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OUT-OF-PLANE BUCKLING OF SOLID RIB ARCHES 

BRACED WITH TRANSVERSE BARS

Tatsuro SAKIMOTO* and Yoshio NAMITA* *

SYNOPSIS 

The out-of-plane buckling of a circular arch is 
studied. The arch is composed of two main ribs 
braced with transverse bars and is subjected to 
uniformly distributed radial forces (see Fig. 1) . 
The analysis is carried out by means of transfer 
matrix method and both the field matrix of arched 
rod and point matrix are presented. Attention is 

given to the influences of the flexural rigidity, the 
number and the location of bracing bars on the 
buckling strength of arches. Buckling coefficients 
for various types of arch are calculated by trial 
and error method. Useful suggestions about the 
bracing method are obtained from the results of 
computations. The theoretical analysis is followed 

by model tests in order to verify the results of 
computation. 

1 . INTRODUCTION 

The out-of-plane buckling of arches means, in 
this paper, an elastic buckling which occurs with 
both lateral flexure and torsion simultaneously 
under mainly axial thrust. As is well known, the 
lateral-torsional buckling is one of dominant insta-
bility problems of slender arch bridges. In order 
to design a slender arch bridge as an economical 
and safe structure, it is necessary to give it enough 
lateral stability. In ordinary arch bridges of parallel 
double arches, the two arched ribs are usually 
braced either with a truss or with transverse bars 
in order to give them a sufficient lateral rigidity. 
These bracings will be more effective for the dou-
ble arches which are not stable when considered 

separately. 
L. Ostlund3) and G. Wastlund4) investigated late-

ral stability of bridge arches braced with transverse 
bars in comparison with the lateral buckling of

straight bars braced with battens . Various factors 
about the transverse bars are discussed and many 
important qualities are reported . The equation for 
the deformation of the arch, hewever, is not des-
cribed with enough strictness. 

S. Kuranishi2) studied the lateral-torsional buc-
kling of two-hinge circular arch bridges, composed 
of two main arched girders, cross beams and lateral 
bracing, loaded by uniformly distributed vertical 
forces. Buckling coefficients of arches with flexible 
cross bars are computed by means of strain energy 
method. Besides, a reduction factor for torsional 

rigidity of the main arched girder due to the flexi-
bility of transverse bars are obtained, but effects 
due to discontinuity of cross bars are not conside-
red. 

One of the authors1) presented a fundamental 
equation for deformation of a curved rod and em-

ployed it to an analysis of out-of-plane buckling 
of single arch. In this paper, employing transfer 
matrix method to this fundamental equation, the 
authors describe the out-of-plane buckling of double 
arches braced with transverse bars. By means of 

this method, the buckling problem of double arches 
braced with arbitrary number of transverse bars in 
arbitrary location can be analyzed. 

2. THEORETICAL STUDY 

( 1 ) Assumptions 

 A part of an arch cut off by two adjacent points 
will be called an element of arch, and the displace-
ments of the arches are described by the position 
of the centroids of their cross sections. The funda-
mental equations and extended formulations are 
derived on the following assumptions and idealiza-

tions. 
1) The cross section of arched rib is bisymmetri-

cal and uniform within each element. The arch of 
nonuniform cross section may be analyzed after 
dividing it into uniform elements of adequate leng-
th. 2) The warping rigidity and the effect of polar 
moment of inertia of arched ribs are disregarded. 
3) Centroidal axes of the arches are inextensible.
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(a) Double arches with transverse bars (b) Section t-t

4)  Uniformly distributed radial forces, p, are loa-

ded at the centroids of cross sections of arched 

ribs. 5) The forces do not change their directions 

during the process of buckling (see Fig. 1 (b)). 

6) The connection between arched ribs and trans-

verse bars are completely rigid. 7) Influence of 

shear forces of transverse bars upon the buckling 

load is disregarded. 

( 2 ) Fundamental Equation and its Solution 

Through consideration of an equilibrium of stress 

resultants and external forces acting on the i-th 

element of arched rib, following simultaneous diffe-

rential equations with respect to the lateral defle-

ction, α, and the torsional angle of cross section,

β, can be derived(see Ref,1) Eq.(30)).

That is,

(  1  )

where λi=pR3/EJi, mi=GIi/EJi and a prime supe-

rscript denotes one differentiation with respect to

angular coordinate, θ. The symbols EJi and GIi

are flexural rigidity about  out-of-plane bending and 

torsional rigidity of the i-th element, respectively. 

General solutions of these governing equations take 

different forms in compliance with the sign of 1-

λi/mi and are givenas follows:

for 1-λi/mi＜0,

(  2  )

in which

(3)

and ( 4 )

(The solution for 1-λi/mi＞0 can be obtai-

ned similarly, and omitted here.) 

The symbols  EJ0 and GI0 denote the fle-

xural rigidity and torsional rigidity of arched 

rib at the arch crown, respectively. Out-of-

plane bending moment, M, torsional moment, 

T, and shear force directed outwards the arch

plane, Q, are expressed in terms of displacements 
as follows

( 5 )

Substituting Eq. (2) into Eq. (5), and denoting 
the non-dimensional quantities, TRIGlo, MR/G10 
and QR2/GI0 by the symbols T, M and Q, respe-
ctively, Eq.(5) yields for 1-λi/mi＜0,

(6)

(  3  ) Derivation of Field Matrix

First, 1et us take α, α',β, T, M and Q as the

elements of state vector  Zi. That is,

( 7 )

in column vector form. This state vector, Zi, can be 

related to the arbitrary constant, Ci, in matrix form 

as follows :

( 8 )

Hence, the state vector of intersection points i - 1 

and i will be expressed as

( 9 )

and

(10)

Solving Eq. (9) with respect to C and substituting

Fig. 1 General view
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it into Eq. (10) yields

(11)

in which

(12)

and the subscripts L and R denote the  left-hand 
side and the right-hand side of each intersection 

point, respectively. For the convenience of expla-
nation, let us express the field matrix in simple 
notations of square submatrices of order 3 as f oll-
ows :

(13)

In the above discussion, attention is paid to one of 

the double ribs. Then, in order to transfer the 

quantities of both rib- I and rib-II simultaneously, 

let us take the column vector,

(14)

as the state vector of the intersection point i, 

where the symbols with the subscripts I and II 

indicate the quantities with respect to rib- I and 

rib-II, respectively. The overall relation between 

the state vector of the intersection point i and that 

of the intersection point i-1 will be given by

(15)

where

(16)

(4) Derivation of Point Matrix 

First of all, let us imagine that the transverse 

bars are connected to the arched rib as one of the 

principal axes of transverse bar is always horizontal 

(see Fig. 2(c)) and only the flexural rigidity with

(a)

(b) Section t-t

(c)

respect to the horizontal principal axis is considered 

(let us call Type-V). Considering an arbitrary 
transverse bar cut off like what illustrated in Fig. 
2, the relation between the flexural moments of 
transverse bar, ICIA and MB, and the deformations
of arched rib,α' and β, is shown as

in which the symbols a,  Eli and -ei denote the 
distance between rib-I and rib-IL, flexural rigidity 
of i-th transverse bar and the angle between a 
horizontal line and the radius A-0, respectively. 
The equilibrium equations around the point A are

(18)

and QIR=QIL.
As for the rib-II, in the same manner, the equili-

brium equations are :

(19)

and QIIR =_QIIL.
The deformations α, α' and β will hold continuity

from the left-hand side to the right-hand side of 

the intersection point i.Then, substituting Eq. (17) 

into Eqs. (18) and (19), and introducing non-dime-

nsional quantity, ri = EJi/GI0•ER/a, yield

(20)

where

(21)

(22)

By the way, when the transverse bar is connected 

to the arched rib ars one of the principal axes of 

transverse bar is perpendicular to the longitudinal 

axis of arched rib (let us call Type-P), the subm-

atrices, X and Y, of Eq. (21) will be obtained
Fig. 2 Equilibrium around an i-th transverse 

bar (Type-V)
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(a) (b)

(c)

(  d  )

as follows after a similar deduction shown above 

(see Fig. 3) . In this case, both the flexural rigidity 

with respect to x-axis, EJx, and that with respect 

to y-axis. EJy, are considered. That is,

(23)

where

(24)

( 5 ) General Procedure of Transfer Matrix 

Substituting Eq. (15) into Eq. (20) yields
(25)

Repeating this procedure from point to point, the 

state vector of the right-hand end of the arch can 

be related to that of the left-hand end of the arch. 

That is,

(26)

The matrix T takes usually a square matrix form of 

order 12 and each element contains the buckling 

coefficient, ƒÉ, as an unknown variable. 

( 6 ) Boundary Conditions and Coefficient 

Determinant 

Two sorts of boundary conditions are considered. 

First, when the both arch ends are rigidly fixed, 

the boundary conditions are

(27)

Substituting Eq. (27) into Eq. (26) yields six hom-

ogeneous equations. For non-trivial solution of 

these equations, the determinant of the coefficients 

must be zero. Hence, the buckling condition is

(28)

The lowest positive value satisfying this condition 

is the critical value of ƒÉ. Next, when the both arch 

ends are hinged, the boundary conditions are

(29)

Substituting Eq. (29) into Eq. (26) , in the same 

manner shown above, yields the buckling condition 

of this case. 

( 7 ) Numerical Procedure and Some Proble-

ms 

The solution of Eq. (28) is obtained by means 

of trial and error method as a value of ƒÉj which

satisfies the relation D(λj)・D(λj+⊿ λ)≦0, where

⊿λ is the buckling-coefficient increment. As for the

magnitude of ⊿λ, the larger the better for shorte-

fling the computation time, but a large increment 

involves a risk of failing to catch the positive-mini-

mum solution. Since even a small increment, ⊿λ,

will produce a large and sharp fluctuation of D(λ),

particularly in the region near the solution, special 

attention must be paid in determining the magni-

tude of ‡™ƒÉ. Further, with respect to a certain com-

bination of the values, m and λ, the value of D(λ)

may fail to vanish at where it must be zero, owing 

to the accumulated errors and lack of significant 

digits. This deficiency was conquered by tracing

the value of D(λ) and the missing solutions were

presumed from the shape of the curve of D(λ).

Fig. 3 Transverse bar of Type-P

Table 1 Connecting direction of transverse bar

Type-V

Type-P

Type-L
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( 8 ) Results and Consideration 

Several numerical examples are shown below. 

Since the symmetrical buckling of first mode will 

give the smallest critical value, all computations 

were performed about it. In these numerical 

examples, the cross sections of the main ribs are 

constant through the arch span and all the transverse 

bars of each intersection point have same cross

section, and further central angle, θ0, of the arch

is right angle for all cases. Accordingly, νi=μi=1

(a) m=0.01

(b) m=0.1

(c) m=0.5

(d) m=1.0

and ri (i=1,2,…)=rt. Computation cases

are expressed as V-3 A-H or P-6B-F, etc..

The meaning of the first letter is explained 

in Table 1. Type-P and Type-L are imagi-

ned to repesent the transverse bars of actual 

arch bridges which mainly resist to torsion 

of the arched ribsand lateral bracings of 

actual arch bridges which resist only to late-

ral bending of the arched ribs, respecti vely. 

The second letters mean the number and the

manner of arrangement of the transverse bars. The 

last letter means the end condition of arches, fixed 

or hinged. In the figures, the buckling coefficient,

λr, is defined as pRL2/EJ0, where L is arc-length of

the arch. The magnitude of m will be, in general,

(a) Fixed end  (m=0.01)

(b) Hinged end (m=0.5)

V-3A-F

V-3B-F

V-3C-F

Fig. 4 Buckling coefficient for three transverse bars 

(Fixed end)

V-6A-F

V-6B-F

Fig. 5 Buckling coefficient for six transverse bars 

(Fixed end)

Fig. 6 Buckling coefficient for three transverse 
bars (Hinged end)

Fig. 7 Shape of buckling mode of single 

arch

Fig. 8 Influence of position of transverse bars
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from 0.1 to 1.0 for a closed cross section and from 

0.1 to 10-3 for a open cross section. In numerical 

computation, digital computer (NEAC 2200-500) of 

the computer center of Osaka Univ. was used. 

Several discussions and characteristics about the 

influences of the bracing bars on the buckling stre-

ngth are given below. 

1) Flexural rigidities rt and rx (see Figs. 4 and 

5) 

 From the nature of things, with the increase of

rt, the buckling coefficient, λr, becomes large. For

rt→0, the ordinates of the curves, as it should,

approach the values of the buckling coefficients of 

single arch. The influence of rt is remarkable  for 

the small value of m. For example, the buckling 

coefficeint of the case V-6 B-F (m=0.01) attains 

2.5 times of that of single arch. The limiting value

of λr are given at about rt=1/m for all cases. There

is little difference between the influence of rx and

that of rt. The λr versus rx curves of the case P-

3  B-F (ry=0) practically coincide with those of case 

V-3 B-F, and so are not shown in the figure. 

2) Number of transverse bars 

The buckling strength becomes large with the 

increase of the number of transverse bars, but the 

magnitude of increase is not so considerable except 

the case of m=0.01. 

3) Arrangement of transverse bars 

In Fig. 4, the influence of the arrangement is 

not so remarkable except the case of m=0.01. In 

the case of m=0.01, relative magnitude of the

ordinates of the curves is case-3 A•„case-3 C•„case-

3 B. This result implies that the influence of the 

arrangement have close relation to the shape of 

buckling mode shown in Fig. 7 (note the magnitude

of 7 which is uniquely determined against a unique

value of  m)  . In order to confirm this idea, the 

buckling coefficient of arches braced with two tra-

nsverse bars in various positions were computed 

and plotted at the each position of the transverse 

bars. The curve showing influence of position of

the transverse bars upon λr and the curve showing

the value of |β| (absolute value of the torsional

angle, β) are similar in shape (Fig.8(a)). In the

range of the large value of in, this influence does 

not appear, because arched ribs of closed cross 

secton will not show so large  deformation in torsi-

on. As for the arches of hinged end (Fig. 6), the 

influence of the arrangement occurs in the range of 

large value of in (at the same time, large value of

γ) and is relative to the magnitude of α' of that

location (see Fig.8(b)). Furthermore, Fig.8(b)

implies that the flexural rigidity,  ry, near the arch 

end improves the buckling strength of hinged-end 

arches remarkably. 

4) Flexural rigidity ry (see Fig. 9)

The innuences of ry are illustrated in Fig.9as

the form of λr versus ry curves. Through above

discussion it is easy to interprete these  results.

Namely, since ry is directly relative to α', the signi-

ficant  differences of location appear in the range

of large value of m (large value of γ). The ordi-

nates of the case-3 B whose side-transverse bars
are located at L/4 points, where the magnitude of
α' is maximum (see Fig.7(d)), are quite larger

than those of other two cases. The limiting ordi-
nates are attained at about  ry=100/m for all cases 
of three transverse bars and at about ry=10/m for 
all cases of six transverse bars. 

5) End condition of arched ribs 

The buckling strength of hinged-end arch reduces 
remarkably. This fact implies that even a slight 
loose of the fixed end may lead the arch bridges 
to collapse. The practical significance of this obse-
rvation is obvious, since in actual arch bridges, 
completely rigid supports are difficult, if not possi-
ble, to realize. 

3. MODEL TEST 

Several model tests were conducted and one of 
them are shown below. 

( 1 ) Model Arch 

Tested model arch is shown in Fig. 10. Both the-
main ribs and the transverse bars are made of brass 
and the model arches were assembled by means of 
solder connection. 

( 2 ) Apparatus and Procedure of Experiment 

Particular attention was paid in fitting up the 
model arch not to produce initial lack of fit. The 
end of the ribs were built-in to an steel plate 
which is supported as to rotate freely about the

Fig. 9 Buckling coefficient of Type-L (Fixed end)
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axis perpendicular to the arch plane. 

In order to prevent slipping and to 

give full play to an arch action, the 

ends of the arches were carefully fixed 

against horizontal displacements. Since 

it is difficult to realize a distributed 

radial load, group of vertical concen-

trated loads was applied in place of it. The loading 

devices are shown in Photo 1. The piano wire were

a)  Geometrical contlqulatmo of model arch

b) Cross-sectional dimensions

used as to follow the displacement outward the 
arch plane without restraint, but the excentricity 
of loading was inevitable because of the cross-secti-
onal shape of model arch. The loading rod was 

pulled downward by a hydraulic jack. Model arch 
was loaded gardually and carefully not to produce 
disturbance.

( 3 ) Results and Consideration 

 The ultimate load was estimated as P= 1.40 t from 

the asymptote of the load-deformation curves. The 

model arch in critical equilibrium state at P=1.35 t 

is shown in Photo 2. Test results are illustrated in 

Fig. 11. These curves show the effects of initial 

imperfection in lower range of loading, but to 

avoid them was, actually, difficult. Both the buc-

kling load obtained from the theoretical analysis and 

model test are shown in Table 2. The experimental 

value shows about 90%-coincidence with the the-

oretical one.

4. CONCLUSIONS 

The following conclusions will be drawn within 
the scope of the given assumptions and idealizati-
ons : 

1) Transfer matrix method was employed effec-
tively in obtaining the eigenvalue of the differential 
equation governing the buckling of complicated 
structures which consist of main systems and branch 
systems. 

2) Results of numerical computation about seve-
ral arches are illustrated as the curves of buckling 
coefficient versus flexural rigidity of the transverse 
bars. 

3) The arrangement of the transverse bars are 
in close relation to the shape of buckling mode of 
corresponding single arch. To arrange the transve-
rse bars of large flexural rigidity at the location 
where corresponding large deformations of the 
arched ribs occurs is effective from the view point 
of lateral stability. That may be, in other words, 
to increase the total strain energy stored in the 
transverse bars during the buckling deformation. 

4) In order to interprete the relation between 
the cross-sectional quantities of the arched rib and
the effects of transverse bars, the ratio, γ, of the

maximum value of the torsional angle, βmax, to

that of lateral deflection angle, αmax' are qulte

Fig. 10 Model arch

Photo 1 Loading devices Photo 2 Critical equili-

brium state at 

P=1.35 ton

Fig. 11 Load vs. deformation curves

Table 2 Theoretical and experimental buckling load
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important. 

5) The location of the transverse bars are more 

important than the number of them. 

6) In order to increase the buckling strength of 

the arch bridges as treated in this paper, to cons-

train the  out-of-plane flexure of arched rib is much 

more effective than to constrain the torsional defor-

mation of arched rib. In other words, lateral braci-

ngs which resist to the out-of-plane flexure may be 

more effective than the transverse bars of Vierendeel 

type. 

7) A slight loose of the fixed end about the 

out-of-plane rotation may lose the buckling strength 

of the arch bridges practically. 
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