physical number 5) and therefore changes the
valid bit of physical 5 from 0 to 1 y the corresponding free
list bit. As we have no ROB structure, someone must take
care of the freeing of physical registers. We do this by set-
ting the Future Free bit of entry 4 (previously mapped to
logical 1) to 1. The Future Free bits capture which regis-
ters need to be freed when the next checkpoint is commit-
ted. When the next instruction with logical destination reg-
ister number 1 is decoded, the state of our structures is the
one shown in figure 5. It can be noted here that there are two
registers mapped with logical 1 which will subsequently be
freed at the same time.

Let us suppose that a series of instructions get decoded,
and after a last instruction, we decide to take another check-
point. This is shown in figure 6. Notice that logical register
1 which was previously mapped to physical 4 and 5 is cur-
rently mapped to physical 6, as noted by the valid bit. Log-

CAM Register Mapping

Physical 1 2 3 4 5 6 7 …

Logical 3 4 2 1 1 1 7 …

Valid 1 1 1 0 0 1 0 …

Future Free 0 0 0 1 1 0 0 …

Free List 0 0 0 0 0 0 1 …

Checkpoint

…

R1 = R4 + R1

Ph6 Ph2 Ph5

Figure 5. State of our CAM Register Mapping
after decoding a second instruction

ical 4 is mapped to physical 7 which implies a change in
the valid bit of two entries (physical 2, the previous map-
ping for logical 4, and physical 7) plus another change in
the Future Free bit4. Then a checkpoint is taken by stor-
ing the Valid and the Future Free bits in our checkpoint ta-
ble. After the checkpoint is taken, all Future Free bits are
cleared.

CAM Register Mapping

Physical 1 2 3 4 5 6 7 …

Logical 3 4 2 1 1 1 4 …

Valid 1 0 1 0 0 1 1 …

Future Free 0 1 0 1 1 0 0 …

Free List 0 0 0 0 0 0 0 …

Checkpoint

…

R4 = R1 + R3

Ph7 Ph6 Ph1

Figure 6. State of our CAM Register Mapping
just prior to another checkpoint

With this checkpoint mechanism we can effectively ex-
ecute in an out-of-order fashion without a ROB like struc-
ture. When instructions arrive at decode phase, a renaming
mechanism like the one explained above takes place. Ev-
ery instruction is associated to the last checkpoint prior to
the instruction. The instruction will carry throughout execu-

4 We have supposed that the intervening instructions modify other en-
tries which are not shown in this diagrams so as to simplify the expla-
nation

tion the index to the checkpoint table where its checkpoint
lives. The checkpoint also remembers how many instruc-
tions are associated to it in a counter. When an instruction
finishes it uses this index to decrease this counter. When
this counter arrives to zero and this particular checkpoint
has no previous checkpoints, we consider that this check-
point has committed and modify the state of the machine to
assert this point (as we will explain shortly).

If by any chance this instruction should except or needed
recovery mechanism, its checkpoint allows the hardware to
restore the state of the machine to the previous checkpointed
instruction and resume after that. Of course, in case of an
exception, the execution from the prior instruction to the
excepting one should be done in a stricter sense. In this sec-
ond pass, the excepting instruction should be checkpointed,
leaving the processor in a precise state for which the oper-
ating system could follow.

Freeing Physical Registers A physical register is normally
freed at commit phase of the following instruction that de-
fines the same logical register as the one to which this phys-
ical register is mapped, since at this exact moment the hard-
ware is sure that all instructions that consumed this regis-
ter must have committed already. In this sense, when an in-
struction defines a particular register, it will have to keep
the previous mapping of this register so as to free it at com-
mit phase.

In our mechanism this is handled by the Future Free bits.
These bits record which registers need to be freed between
checkpoints. When a particular checkpoint commits, it uses
these bits to free the registers associated to its history win-
dow5. Our mechanism increases the lifetime of these reg-
isters, since in a normal ROB mechanism would be freed
beforehand, by their re-defining instructions. In our mech-
anism, they must wait until the following checkpoint gets
committed.

Committing Store Instructions Stores must wait until
commit stage to send their data to memory. This is neces-
sary in order to allow a correct recovery of the architectural
state in case of an exception or a misspeculation. In a nor-
mal microarchitecture the data is stored in the Load/Store
queue until the particular store commits, when it is send
to the cache. Our mechanism behaves very similarly. Data
is kept in the Load/Store queue and when a checkpoint is
committed, all the stores relative to the previous checkpoint
are considered to be safe and are thus sent to memory. This
technique has the drawback of needing a high number of en-
tries in the Load/Store queue. We are currently working on

5 This mechanism does increase register lives and is used here to sim-
plify the overall explanation. Other register managing mechanisms
that allow for an earlier release of registers, thus overall decreasing
register lives, can be combined with our Out-of-Order commit mech-
anism [11]

mechanisms for overcoming the scalability problem caused
by large Load/Store queues, but this is out of the scope of
this paper.

Taking Checkpoints Up to now, we have not explained
when the checkpoints are taken. A particular checkpoint
could be taken every n instructions (n = 1 would mimic
the normal behavior of a ROB like microarchitecture) or af-
ter every specific type of instruction, etc. After some analy-
sis we decided to implement a simple heuristic which works
fine6. We have three different thresholds. The first threshold
takes a checkpoint at the first branch after 64 instructions.
We select branches as good places to take checkpoints so as
to minimize the work done after branch mis-speculation. In
case this threshold is never reached (potentially there could
be hundreds of instructions with no branches) we incorpo-
rated another threshold which explicitly takes a checkpoint
after 512 instructions at whatever instruction appears. Fi-
nally we have another threshold which forces a checkpoint
after 64 stores. As store entries in the Load/Store queue do
not get freed until the checkpoint commits, we must not as-
sociate too many stores to each threshold to prevent dead-
lock. Obviously, as there must always exist a checkpoint for
our mechanism to work, in case of total flush of the pipeline
and the arrival of a new instruction, a checkpoint will be set
prior to it.

3. Slow Lane Instruction Queuing

1168 1382 1607 1868 1955 2034
0

100

200

300

400

500

600

Li
ve

 F
lo

at
in

g
P

oi
nt

 In
st

ru
ct

io
ns

Number of In−flight Instructions

Blocked−Long
Blocked−Short

10% 25% 50% 75% 90%

Figure 7. Distribution of live instructions with
respect to the amount of in-flight instructions
(assuming parameters from table 1 with 2048
ROB entries and 500 cycles to main memory)

6 In future work we expect to analyze a whole set of different strategies
as to when checkpoints should be taken depending on performance or
power goals

In figure 7 we can see the accumulative distribution of
live floating point instructions with respect to the amount of
total in-flight instructions. We consider live those instruc-
tions which are yet to be issued. In order to achieve this fig-
ure, we averaged the results from all SPEC2000fp bench-
marks. Each cycle we compute the total amount of in-flight
instructions (namely the number of instructions in the ROB)
and also the amount of live instructions. We also compute
the amount of cycles each of these situations happened and
showed this relative distribution with percentiles. For ex-
ample, in figure 7 we can see that 25% of the time the ROB
had less than 1382 instructions, 50% of the time less than
1607 instructions, etc. Besides, this figure divides instruc-
tions among short latency instructions and long latency in-
structions, the latter formed by loads that miss in L2 and
any instruction dependent on it or on its dependents. Notice
that a lot of in-flight instructions (appr. 70%-75% instruc-
tions) have finished but can not commit, consuming entries
in the ROB. The mechanism presented in the previous sec-
tion benefits from this by releasing resources that otherwise
would have been locked up for a long time.

On average, the amount of live instructions is much
smaller than the amount of in-flight instructions. From this
figure we can state that, using approximately 500 entries in
the floating point instruction queue, we can cope with over
95% of the scenarios we are going to face. The main ob-
servation here is that, in a processor capable of supporting
2K in-flight instructions, a 512 entry instruction queue is
needed, which is definitely going to affect cycle time [24].
This situation could become worse when having a larger
number of in-flight instructions. Recall that our mechanisms
are pushing for many more instructions. Fortunately, not all
instructions behave the same way.

Some instructions take a very long time to even get is-
sued for execution. Maintaining these instructions in the in-
struction queues just takes away issue slots from other in-
structions that will be executed more quickly. Several pa-
pers have pointed out this same point, such as [18] and [7],
and have definitely profited from it. In section 6 we will dis-
cuss the main differences between our mechanism and these
two previously published papers.

The mechanism we have devised consists on first of all
detecting those instructions which will take a very long time
to get issued for execution. Once detected, our mechanism
move them to a secondary buffer where they would stay un-
til there is any need for them to return to their respective
instruction queue. This movement is what has made us de-
nominate this mechanism Slow Lane Instruction Queuing
(SLIQ).

Several mechanisms have tried to speculate on the im-
portance of instructions and either they have failed to pro-
duce accurate results or they are extremely complex and
with very high costs. This is so because deciding if an in-

Oldest

Newest

t
0

t
2

Ld

x

x

x

a

x

x

x

b

x

Load/Store

Queue

Instruction

Queue

Slow Line

Instruction

Queue

Ld

x

x

x

a

x

x

x

b

x

LD LD

a

b b

b

a

t
1

Ld

x

x

x

a

x

x

x

b

x

LD

a

b

a

t
3

Ld

x

x

x

a

x

x

x

b

x

LD

b

a

t
4

Ld

x

x

x

a

x

x

x

b

x

LD

b

a

a

End

Load

Figure 8. Time example of our SLIQ mecha-
nism

struction is critical at decode stage is extremely complex.
For this reason we have decided to delay the decision un-
til later in the pipeline.

In order to do this, we use a small FIFO-like structure
called pseudo-ROB7. At decode time, instructions are in-
serted both in the instruction queues (which will be very
small and thus fast) and in the pseudo-ROB (cf. Figure 8).
Eventually, instructions will get extracted from this pseudo-
ROB, not because they commit (remember that our Out-of-
Order Commit takes care of committing instructions with
the use of checkpoints), but rather because they are the
oldest of this structure. At the moment of their extraction
we can effectively know if the instruction is a long la-
tency instruction or not. Therefore, the main objective of
the pseudo-ROB is to delay the decision of whether this in-
struction will be executed shortly or will consume a lot of
resources for a long time.

7 This mechanism can be implemented in a normal ROB like structure
but with little change. In our present research we have decided to com-
bine it with our Out-of-Order commit ROB mechanism, which effec-
tively has no ROB

The primary source of long latency instructions are loads
that miss in L2 cache. If a particular load instruction arrives
at the end of this pseudo-ROB with out having produced its
output, we consider it a long latency load.

In the example of figure 8 the load in t0 would also be
considered a long latency one since it has not yet finished
its execution. Any instruction that depends on it will also be
considered a long latency instruction.

Once taken out of the pseudo-ROB we start the computa-
tion of dependencies on this load. This dependency compu-
tation is very simple. We keep a 32 bit register where we as-
sociate each bit to a logical register. This bit mask starts all
cleared except for the destination register-bit of the long la-
tency load. When a instruction is extracted from the pseudo-
ROB, it will incorporate its destination register into this bit
mask if it consumes any register from it, since this instruc-
tion is dependent on the load and so will be any instruc-
tions that consume its destination register. Registers (bits)
get cleared when non-dependent instructions redefine those
registers. This simple mechanism is heavily used in com-
piler construction[1].

Dependent instructions computed this way are removed
from the general purpose instruction queue and stored in
order in a secondary buffer, called Slow Lane Instruction
Queue (SLIQ), freeing entries from the instruction queue
for short latency operations. This can be seen in figure 8 in
the time moments t1 and t2 when instructions a and b, de-
pendent on the load get moved into the SLIQ8.

In order to simplify the wakening of these instructions,
we associate the destination register of the long latency load
to the corresponding entry of the SLIQ. This destination
register microarchitecturally seems a better place to track
the finishing of the instruction. When this register gets its
value, a process of wakening the dependent instructions be-
gins. This wakening is done at a pace of 4 instructions per
cycle, with a starting penalty of 4 cycles. This is due to the
need of re-compute the availability of their source operands
before inserting again these instructions into the instruction
queue.

In figure 8 at t3 we can see that the load finishes its ex-
ecution and how the instructions get inserted back into the
window (in this example only one at a time). However, it
could happen that a second long latency load is resolved
while the instructions dependent on the first one are still be-
ing processed. Two different situations can happen. If the
new load is younger than the instructions being processed,
it will be found by the wakening mechanism. After that, the
mechanism could continue, placing the instructions depen-
dent on any of the two loads in the instruction queues, al-

8 Microarchitecturally we believe that it would be simpler to invalidate
entries in the instruction queue and to insert into the SLIQ from the
pseudo-ROB, but for clarity in the examples we are going to assume
that instructions are moved from the instruction queue to the SLIQ

though always 4 at a time. If the new load is older that the in-
structions being processed, it will not be found by the wak-
ening process, so a new wakening process should be started
for the second load.

Finally, an additional advantage of the pseudo-ROB is
reducing the misprediction penalty of branch instructions.
Since our out-of-order commit mechanism removes the
ROB, mispredicted branches force the processor to return
up to the previous checkpoint, which is potentially some
hundred instructions behind. The information contained in
the pseudo-ROB allows to recover from branch mispredic-
tions without needing to use a far checkpoint, whenever the
branch instruction is still stored in the pseudo-ROB.

4. Experimental Results

The two mechanisms presented in the previous sections
cover two of the most crucial resources when dealing with
thousands of in-flight instructions. As they do not impose
restrictions on one another, they are easily combined to-
gether. In this section we present the experimental frame-
work and the results obtained for this combination of mech-
anisms which will probe its efficiency and power awareness.

Microprocessor Baseline

Simulation strategy Execution-driven

Issue policy Out-of-order

Fetch/Commit width 4 insns/cycle

Branch predictor 16K history gshare

Branch predictor penalty 10 cycles

I-L1 size 32 KB 4-way, 32 byte line

I-L1 latency 2 cycles

D-L1 size 32 KB 4-way, 32 byte line

D-L1 latency 2 cycles

L2 size 512Kb 4-way, 64 byte line

L2 latency 10 cycles

Memory latency 1000 cycles

Memory ports 2

Physical registers 4096 entries

Load/Store Queue 4096 entries

Integer Queue 4096 entries

Floating Point Queue 4096 entries

Reorder Buffer 4096 entries

Integer General Units (lat.) 4 (lat/rep 1/1)

Integer Mult/DIV Units (lat.) 2 (lat/rep 3/1 and 20/20)

FP Functional Units (lat.) 4 (lat/rep 2/1)

Table 1. Architectural parameters

In table 1 we can see a summary of the microarchi-
tectural configuration of our simulated baseline architec-

ture. The benchmark suite used for all the experiments is
SPEC2000fp, averaging over all the applications in the
set. All benchmarks have been simulated 300 million rep-
resentative instructions, where representativeness has been
determined following [28].

0

0.5

1

1.5

2

2.5

3

3.5

512 1024 2048

Slow Lane Instruction Queue

IP
C

COoO 32
COoO 64
COoO 128
Baseline

Baseline 4096

Baseline 128

Figure 9. Main performance results

Figure 9 shows the main performance results of our
Commit Out-of-Order Processor. This figure presents 3
groups of 4 bars each plus two reference lines across the fig-
ure. The reference lines correspond to our baseline proces-
sor with a reorder buffer and instruction queues having 128-
entries (lower line) and 4096-entries (upper line). Each set
of bars groups simulations according to the amount of SLIQ
entries in the case of our mechanism or General Purpose In-
struction Queue entries in the case of the baseline (which is
clearly unrealistic to implement with current technology).
The bars COoO 32, COoO 64, and COoO 128 correspond
to our processor organization having a pseudo-ROB and in-
struction queues of 32, 64 and 128 entries respectively. In
all cases the Out-of-Order commit processor has a check-
point table with only 8 entries.

Several conclusions can be drawn from this figure. For
instance, even the simplest processor having only a 8-entry
checkpoint table, and 32-entry pseudo-ROB and IQ and 512
SLIQ buffer outperforms by a significant margin (about
110%) a conventional processor with 128-entry ROB and
IQ (the lower reference line). If we consider a more com-
plex processor (e.g. 8-entry checkpoint table and 128-entry
pseudo-ROB and IQ and 2048 SLIQ buffer the difference in
performance grows up to 204%. Notice that our mechanism
always suffers a penalty with respect to the unrealistic base-
line bar (white bar on the right of each group), which shows
always a higher IPC. However, our proposal is in all cases
significantly close to this unrealistic baseline with a frac-
tion of the cost. We must take into consideration that hav-
ing an instruction queue of 2048 entries is impossible with

present day technology. Nevertheless, having a SLIQ of that
size is possible since this kind of secondary memory does
not need wakeup logic and its selection logic is very sim-
ple (linearly from one point, contrary to normal selection
logic which is totally associative).

In the third set the differences are the biggest. But it is
roughly a 9% from 128 entries in our Instruction Queue to
the 4096 entry queue of the baseline, which is of course a
theoretical limit since we believe this structure can not be
built without impacting cycle time. The main problem here
is if our secondary buffer, the SLIQ, which is definitely sim-
pler than an instruction window, can be built of that size.

0

0.5

1

1.5

2

2.5

3

32 64 128

IP
C

1
4
8
12

Figure 10. Sensitivity of our model to the de-
lay of re-insertion of instructions from the
SLIQ to the Instruction Queue

Fortunately for us, the data presented in figure 10 makes
us believe so. This figure shows results for configurations
with a 1024-entry SLIQ and 32, 64 and 128 pseudo-ROB
and IQ entries. For each bar group we vary the number of
cycles to re-insert instructions from the SLIQ to the instruc-
tion queue (1, 4, 8 and 12 cycles respectively), to analyze
how sensitive is the mechanism respect to the latency from
when the long latency instruction finishes till we start re-
inserting the dependent instructions back in the window. As
can be seen, we are not sensitive to this parameter. Even
a 12 cycle latency only produces a negligible 1% slow-
down. This roughly means that we can effectively use a very
slow secondary buffer in parallel with our mechanism with
hardly any penalty at all.

Figure 11 shows the average amount of in-flight instruc-
tions in both our proposal and the baseline (baseline as-
sumes that the queues have been restricted to the size shown
in the axis). The bars and reference lines correspond to the
same configurations as Figure 9. The experiments in this
figure show that our out-of-order commit processor is ef-
fectively allowing for a very big amount of in-flight in-

0

500

1000

1500

2000

2500

3000

512 1024 2048

Slow Lane Instruction Queue

In
-f

lig
ht

 In
st

ru
ct

io
ns

COoO 32
COoO 64
COoO 128
Baseline

Baseline 4096

Baseline 128

Figure 11. Average amount of in-flight in-
structions in our Commit Out-of-Order pro-
cessor

structions. Remember that all these in-flight instructions are
achieved with just 8 checkpoint entries, whose total hard-
ware cost is minimal. This figure even shows that in cer-
tain situation, such as 128 entries in the Instruction queue
with 2048 in the SLIQ we have even more in-flight instruc-
tions than the baseline which has a higher amount of hard-
ware devoted to this. Although this may seem positive to our
mechanism, we believe it may have a dual positive-negative
effect. On one side it allows for more in-flight instructions
from where to extract ILP. On the other side it is effectively
increasing the number of instructions from wrong paths be-
ing executed. At the moment we are analyzing how to sep-
arate both effects to get the best out of our mechanism.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32 64 128 32 64 128 32 64 128

512 1024 2048

Stores
Long Lat. Loads
Finished Loads
Short Lat.
Finished
Moved

Figure 12. Breakdown of the type of instruc-
tions retired from the pseudo-ROB structure
depending to the different architectural con-
figuration parameters

In figure 12 we can see the percentual breakdown of
which instructions get retired from the pseudo-ROB struc-

0

0.5

1

1.5

2

2.5

3

3.5

IP
C

Limit
4
8
16
32
64
128

Figure 13. Sensitivity of our commit mecha-
nism to the amount of available checkpoints
(2048 entry IQ and 2048 physical registers)

ture. The bars correspond to the configurations for our pro-
posal used along this section (i.e. SLIQ have 512, 1024 and
2048 entries, and pseudo-ROB and IQ have 32, 64 and 128
entries). The 6 sections on each bar correspond to the status
of the instructions when are retired from the pseudo-ROB,
which from bottom to top are:

Moved corresponds to the percentage of instructions that
are moved from the IQ to the SLIQ. Notice that the
moved represent a relatively small percentage (20 to
30 %) but they require most of the storage space (thats
why the IQ varies from 32 to 128 and the SLIQ from
512 to 2048).

Finished corresponds to the instructions that have already
completed their execution. Actually, this group of in-
structions has so small latency they they are already
executed when retired.

Short Lat. corresponds to instructions that although not
yet executed, they have short latency or depend on
short latency instructions. Therefore this group of in-
structions is expected to finish in a few cycles and they
remain in the IQ.

Finished Loads are the loads that have already finished or
that have hit in L1 or L2.

Long Lat. Loads are loads that miss in L2. Notice that
this group correspond to about 10% of the instructions
which are the cause of the problem.

Stores corresponds to the store instructions.

Notice that some amount of short latency instructions
get traded for moved instructions when the pseudo-ROB
size increases. This effect is due to the fact that in our ex-
periments we have always set the same size for both the
pseudo-ROB and the small instruction queue. Having big-
ger pseudo-ROBs allows for more instructions to get exe-
cuted before leaving the window.

0

0.5

1

1.5

2

2.5

3

3.5

512 1024 2048 512 1024 2048 512 1024 2048

100 500 1000

Virtual Tags
Memory Latency

IP
C

256
512

Limit 4096

Limit 4096

Limit 4096

Baseline 128

Baseline 128

Baseline 128

Figure 14. Combining different techniques

In figure 13 we can see the IPC obtained with different
numbers of checkpoints. The limit bar shows IPC results ob-
tained when considering ROB of 4096 entries, which is mi-
croarchitecturally unfeasible. This limit helps us show how
near we are of a pseudoperfect mechanism which does not
take into account complexity. Having only 4 checkpoints
produces just a 20% slowdown. If we increase to 8 check-
points this slowdown decreases to only 9% and from 32 on-
wards the slowdown is just a 6%. This 6% slowdown with
256 times less entries is clearly spectacular.

5. Towards affordable Kilo-Instruction Pro-
cessors

In this paper we have extensively analysed two tech-
niques that allow for future processors to have thousands of
in-flight instructions, also known as kilo-instruction proces-
sors. These two techniques attack two problems, the ROB
and the Instruction Queues using the same philosophical ap-
proach, locality.

Our replacement for the ROB, which is composed of the
checkpointing mechanism plus the pseudo-ROB structure,
is based on the locality of the instructions. Most recent in-
structions which a higher probability of mis-speculation are
kept on the pseudo-ROB, while the checkpointing mecha-
nism handles the instructions afterwards, once the locality
effect has gone away. This allows for a higher number of in-
flight instructions. Something similar happens in our SLIQ
mechanism, where instructions are kept into two different
queues with different microarchitectural needs depending
on the expected delay of the instruction.

This same approach can also be followed with the other
two resources involved in the problem of allowing thou-
sands of in-flight instructions. In figure 14 we can see
the combination of a modification of the two techniques
presented in this paper with a register mechanism called
Ephemeral registers [19, 9] which proposes an aggressive

delayed register allocation combined with early register re-
cycling in the context of Kilo-Instruction Processors.

Figure 14 is divided into three zones, each of them com-
prising the results for different memory latencies (100, 500
and 1000). Each group is composed of three sets of two
bars. Each of the sets assumes an increasing amount of Vir-
tual Registers. The two bars of each group represent the IPC
with 256 or 512 physical registers. Each zone has also two
lines which represent the baseline performance when 128
ROB entries are assumed and also the Limit one, in which
all the resources have been up-sized with no constraints.
This Limit microarchitecture is unfeasible, but it helps us
understand how well our mechanisms are behaving, since it
acts as an upper bound. It can be noted that kilo-instruction
processors are an effective way of approaching this limit in
an affordable way.

6. Related Work

Several studies analyze the impact of memory latency
and the future expectations for processors with thousands
of in-flight instructions [15]. In [5] another study is con-
ducted that compares prefetching and local optimizations
regarding bandwidth requirements. This study concludes
that even very big latencies (up to 640 cycles) can be toler-
ated if the processor has enough bandwidth. Similar conclu-
sions are exposed in [25] in the context of numerical appli-
cations using stream buffers and prefetching. Other studies
[32] analyze the tolerance of loads to latency and the differ-
ent relation among issue width, Load/Store queue size and
ROB size. In another approach, [29] the relation between
branch predictors, the amount of in-flight instructions, and
the cache size is analyzed. They conclude that in numerical
applications having over 256 in-flight instructions still de-
livers performance due to the good branch speculation that
these kind of applications have.

Many techniques have been proposed to create large
ROB and instruction queues, such as the multiscalar pro-
cessor [31], the trace processor [27], and the DMT archi-
tecture [2]. These architectures allow speculative execution
of a large number of instructions. In [6], a method to exe-
cute a large number of instructions with a small ROB and a
reduced number of physical register is presented. There are
other papers dealing with the performance optimization of
memory consistency models for shared memory multipro-
cessor systems [26, 12] that are also related to our work. In
[26] the authors analyze the memory consistency model in
the presence of loads in large ROBs. They propose a mech-
anism that retires instructions from the ROB to some sort
of history buffer when some conditions are met. If a con-
flict occurs, the history buffer is used to restore the previous
context.

There are many papers dealing with registers manage-
ment in superscalar processors. In [22], the authors propose
a mechanism that allows early recycling of registers, while
at the same time providing precise exceptions. In [21], a
technique that delays allocation of physical registers to in-
structions to the execution stage is presented. The mech-
anism uses tags, named virtual registers, to keep track of
dependences between instructions and to convert these tags
into real physical registers when the instruction produces its
result.

In the area of instruction queues for large numbers of
in-flight instructions [18] and [7] have made important con-
tributions. [18] presents a mechanism for detecting long la-
tency operations, namely, loads that miss in L2 as in our
present research, and move dependent instructions into a
Waiting Instruction Buffer (WIB) where they reside until
the load completes. It also maintains a bit vector to deter-
mine the completion of the different loads on which the
long latency instructions may depend. In [7], the authors
propose to insert all instructions into a slow but large in-
struction queue first. Thereafter, when the oldest instruc-
tions in the IQ are determined not to have executed, they
are moved into a smaller but faster instruction queue, for
they assume that these instructions are always on the criti-
cal path. However, both approaches require a wake-up and
select logic which might be on the critical path [24], thus
potentially affecting cycle time.

In [8], it is shown that, in the pursuit of large numbers
of in-flight instructions to tolerate long memory latencies in
current out-of-order processors, resources identified as crit-
ical, such as ROB, Instruction Queues, and Physical reg-
isters, are heavily underutilized. The authors advocate that
better use of these resources should be a priority for future
research in processor architecture and they provide some di-
rections. Similar observations about the use of some critical
resources in processors with large numbers of in-flight in-
structions have also been made in [16].

A different approach is using checkpointing. In [14] the
authors propose a recovery mechanism based on maintain-
ing multiple checkpoints of the architectural register file. In
[30] several mechanisms to support precise exceptions are
presented.

To our knowledge, the next two independent papers are
the first ones to propose to use checkpointing instructions as
an efficient way to control and manage the use of critical re-
sources inside the processor. In [11], the authors propose
the use of a mechanism to checkpoint critical long latency
instructions, which allows to create a very large ROB us-
ing a small physical one. This multi-checkpointing mecha-
nism is also used to release instructions from the ROB early
which essentially makes the classical ROB unnecessary. It
is also used to release physical registers early, improving
the mechanism previously proposed in [22], and to release

load instructions early from the load-store queues.
At the same time as the previous work, [20] proposes

Cherry which is based on a single checkpointing of the
ROB, where they identify the instructions that are not sub-
ject to misspeculation. In this region, Cherry is able to re-
lease registers and load-store entries early, providing quick
recovery from frequent replay events using the ROB, and
precise exception handling using checkpointing.

In [9] and [19], an integrated mechanism that combines
the checkpointing procedure for multi-chekpointing and
Cherry, respectively, with late allocation and early release of
physical registers is presented. The synergy between these
three techniques allows to reduce the number of physical
registers required to maintain a huge number of in-flight in-
structions optimally.

In [10] the authors present the design and evaluation of
what they coined kilo-instructions processors as a way to
efficiently deal with future high memory latencies. They
present several techniques to deal with the optimal manage-
ment of the processors´s critical resources. The architecture
has no ROB, organizes the Instruction Queues in a two-level
implementable hierarchy and use multicheckpointing, late
allocation and early release of registers to reduce at maxi-
mum the need for physical registers. The authors advocate
that kilo-instructions processors could be a reality in a near
future.

In [23] on the other hand, what the authors propose is
when a load miss reaches the head of the ROB, a checkpoint
of the architectural state is created, and the processor start
executing in a special mode from where to extract knowl-
edge for the second non-speculative pass where this knowl-
edge from branches and loads already pre-issued. This piece
of work follows the conceptual path of [6]. At the time we
were writing the final version of this paper for the confer-
ence proceedings, we received reference [3]. The latter pa-
per presents mechanisms similar to those presented in [3],
[20] and [10], and moreover a new and intelligent way of
dealing with load-store queues.

7. Conclusions

In order to tolerate increasing memory latencies,
a large number of in-flight instructions must be man-
tained. To support more in-flight instructions several
resources must be up-sized. Examples of such critical re-
sources are the ROB, the general purpose instruction
queues, the Load/Store queue and the number of physi-
cal registers. However increasing the number of entries
of these resources is impractical because of area, ac-
cess time, and power consumption issues.

In this paper we propose new microarchitectural struc-
tures that have a much lower need of resources. In particular
we propose a checkpointed based commit mechanism and a

Slow Lane Instruction Queuing mechanism. With these two
proposals it is possible to implement the functionality of a
big ROB and big instruction queues, requiring a reduced
number of entries.

With these two mechanisms, our processor has a perfor-
mance degradation of only 10% over a conventional pro-
cessor with 4096 entries ROB and instruction queues. In
comparison our processor requires only a 128-entry pseudo-
ROB, 128-entries instruction queues, and a low cost 2048-
entry SLIQ (which can actually be implemented as a RAM)
much cheaper than a conventional instruction queue with
the same entries. At the same time, our processor has an in-
crease in performance of 204% relative to a conventional
processor with both structures having 128 entries.

8. Acknowledgements

The authors wish to thank José F. Martı́nez for his com-
ments and ideas during the development of this work and to
Sriram Vajapeyam and Oliver Santana for the help during
the writting of this paper. The authors are also very thank-
ful to the reviewers for their extensive comments that have
helped to produce a better paper. This work has been sup-
ported by the Ministry of Science and Technology of Spain,
under contract TIC-2001-0995-C02-01 and by the CEPBA.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading,
Mass., 1986.

[2] H. Akkary and M. Driscoll. A dynamic multithreading pro-
cessor. In Proceedings of the 31st Annual International Sym-
posium on Microarchitecture, pages 226–236, Dallas, Texas,
Nov. 1998.

[3] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint
processing and recovery: Towards scalable large instruction
window processors. In Proceedings of the 36nd annual
ACM/IEEE international symposium on Microarchitecture.
IEEE Computer Society, Dec. 2003.

[4] C. Asato, R. Montoye, J. Gmuender, E. Simmons, A. Ike,
and J. Zasio. A 14 port 3.8ns 116 64b read-renaming regis-
ter file. In 1995 IEEE International Solid-State Circuits Con-
ference Digest of Technical Papers, Feb. 1995.

[5] A.-H. Badawy, A. Aggarwal, D. Yeung, and C.-W. Tseng.
Evaluating the impact of memory system performance on
software prefetching and locality optimizations. In Proceed-
ings of the 15th International Conference on Supercomput-
ing, pages 486–500. ACM Press, June 2001.

[6] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Dy-
namically allocating processor resources between nearby
and distant ilp. In Proceedings of the 28th Annual Interna-
tional Symposium on on Computer Architecture, pages 26–
37. ACM Press, July 2001.

[7] E. Brekelbaum, J. Rupley, C. Wilkerson, and B. Black. Hier-
archical scheduling windows. In Proceedings of the 35th An-
nual ACM/IEEE International Symposium on Microarchitec-
ture, pages 27–36. IEEE Computer Society Press, Nov. 2002.

[8] A. Cristal, J. Martı́nez, J. Llosa, and M. Valero. A case
for resource-conscious out-of-order processors. In Computer
Architecture Letters, volume 2, Oct. 2003. MEDEA - Mem-
ory Performance: Dealing with Applications, Systems and
Architecture, Sept. 2003. Technical Report UPC-DAC-2003-
45, July 2003.

[9] A. Cristal, J. Martı́nez, J. Llosa, and M. Valero. Ephemeral
registers with multicheckpointing. Technical Report UPC-
DAC-2003-51, UPC, Oct. 2003.

[10] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Kilo-
instruction processors (invited paper). In Proceedings of 5th
International Symposium of High Performance Computing -
LNCS 2858, pages 10–25. Springer, Oct. 2003.

[11] A. Cristal, M. Valero, A. Gonzalez, and J. Llosa. Large
virtual robs by processor checkpointing. Technical Report
UPC-DAC-2002-39 (Submitted to Micro 35), Universidad
Politécnica de Cataluña, Department of Computer Architec-
ture, July 2002.

[12] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP
= RC? In Proceedings of the 26th Annual International
Symposium on Computer Architecture, pages 162–171, At-
lanta, Georgia, May 1999. IEEE Computer Society TCCA
and ACM SIGARCH. Computer Architecture News, 27(2),
May 1999.

[13] J. Hennessy and D. Patterson. Computer Architecture. A
Quantitative Approach. Second Edition. Morgan Kaufmann
Publishers, San Francisco, 1996.

[14] W. Hwu and Y. N. Patt. Checkpoint repair for out-of-order
execution machines. In Proceedings of the 14th Annual In-
ternational Symposium on Computer Architecture, pages 18–
26. ACM Press, June 1987.

[15] N. P. Jouppi and P. Ranganathan. The relative importance
of memory latency, bandwidth, and branch limits to perfor-
mance. In Workshop of Mixing Logic and DRAM: Chips that
Compute and Remember. ACM Press, 1997.

[16] T. Karkhanis and J. E. Smith. A day in the life of a data cache
miss. In Workshop on Memory Performance Issues, in con-
junction with ISCA, May 2002.

[17] J. Keller. The 21264: A superscalar Alpha processor with
out-of-order execution. In 9th Annual Microprocessor Fo-
rum, San Jose, California, Oct. 1996.

[18] A. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Roten-
berg. A large, fast instruction window for tolerating cache
misses. In Proceedings of the 29th Annual International
Symposium on Computer Architecture, pages 59–70. IEEE
Computer Society, May 2002.

[19] J. Martı́nez, A. Cristal, M. Valero, and J. Llosa. Ephemeral
registers. Technical Report CSL-TR-2003-1035, Cornell
Computer Systems Lab, June 2003.

[20] J. Martı́nez, J. Renau, M. Huang, M. Prvulovic, and J. Torrel-
las. Cherry: checkpointed early resource recycling in out-of-
order microprocessors. In Proceedings of the 35th Annual
ACM/IEEE International Symposium on Microarchitecture,
pages 3–14. IEEE Computer Society Press, Nov. 2002.

[21] T. Monreal, A. González, M. Valero, J. González, and
V. Viñals. Delaying physical register allocation through
virtual-physical registers. In Proceedings of the 32nd an-
nual ACM/IEEE international symposium on Microarchitec-
ture, pages 186–192. IEEE Computer Society, Nov. 1999.

[22] M. Moudgill, K. Pingali, and S. Vassiliadis. Register re-
naming and dynamic speculation: an alternative approach.
In Proceedings of the 26th Annual International Symposium
on Microarchitecture, pages 202–213. IEEE Computer Soci-
ety Press, Dec. 1993.

[23] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead ex-
ecution: An alternative to very large instruction windows for
out-of-order processors. In Proceedings of the 9th Interna-
tional Symposium on High-Performance Computer Architec-
ture, Anaheim, California, Feb. 2003.

[24] S. Palacharla, N. Jouppi, and J. Smith. Complexity-effective
superscalar processors. In Proceedings of the 24th Inter-
national Symposium on Computer Architecture, pages 206–
218. ACM Press, June 1997.

[25] D. Pressel. Fundamental limitations on the use of prefetch-
ing and stream buffers for scientific applications. In Pro-
ceedings of the 2001 ACM Symposium on Applied comput-
ing, pages 554–559. ACM Press, Mar. 2001.

[26] P. Ranganathan, V. Pai, and S. Adve. Using speculative re-
tirement and larger instruction windows to narrow the per-
formance gap between memory consistency models. In Pro-
ceedings of the 9th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 199–210. ACM Press,
June 1997.

[27] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace
processors. In Proceedings of the 30th Annual International
Symposium on Microarchitecture, pages 138–148, Research
Triangle Park, North Carolina, Dec. 1997.

[28] T. Sherwood, E. Perelman, and B. Calder. Basic block dis-
tribution analysis to find periodic behavior and simulation
points in applications. In Proceedings of the Intl. Confer-
ence on Parallel Architectures and Compilation Techniques,
pages 3–14, Sept. 2001.

[29] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark. Branch
prediction, instruction-window size, and cache size: Perfor-
mance trade-offs and simulation techniques. In IEEE Trans-
actions on Computers, volume 48, pages 1260–1281. IEEE
Computer Society, Nov. 1999.

[30] J. E. Smith and A. R. Pleszkun. Implementing precise inter-
rupts in pipelined processors. In IEEE Transactions on Com-
puters, volume 37, pages 562–573. IEEE Computer Society,
May 1988.

[31] G. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar pro-
cessors. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 414–425, Santa
Margherita Ligure, Italy, June 1995. ACM SIGARCH and
IEEE Computer Society TCCA. Computer Architecture
News, 23(2), May 1994.

[32] S. Srinivasan and A. Lebeck. Load latency tolerance in
dynamically scheduled processors. In Proceedings of the
31st Annual International Symposium on Microarchitecture,
pages 148–159, Dallas, Texas, Nov. 1998.

