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1 Introduction

The issue of forecasting equity returns is one of the most widely discussed topics in the �nance

literature mainly due to its central role in asset pricing, portfolio allocation and evaluation of

investment managers. The in-sample predictive ability of a quite exhaustive list of potential

predictors that typically contains valuation ratios, various interest rates and spreads, distress

indicators, in�ation rates along with other macroeconomic variables, indicators of corporate

activity, etc. was the focus of the earlier studies.1 However, since the seminal contribution of

Goyal and Welch (2008) who show that their long list of predictors can not deliver consistently

superior out-of-sample performance, attention has turned to the development of improved fore-

casting methods in order to establish the empirical validity of equity premium predictability.2

To mention a few, Campbell and Thompson (2008) show that when imposing simple restric-

tions, suggested by economic theory, on predictive regressions�coe¢ cients, the out-of-sample

performance improves. Based on their result, the authors argue that market timing strategies

can deliver pro�ts to investors (see also Ferreira and Santa-Clara (2011)). Ludvigson and Ng

(2007) and Neely, Rapach, Tu and Zhou (2011) adopt a di¤usion index approach, which can

conveniently track the key movements in a large set of predictors, and they �nd evidence of

improved equity premium forecasting ability.3

In an attempt to reduce both model uncertainty and parameter instability, Rapach, Strauss

and Zhou (2010) employ forecast combinations of univariate equity premium models and �nd

that combinations of individual single variable predictive regression models signi�cantly beat

the historical average forecast. Building on Rapach, Strauss and Zhou (2010), Meligkotsidou,

Panopoulou, Vrontos and Vrontos (2013, MPVV henceforth) incorporate the forecast combina-

tion methodology in a quantile regression setting. Their quantile regression approach to equity

premium prediction allows them to cope with the non-linearity and non-normality patterns

that are evident in the relationship between stock returns and potential predictors. In this way,

1Commonly used valuation ratios are the dividend price/dividend yield ratio (see for example, Fama and
French, 1988, 1989), the earnings price ratio (Campbell and Shiller, 1988, 1998), and the book-to-market ratio
(Kothari and Shanken, 1997). Another strand of the literature includes macroeconomic/ �nancial variables such
as in�ation rates, short-term and long-term interest rates along with term and corporate bond spreads in the set
of predictors (see e.g. Fama and Schwert, 1977; Campbell and Vuolteenaho, 2004; Campbell, 1987; Fama and
French, 1989; Ang and Bekaert, 2007). Lettau and Ludvigson (2001) �nds that the consumption to wealth ratio
helps equity premium predictability, while corporate �nancing activity is exploited in Baker and Wurgler (2000).
A comprehensive list of variables that serve as predictors can be found in Goyal and Welch (2008).

2Following the related literature, equity premium is proxied by excess returns.
3Rapach and Zhou (2012) o¤er a detailed review on the issue of equity return predictability.
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robust and accurate equity premium forecasts are produced by combining a set of predictive

quantile regressions in either a �xed or time-varying manner. A novel forecast combination

method based on complete subset regressions is put forward by Elliott, Gargano and Timmer-

mann (2013, EGT henceforth). The authors propose combining forecasts from all possible linear

regression models that keep the number of predictors �xed. Their empirical application on eq-

uity premium predictability shows that subset combinations of up to four predictors generates

superior forecast accuracy.

This paper proposes a new forecasting approach based on complete subset quantile regres-

sions. Speci�cally, we extend the framework of EGT to a quantile regression setting and adopt

the methodology of MPVV to this subset quantile regression framework, in order to produce

robust and accurate equity premium forecasts. Our proposed methodology merges three strands

of the literature on out-of-sample forecasting and, as shown, exploits the bene�ts emerging from

each one. First, we exploit the ability of the quantile regression setting to produce robust and

accurate point forecasts. Second, we reduce model uncertainty and parameter instability by

employing quantile forecast combinations. Finally, we employ complete subset quantile regres-

sions which induces shrinkage to the respective estimates and further helps reduce the e¤ect of

parameter estimation error.

To be more speci�c, our forecasting framework is rooted in quantile predictive regressions,

which have attracted a vast amount of attention since the seminal paper of Koenker and Bas-

sett (1978).4 Empirical contributions in the �eld of �nance include Bassett and Chen (2001),

Engle and Manganelli (2004), Meligkotsidou, Vrontos and Vrontos (2009), Cenesizoglou and

Timmermann (2012), Chuang, Kuan and Lin (2009) and Baur, Dimp�and Jung (2012). The

main advantage of our quantile regression framework lies in its ability to cope with non-linearity

and non-normality patterns in the joint relationship between equity returns and candidate pre-

dictors (see, inter alia, Guidolin and Timmermann, 2009; Guidolin, Hyde, McMillan and Ono,

2009; Henkel, Martin and Nadari, 2011). Robust point forecasts of the equity premium or

any variable of interest in general can be constructed as weighted averages of a set of quantile

forecasts by employing either �xed weighting or time-varying weighting schemes.

Incorporating the forecast combination approach (see Rapach, Strauss and Zhou, 2010) into

our quantile regression setting helps reduce model uncertainty and deals with parameter insta-

4See also Buchinsky (1994, 1995) and Yu, Lu and Stander (2003).
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bility.5 MPVV propose two alternative ways to generate forecasts within the quantile regression

setup. The �rst approach proceeds by �rst constructing robust point forecasts from a set of

quantile predictions all of which are based on the same predictive variable. Next, it combines the

robust forecasts obtained from di¤erent predictors using several existing combination methods

in order to produce a �nal point forecast. The second approach consists of �rst combining all the

predictions of the same quantile obtained from di¤erent single predictor model speci�cations,

in order to produce combined quantile forecasts. Then, robust point forecasts are obtained by

operating either a �xed or a time-varying weighting scheme on the combined quantile forecasts.

The methodologies discussed so far employ single variable models in either a linear or a

quantile regression framework. EGT abstract from the single predictor models and propose

combining forecasts from all possible linear regression models that keep the number of predictors

�xed. Their approach introduces a complex version of shrinkage to the respective estimates

which helps reduce the e¤ect of parameter estimation error.6 EGT show that the amount

of shrinkage induced on least squares estimates from subset regressions is a function of the

number of variables included in the model (k) and the total number of available predictors (K ).

Given that the amount of shrinkage depends on all the least squares estimates, it varies with

each coe¢ cient. Moreover, this methodology can cure the omitted variable bias especially in

cases with strongly positively correlated regressors. The authors propose constructing forecasts

based on a simple averaging scheme of all the possible models employed keeping the numbers

of regressors �xed. In this paper, we extend the framework of EGT to the quantile predictive

regression framework discussed above. Similarly to EGT, we utilize information from all the

predictors simultaneously in order to produce combined quantile forecasts from all quantile

regressions that keep the number of predictors �xed. We also abstract from the simple averaging

schemes and introduce several existing combination schemes into our setting. Then, the obtained

quantile forecasts are synthesized to produce robust point forecasts of the variable of interest.

The empirical �ndings of both EGT and the present paper suggest that the predictive

performance of subset regressions highly depend on the value of k. A further contribution of

this paper is the development of a recursive algorithm for selecting k in real time, based on the

5Timmermann (2006) provides a detailed review on forecast combination methodologies.
6Shrinkage typically is employed in order to limit the number of parameters that have to be estimated when

many potential predictors are available. Contributions to this �eld include the ridge regression (Hoerl and
Kennard, 1970), model averaging (Bates and Granger, 1969; Raftery, Madigan and Hoeting, 1997), bagging
(Breiman, 1996) and the Lasso (Tibshirani, 1996).

3



past history of excess returns and predictive variables. The proposed algorithm is a likelihood-

based method that chooses the best complete subset for a given quantile and is �exible enough

to allow for variability of the selected value of k across quantiles. In this way, our approach

incorporates information on the best subset for each quantile of the return distribution in real

time and these �optimal�quantile forecasts are appropriately combined to deliver robust equity

premium forecasts.

To anticipate our key results, we �nd that our complete subset quantile regression framework

achieves superior predictive performance, both in statistical and economic evaluation terms.

More in detail, our proposed approach can lead to an out-of-sample R2 of 5.71% (relative to the

historical average benchmark) as opposed to 4.10% of the subset linear regression approach of

EGT and 3.58% of the combination approach of Rapach, Strauss and Zhou (2010). While in a

linear regression framework, subsets of two variables (k = 2) perform better than the remaining

speci�cations, in our quantile regression framework subsets of three variables (k = 3) emerge as

superior. More importantly, our real time recursive algorithm for selecting k across quantiles of

returns succeeds in identifying the �correct�value of k which is both time-varying and quantile-

varying. When evaluating our forecasts from an economic perspective and speci�cally for a

mean-variance investor, we also need return volatility forecasts, which we construct using the

interval approximation approach of Pearson and Tukey (1965) and a set of predictive quantiles.

Our economic evaluation results suggest that an investor that adopts our framework can gain

sizable bene�ts which range from 3.91% to an impressive 6.27% per year relative to a naive

strategy based on the historical benchmark performance.

The outline of the paper is as follows. Section 2 describes the complete subset regression

framework of EGT and introduces its extension to the quantile regression framework. The

proposed methodology for robust estimation of the central location of the distribution of returns

is outlined in Section 3. Section 4 presents our empirical �ndings, while section 5 describes the

proposed methodology for the recursive selection of the number of predictors. Section 6 outlines

the economic evaluation framework and presents the associated �ndings. Section 7 summarizes

and concludes.
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2 Complete Subset Quantile Regressions

In this section we present the setup for our analysis. Section 2.1 outlines the EGT complete

subset regressions framework and Section 2.2 extends this framework to subset quantile regres-

sions. Section 2.3 proposes two novel forecasting approaches based on complete subset quantile

regressions.

2.1 Complete subset regressions

EGT propose a new method for combining forecasts based on complete subset regressions. For

a given set of potential predictors, the authors propose combining forecasts from all possible

linear regressions that keep the number of predictors �xed. For K possible predictors, there are

K univariate models and nk;K = K!=((K � k)!k!) di¤erent k�variate models for k � K: The

set of models for a �xed value of k is referred to as a complete subset and the authors propose

using equal-weighted combinations of the forecasts from all models within these subsets indexed

by k.

More in detail, suppose that we are interested in forecasting the equity premium, denoted

by rt, using a set of K predictive variables. First we consider all possible predictive mean

regression models with a single predictor, i.e. k = 1; of the form

rt+1 = �i + �ixit + "t+1; i = 1; : : : ;K; (1)

where rt+1 is the observed excess return on a stock market index in excess of the risk-free

interest rate at time t + 1, xit are the K observed predictors at time t, and the error terms

"t+1 are assumed to be independent with mean zero and variance �2. The predictive mean

regression models can be estimated using the Ordinary Least Squares (OLS) method by min-

imizing the sample estimate of the quadratic expected loss,
PT�1
t=0 (rt+1 � �i � �ixit)

2, or the

Maximum Likelihood (ML) approach after specifying the parametric form of the error distribu-

tion7. Similarly, a regression of rt+1 can be run on a particular subset of the regressors and then

average the forecasts across all k dimensional subsets to provide the forecast for the variable of

interest, where k � K: EGT show that while subset regression combinations bear similarities

7The sample size T denotes any estimation sample employed in our recursive forecasting experiment. Details
on the forecasting design are given in Section 4.
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to a complex version of shrinkage, they do not reduce to shrinking OLS estimates. Rather the

coe¢ cient that controls shrinkage depends on all OLS estimates, the dimension of the subset

and the number of included predictors. Only in the case of orthonormal regressors does sub-

set regression reduce to ridge regression. Moreover, the amount of shrinkage imposed on each

coe¢ cient di¤ers with the coe¢ cient at hand. More importantly, the authors show that in the

case of strongly correlated predictors, subset regression can remedy the omitted variable bias

and improve forecasts. While the authors use equal-weighted combinations of forecasts within

each subset along with approximate Bayesian Model Averaging, alternative weighting schemes

can be employed. To this end, we also employ the Median, the Trimmed Mean, the Discount

Mean Squared Forecast Error (DMSFE) of Stock and Watson (2004) along with the Cluster

combining method, introduced by Aiol� and Timmermann (2006).8

2.2 Complete subset quantile regressions

The above linear subset regression speci�cation can only predict the mean and not the entire

distribution of returns in the event that the joint distribution of rt+1 and xit is not bivariate

Gaussian and, therefore, their relationship is not linear. Following the literature on the non-

linear relationship between returns and predictors (Guidolin and Timmermann, 2009; Guidolin,

Hyde, McMillan and Ono, 2009; Chen and Hong, 2010; Henkel, Martin and Nadari, 2011) we

adopt a more sophisticated approach to equity premium forecasting by employing predictive

quantile regression models (Koenker and Bassett, 1978; Buchinsky, 1998; Yu, Lu and Stander,

2003). In this paper we incorporate the complete subset combination framework of EGT in our

quantile regression setting. The proposed approach is designed as follows.

First, consider single predictor quantile regression models (k = 1) of the form

rt+1 = �
(�)
i + �

(�)
i xit + "t+1; i = 1; : : : ;K; (2)

where � 2 (0; 1) and the errors "t+1 are assumed independent from an error distribution g� (")

with the �th quantile equal to 0, i.e.
R 0
�1 g� (")d" = � . Model (2) suggests that the �th

quantile of rt+1 given xit is Q� (rt+1jxit) = �
(�)
i +�

(�)
i xit, where the intercept and the regression

8To keep the analysis clear, Appendix A.1 provides a detailed description of the formation of these weighting
schemes.
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coe¢ cients depend on � . The �(�)i �s are likely to vary across ��s, revealing a larger amount of

information about returns than the predictive mean regression model (Equation 1). Estimators

of the parameters of the linear quantile regression models in (2), �̂i(�); �̂
(�)

i , can be obtained

by minimizing the sum
PT�1
t=0 ��

�
rt+1 � �i(�) � �(�)i xit

�
; where �� (u) is the asymmetric linear

loss function, usually referred to as the check function,

�� (u) = u (� � I(u < 0)) = 1

2
[juj+ (2� � 1)u] : (3)

In the symmetric case of the absolute loss function (� = 1=2) we obtain estimators of the median

predictive regression models. A parametric approach to inference on the quantile regression

parameters arises if the error distribution gp(") is speci�ed. The error distribution that has

been widely used for parametric inference in the quantile regression literature is the asymmetric

Laplace distribution (for details, see Yu and Moyeed, 2001, and Yu and Zhang, 2005) with

probability density function

g� (") =
�(1� �)
�(�)

exp

�
�j"j+ (2� � 1)"

2�(�)

�
; 0 < � < 1; �(�) > 0: (4)

For � = 1=2; corresponding to the median regression, (4) becomes the symmetric Laplace

density. A likelihood function can be formed by combining T independent asymmetric Laplace

densities of the form (4), i.e.

L(�)
�
r1:T j�i(�); �(�)i ; �(�)

�
=

�
�(1� �)
�(�)

�T
exp

(
� 1

�(�)

T�1X
t=0

��

�
rt+1 � �i(�) � �(�)i xit

�)
: (5)

Then (5) can be used for likelihood based inference for the parameters �i(�); �
(�)
i ; �(�); for

example for maximum likelihood estimation. The maximization of this likelihood function with

respect to �i(�); �
(�)
i is equivalent to minimizing the expected asymmetric linear loss, while the

ML estimator of �(�) is b�(�) = 1
T

PT�1
t=0 ��

�
rt+1 � �(�) � �(�)i xit

�
. Similarly to the predictive

mean regression case, the quantile regression (Equation 2) of rt+1 can be run on a particular

subset (k) of the regressors K; k � K, with the aim to produce quantile forecasts of the equity

premium. Then, we employ one of the approaches outlined in the next subsection in order to

get robust and accurate point forecasts of the variable of interest.
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The advantage of the parametric approach to inference is that it enables us to compare

di¤erent quantile regression models, corresponding to di¤erent subsets of predictors, using cri-

teria based on the likelihood function, for example the Bayesian Information Criterion (BIC) or

Bayesian model comparison. This further enables us to establish an approach of selecting the

best (in a likelihood based sense) complete subset on the basis of which forecasts are formed

(see Section 5).

2.3 Forecasting Approaches based on Complete Subset Quantile Regression

This subsection outlines the two novel forecasting approaches we put forward. As already

mentioned, these are based on subset quantile regressions and aim at producing robust and

accurate point forecasts of the equity premium by taking advantage of the subset framework, the

quantile regression framework and the information content in individual (or combined) potential

predictors. Speci�cally, we construct equity premium point forecasts by combining quantile

forecasts obtained from a set of complete subset regressions (k � variate models with k � K):

For each k; nk;K regressions are run in order to predict the � th quantile of the distribution of

the next period�s excess return (rt+1). Next, two approaches are explored in order to combine

these quantile forecasts into a point forecast that is robust to non-normality and non-linearity.

The �rst approach, which we name Robust Forecast Combination approach (RFC) proceeds

by �rst combining the quantile forecasts across all values of � into point forecasts for each

complete subset of predictors. As outlined in the next section, we employ Tukey�s (1977)

and Gastwirth�s (1966) three-quantile estimators and the �ve-quantile estimator of Judge, Hill,

Gri¢ ths, Lutkepohl and Lee (1988) along with their time-varying counterparts developed in

MPVV. This step yields nk;K point forecasts which are further combined in order to reduce

uncertainty risk associated with each subset of the predictive variables. Except for the simple

averaging scheme, suggested by EGT, we also employ the Trimmed Mean, the Median, the

Discount Mean Squared Forecast Error (DMSFE) of Stock and Watson (2004) along with the

Cluster combining method, introduced by Aiol� and Timmermann (2006). These combining

schemes utilize the Mean Squared Forecast Error (MSFE) as a loss function. (Details are given

in Appendix A.1).

The second approach, which we name Quantile Forecast Combination (QFC) consists of �rst
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combining the predicted � th quantiles across all di¤erent subsets (k) of predictors (nk;K model

speci�cations). With the exception of the Mean, Trimmed Mean and Median combining meth-

ods, the existing combination methods are not appropriate for combining predictor information

in the quantile regression context. To this end, the MSFE loss function has to be replaced by a

metric based on the asymmetric linear loss function (Equation 3). Following MPVV, we employ

the Discount Asymmetric Loss Forecast Error (DALFE) and the Asymmetric Loss Cluster (AL

Cluster) in order to construct subset quantile forecasts (see Appendix A.2). This step yields

a set of quantile forecasts (one for each � j), which are then combined into �nal robust point

forecasts using either a �xed or a time-varying weighting scheme (see next section).

3 Robust Point Forecasts based on Regression Quantiles

In this section we consider the problem of constructing robust point forecasts of the equity

premium based on a set of predictive quantile regressions as an alternative to the standard

approach which produces forecasts based on the predictive mean regression model. Robust

point estimates of the central location of a distribution can be constructed as weighted averages

of a set of quantile estimators employing either �xed or time-varying weighting schemes.

3.1 Point Forecasts based on a Fixed Weighting Scheme

For a given model speci�cation or a given complete subset that has been used for producing

quantile forecasts, robust point forecasts can be constructed as weighted averages of a set of

quantile forecasts. First, we employ standard estimators with �xed, prespeci�ed weights of the

form

r̂t+1 =
X
�2S

p� r̂t+1(�);
X
�2S

p� = 1;

where S denotes the set of quantiles that are combined, r̂t+1(�) denotes the quantile forecasts

associated with the �th quantile and r̂t+1 is the produced robust point forecast. Here the weights

represent probabilities attached to di¤erent quantile forecasts, suggesting how likely to predict

the return at the next period each regression quantile is.

We consider Tukey�s (1977) trimean and the Gastwirth (1966) three-quantile estimator given,
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respectively, by the following formulae

FW1: brt+1 = 0:25r̂t+1(0:25) + 0:50r̂t+1(0:50) + 0:25r̂t+1(0:75)
FW2: brt+1 = 0:30r̂t+1(1=3) + 0:40r̂t+1(0:50) + 0:30r̂t+1(2=3):

In order to attach more weight on extreme positive and negative events, we also use the �ve-

quantile estimator, suggested by Judge, Hill, Gri¢ ths, Lutkepohl and Lee (1988).

FW3: brt+1 = 0:05r̂t+1(0:10)+ 0:25r̂t+1(0:25)+ 0:40r̂t+1(0:50)+ 0:25r̂t+1(0:75)+ 0:05r̂t+1(0:90):
3.2 Point Forecasts based on a Time-varying Weighting Scheme

Relaxing the assumption of a constant weighting scheme seems to be a natural extension.

A number of factors, such as changes in regulatory conditions, market sentiment, monetary

policies, institutional framework or even changes in macroeconomic interrelations (Campbell and

Cochrane, 1999; Menzly, Santos and Veronesi, 2004; Dangl and Halling, 2012) can motivate the

employment of time-varying schemes in the generation of robust point forecasts. Time-varying

weighting schemes aim at producing an empirical model that allows for economic changes over

time and is capable of determining the �right�parameter values in time to help investors (Spiegel,

2008).

The variable of interest, rt+1, is predicted using an optimal linear combination pt=[p�;t]�2S

of the quantile forecasts r̂t+1(�) given by

r̂t+1 =
X
�2S

p�;tr̂t+1(�);
X
�2S

p�;t = 1:

The weights, pt, are estimated recursively using a holdout out-of-sample period continuously

updated by one observation at each step. Optimal estimates of the weights are obtained by

minimizing the mean squared forecast errors, Et(rt+1 � r̂t+1)
2; under an appropriate set of

constraints. Our optimization procedure is the analogue of the constrained Granger and Ra-

manathan (1984) method for quantile regression forecasts (see also Timmermann, 2006; Hansen,

2008; Hsiao and Wan, 2012). Speci�cally, we employ constrained least squares using the quantile

forecasts as regressors in lieu of a standard set of predictors. The time-varying weights on the
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quantile forecasts bear an interesting relationship to the portfolio weight constraints in �nance.

In this sense we constrain the weights to be non-negative, sum to one and not to exceed certain

lower and upper bounds in order to reduce the weights�volatility and stabilize forecasts. In our

empirical application, we employ three time-varying speci�cations which may be viewed as the

time-varying counterparts of our FW1-FW3 schemes. More speci�cally, FW1 with time-varying

coe¢ cients becomes

TVW1: brt+1 = p0:25;tr̂t+1(0:25) + p0:50;tr̂t+1(0:50) + p0:75;tr̂t+1(0:75);

where p�;t; � 2 S = f0:25; 0:50; 0:75g are estimated by the optimization procedure

pt = argmin
pt

E[rt+1 � (p0:25;tr̂t+1(0:25) + p0:50;tr̂t+1(0:50) + p0:75;tr̂t+1(0:75))]2

s:t: p0:25;t + p0:50;t + p0:75;t = 1; 0:20 � p0:25;t � 0:40;

0:40 � p0:50;t � 0:60; 0:20 � p0:75;t � 0:40:

Similarly, the FW2 scheme with time-varying coe¢ cients becomes

TVW2: brt+1 = p1=3;tr̂t+1(1=3) + p0:5;tr̂t+1(0:50) + p2=3;tr̂t+1(2=3);

where p�;t; � 2 S = f1=3; 0:50; 2=3g are estimated by the following optimization procedure

pt = argmin
pt

E[rt+1 � (p1=3;tr̂t+1(1=3) + p0:5;tr̂t+1(0:50) + p2=3;tr̂t+1(2=3))]2

s:t: p1=3;t + p0:50;t + p2=3;t = 1; 0:15 � p1=3;t � 0:45;

0:30 � p0:5;t � 0:50; 0:15 � p2=3;t � 0:45:

Finally, the FW3 scheme with time-varying coe¢ cients becomes

TVW3: brt+1 = p0:10;tr̂t+1(0:10) + p0:25;tr̂t+1(0:25) + p0:5;tr̂t+1(0:50)

+ p0:75;tr̂t+1(0:75) + p0:90;tr̂t+1(0:90);

where p�;t; � 2 S = f0:10; 0:25; 0:50; 0:75; 0:90g are estimated by the following optimization
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procedure

pt = argmin
pt

E[rt+1 � (p0:10;tr̂t+1(0:10) + p0:25;tr̂t+1(0:25)+

+p0:5;tr̂t+1(0:5) + p0:75;tr̂t+1(0:75) + p0:90;tr̂t+1(0:90))]
2

s:t: p0:10;t + p0:25;t + p0:50;t + p0:75;t + p0:90;t = 1

0:00 � p0:10;t � 0:10; 0:15 � p0:25;t � 0:35;

0:40 � p0:50;t � 0:60; 0:15 � p0:75;t � 0:35; 0:00 �; p0:90;t � 0:10:

4 Empirical �ndings

4.1 Data, forecast construction and forecast evaluation

The data we employ are from Goyal and Welch (2008) who provide a detailed description of

transformations and datasources.9 The equity premium is calculated as the di¤erence of the

continuously compounded S&P500 returns, including dividends, and the Treasury Bill rate.

Following the line of work of Goyal and Welch (2008), Rapach, Strauss and Zhou (2010) and

Ferreira and Santa-Clara (2011), out-of-sample forecasts of the equity premium are generated by

continuously updating the estimation window, i.e. following a recursive (expanding) window.

More speci�cally, we divide the total sample of T observations into an in-sample portion of

the �rst T0 observations and an out-of-sample portion of P = T � T0 observations used for

forecasting. The estimation window is continuously updated following a recursive scheme, by

adding one observation to the estimation sample at each step. As such, the coe¢ cients in any

predictive model employed are re-estimated after each step of the recursion. Proceeding in

this way through the end of the out-of-sample period, we generate a series of P out-of-sample

forecasts for the equity premium fr̂i;t+1gT�1t=T0
. Our forecasting experiment is conducted on a

quarterly basis and data span 1947:1 to 2010:4. Our out-of-sample forecast evaluation period

corresponds to the �long�one analyzed by Goyal and Welch (2008) and Rapach, Strauss and

Zhou (2010) covering the period 1965:1-2010:4.10

9The data are available at http://www.hec.unil.ch/agoyal/. We thank Prof. Goyal for making them available
to us.
10Please note that the out-of-sample period refers to the period used to evaluate the out-of-sample forecasts.

We use the ten years 1955:1 to 1964:4 (40 quarters) before the start of the out-of-sample evaluation period as
the initial holdout out-of-sample period, required for both constructing our time-varying robust forecasts and for
several forecast combination schemes.
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The 12 economic variables employed in our analysis are related to stock-market charac-

teristics, interest rates and broad macroeconomic indicators. With respect to stock market

characteristics, we employ the Dividend�price ratio (log), D/P, the di¤erence between the log

of dividends paid on the S&P 500 index and the log of stock prices (S&P 500 index), where

dividends are measured using a one-year moving sum; Dividend yield (log), D/Y, the di¤erence

between the log of dividends and the log of lagged stock prices; Earnings�price ratio (log), E/P,

the di¤erence between the log of earnings on the S&P 500 index and the log of stock prices,

where earnings are measured using a one-year moving sum; Book-to-market ratio, B/M, the

ratio of book value to market value for the Dow Jones Industrial Average and Net equity expan-

sion, NTIS, the ratio of twelve-month moving sums of net issues by NYSE-listed stocks to total

end-of-year market capitalization of NYSE stocks. Turning to interest-rate related variables,

we employ �ve variables ranging from short-term government rates to long-term government

and corporate bond yields and returns along with their spreads. These are the Treasury bill

rate, TBL, the interest rate on a three-month Treasury bill (secondary market); Long-term

return, LTR, the return on long-term government bonds; Term spread, TMS, the di¤erence be-

tween the long-term yield and the Treasury bill rate; Default yield spread, DFY, the di¤erence

between BAA- and AAA-rated corporate bond yields; Default return spread, DFR, the di¤er-

ence between long-term corporate bond and long-term government bond returns; To capture

the overall macroeconomic environment, we employ the in�ation rate, INFL, calculated from

the CPI (all urban consumers) and the investment-to-capital ratio, I/K, the ratio of aggregate

(private nonresidential �xed) investment to aggregate capital for the entire economy.11

The natural benchmark forecasting model is the historical mean or prevailing mean (PM)

model, according to which the forecast of the equity premium coincides with the constant in

the linear regression model (1) when no predictor is included, i.e. k = 0. As a measure of

forecast accuracy, we employ the out-of-sample R2 computed as R2OS = 1 � MSFEi
MSFEPM

; where

MSFEi is the Mean Square Forecast Error associated with each of our competing models and

speci�cations and MSFEPM is the respective value for the PM model, both computed over

the out-of-sample period. Positive values are associated with superior forecasting ability of our

proposed model/speci�cation. Given that point estimates of the R2OS are sample dependent, we

11Following EGT, we exclude the log dividend earnings ratio and the long term yield in order to avoid multi-
collinearity.
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need to evaluate the statistical signi�cance of our forecasts. To this end, we employ the Clark

and West (2007) (CW) approximate normal test to compare our models/ speci�cations.12

The following subsections present an illustration of our proposed complete subset quantile

regression approach to equity premium forecasting. The aim of our analysis is to assess the

predictive ability of the proposed forecasting approaches and to compare their performance

against that of alternative approaches used in the literature. Speci�cally, we examine the

potential bene�ts of the subset quantile regression forecasts based on k-variate model forecasts

(k � 2) under various combination methods (e.g. Mean, Median, Trimmed Mean, DMSFE,

Cluster) relative to using subset linear regression forecasts based on k-variate models as proposed

in EGT or relative to several combination methods of univariate linear and/or quantile models

as proposed in MPVV.

4.2 Performance of Complete Subset Linear Regression Models

First, we discuss the out-of-sample performance of the forecasts obtained by subset linear re-

gressions under various combination schemes. Table 1 presents the R2OS statistics of all subset

regressions relative to the historical average benchmark model for the out-of-sample period

1965:1-2010:4. Positive values of R2OS indicate superior forecasting performance of the predic-

tive models with respect to the historical average forecast. The statistical signi�cance of the

corresponding forecasts is assessed by using the Clark and West (2007) MSFE-adjusted statistic.

The second column of the Table reports the R2OS generated by simply averaging the forecasts

(Mean combination method) produced by subset linear regressions for various values of k: This

experiment coincides with the framework of EGT and suggests that the subset linear regres-

sion with k = 2 generates the largest R2OS value (4.10%). Similarly to EGT, subset regression

forecasts with k � 6 produce positive R2OS values, while the out-of-sample forecasting ability of

subsets deteriorates markedly for k � 7.

[TABLE 1 AROUND HERE]

Next, we focus on alternative (to the Mean) combination methods such as the Median,

Trimmed Mean, DMSFE and the Cluster combining schemes within the subset linear regression
12A brief description of the Clark and West (2007) test is given in Appendix B. Note that the critical values of

the CW test are approximate in our setting, since the models we intend to compare are, in general, not nested.
Alternatively, Bootstrap critical values can be employed; however, our recursive out-of-sample experiment is
computationally very demanding.
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approach. Overall, the largest R2OS values occur for the k = 2 subset, with the exception of the

Cluster schemes where the largest R2OS occur for k = 1. For these subsets (k = 2 or k = 1),

most of the combining methods produce statistically signi�cant positive R2OS values, while four

of them, namely the Median, Trimmed Mean, DMSFE(0.9) and DMSFE(0.5) provide higher

values of R2OS than that of the best (k = 2) subset regression based on the Mean combination

scheme. A comparison of the di¤erent combination techniques suggests that the DMSFE(0.5)

scheme, which penalizes more recent forecasting accuracy, ranks �rst followed by the Median

combination scheme. These methods provide the highest R2OS values of 4.58% and 4.40%,

respectively. The results of Table 1 in general indicate that employing alternative weighting

schemes can lead to improved forecasting performance relative to simple averaging.

4.3 Performance of Complete Subset Quantile Regression Models

In this subsection, we evaluate the forecasting performance of the proposed subset quantile

regression models based on the RFC and the QFC approach.

4.3.1 Robust Forecast Combination approach

Our RFC approach employs either a �xed weighting (FW) or a time-varying weighting (TVW)

scheme to construct robust point forecasts from each subset quantile regression. Then, these

robust forecasts are combined into �nal point forecasts by employing the combination schemes

outlined in Appendix A.1. Table 2 reports the R2OS statistics and the respective p-values of

the Clark and West (2007) test for the subset quantile regression models based on the RFC

approach for the three �xed weighting schemes, i.e. the FW1 scheme (Panel A), the FW2

scheme (Panel B) and the FW3 scheme (Panel C). Results are reported for various combination

methods, namely the Mean, Median, Trimmed Mean, DMSFE and Cluster, based on k = 1 to

k = 12 subset quantile regression forecasts.

Several �ndings emerge from this analysis. First, we observe that combining the forecasts of

a subset of k = 3 quantile regression models produces higher R2OS values for almost all the com-

bination methods with the exception of the Cluster(3) method for all �xed weighting schemes.

Second, for this subset, i.e. k = 3, all the combination methods based on the robust quantile

regression models generate higher R2OS values than the corresponding combining methods based
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on the best k = 2 subset linear regression models, indicating the superior forecasting ability of

the proposed RFC quantile approach. Third, a comparison of the di¤erent combination methods

suggest that the Median combination technique outperforms the alternative combination meth-

ods for the FW1 and FW2 schemes, generating R2OS values of 5:06% and 4:90%, respectively,

while the Trimmed Mean combination method provides the highest R2OS statistic of 5:12% and

outperforms the competing combination methods for the third �xed weighting scheme.

[TABLE 2 AROUND HERE]

Next, we present the out-of-sample performance of the subset quantile regression forecasts

based on the time-varying weighting schemes TVW1-TVW3 (Table 3, Panels A-C). Three com-

bination methods can be used in the time-varying weighting framework; the Mean, Median and

the Trimmed Mean. Based on the results of Table 3, we observe that the largest R2OS values

occur for k = 2 or k = 3 subsets. For these subsets (k = 2 and k = 3), all the combining

methods, i.e. the Mean, Median and Trimmed Mean, generate statistically signi�cant positive

R2OS values, which are higher than the corresponding R
2
OS values of the combining methods

based on the best (k = 2) subset linear regression model (see Table 1). For these best subsets,

the Median and the Trimmed Mean combination methods seem to outperform the Mean com-

bination scheme since they produce higher R2OS values. The most striking result is the R
2
OS

statistic of 5:59% obtained by the Median combination of forecasts of the k = 2 subset quantile

regression models under the TVW1 scheme. Overall, our �ndings indicate superior predictive

ability of the RFC approach on the basis of the �rst time-varying weighting scheme.

[TABLE 3 AROUND HERE]

4.3.2 Quantile Forecast Combination approach

We turn our attention to the results of the subset quantile regression models based on the QFC

approach. According to this approach, the quantile forecasts obtained from di¤erent k-variate

predictive model speci�cations are �rst combined employing several combination schemes. These

schemes are either simple methods such as the Mean, Median and Trimmed Mean, or are based

on the asymmetric linear loss function such as the DALFE and the AL Cluster methods. Then,

robust point forecasts are obtained by synthesizing the di¤erent quantile forecasts employing
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either �xed weighting schemes or time-varying weighting schemes, thus exploiting the entire

distributional information.

Table 4 reports the out-of-sample performance of the subset quantile regression forecasts

obtained by the QFC approach using �xed weighting schemes (FW1-FW3). The results of

Table 4 (Panel A - Panel C) indicate that high positive R2OS values are obtained by using

k = 2, k = 3 and k = 4 subsets for all weighting schemes FW1-FW3. In particular, for

k = 3 subsets almost all of the combining methods (except for the Cluster method) produce

the highest positive R2OS values, which are larger than those of the best (k = 2) subset linear

regression model (see Table 1) and similar or even higher than the corresponding R2OS values of

the best (k = 3) subset quantile regression forecasts based on the RFC approach (see Table 2).

Among the various combination methods, the Median combination scheme ranks �rst, since,

for the best k = 3 subset, generates the highest R2OS values ranging from 5:22% for FW1 and

FW2 to 5:32% for FW3 scheme. Second ranks the DALFE(0.5) method which produces R2OS

values ranging from 4:93% for FW2 to 5:22% for FW3 scheme.

[TABLE 4 AROUND HERE]

Finally, Table 5 (Panels A-C) presents the results obtained by the subset QFC approach

using time-varying weighting schemes (TVW1-TVW3). Three combination methods, namely

the Mean, Median and Trimmed Mean, are used in this approach. Based on the results of

Table 5, we observe that the subset quantile regression forecasts with k = 2 for QFC-TVW1

and QFC-TVW2 and with k = 2 or k = 3 for QFC-TVW3 generate statistically signi�cant

positive R2OS values. For these subsets (k = 2 or k = 3), the Median combination method

outperforms the Mean and the Trimmed Mean combination schemes since it generates higher

R2OS values. More importantly, the QFC-TVW1 approach based on the Median combination of

k = 2 subsets of predictors produce the highest R2OS of 5:71% among the di¤erent forecasting

approaches considered in our analysis (see Table 5, Panel A). These �ndings suggest that more

promising results, i.e. best out-of-sample performance, are obtained by applying the proposed

subset quantile regression models based on the QFC approach under the Median combination

method for the �rst time-varying weighting scheme.

[TABLE 5 AROUND HERE]
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5 Real time Selection of k

Our empirical �ndings (Section 4) suggest that the predictive performance of our subset quantile

regression approach depends on the choice of the value of k. Therefore, it is important to develop

a real time algorithm of selecting k recursively, based on the past history of excess returns and

predictive variables, in order to produce �optimal forecasts�. Since our proposed methodology

involves forecasting an array of quantiles, it is quite interesting to examine whether the selected

value of k varies across quantiles of returns, thus revealing a further source of information that

can be exploited within our proposed framework. Our algorithm is �exible enough to allow for

variability of the selected k across quantiles and, therefore, information on the best complete

subset for each quantile of the return distribution can be incorporated within our approach.

5.1 Algorithm for selecting k

In this subsection we propose a likelihood-based (Bayesian) method for selecting k in real

time. The experiment we conduct is naturally designed in the context of our QFC forecasting

approach. At each time point in the out-of-sample period, indexed by t + 1, we compute

the posterior probabilities of all values of k (k 2 f1; 2; :::;Kg), based on the data up to time

t, for a set of quantiles. Then, for each quantile, � ; we select the most probable value of k

and produce a quantile forecast at time t + 1, r̂t+1(�); based on the selected complete subset.

These quantile forecasts are then combined according to the �xed weighting and time-varying

weighting schemes of Section 3 in order to produce �optimal�QFC forecasts in real time.

Under the Bayesian approach to inference, uncertainty about any quantity of interest is

represented by probability distributions. In regression variable selection problems there is un-

certainty about the model speci�cation. In our setting, it is of particular interest to quantify the

uncertainty about the complete subset that will be used for predicting each quantile of returns.

Therefore, in a Bayesian context, the random quantities of interest are the model speci�cation,

representing the set of predictors included in the jth model and denoted by mj ; j = 1; :::;M;

M =
KP
i=1

ni;K ; the value of k and the totality of the model parameters associated with the �th

quantile regression, denoted by �(�): After specifying appropriate prior distributions for these
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quantities, P (mj); P (kjmj) and f(�(�)jmj ; k); their joint posterior distribution is given by

f(mj ; k; �
(�)jr1:t) / P (mj)P (kjmj)f(�

(�)jmj ; k)L
(�)(r1:tjmj ; k; �

(�));

where L(�)(r1:tjmj ; k; �
(�)) is the likelihood of the data up to time t under the �th quantile

regression (Equation 5), based on the asymmetric Laplace density (4). Dependence on the set

of predictors has been suppressed for simplicity. Then, the marginal posterior distribution of k,

under the �th quantile regression, is obtained as

P (�)(kjr1:t) /
MX
j=1

P (mj)P (kjmj)

Z
f(�(�)jmj ; k)L

(�)(r1:tjmj ; k; �
(�))d�(�):

The integral
R
f(�(�)jmj ; k)L

(�)(r1:tjmj ; k; �
(�))d�(�) is the marginal likelihood of the data under

the �th quantile regression with k predictors and model speci�cation mj ; i.e. L(�)(r1:tjmj ; k):

In this paper, we estimate the marginal likelihood by the BIC approximation which is given by

bL(�)(r1:tjmj ; k) = expfL(�)(r1:tjmj ; k;b�(�))� k ln(t)=2g;
where b�(�) denotes the ML estimate of �(�); obtained as discussed in Subsection 2.2. Alter-
natively, the marginal likelihood of quantile regression models can be estimated by Laplace

approximation (see Meligkotsidou, Vrontos and Vrontos, 2009).

The prior speci�cation we consider is the following. The prior probability of the jth model is

taken to be P (mj) = �kj (1��)K�kj ; where � is the prior probability of including a predictor in

the model, which is taken �xed and prespeci�ed, and kj is the number of predictors included in

modelmj : In our analysis we consider two values of �: First, we set � equal to 1/2, thus re�ecting

complete prior ignorance about the model speci�cation. Second, to slightly penalize models with

too many predictors, we set � equal to 1/3, since it is known from previous studies (see Goyal

and Welch, 2008, and Elliott, Gargano and Timmermann, 2013) that the best performing

forecasts arise from models including fewer predictors. The prior probability of k given the

model speci�cation mj is then P (kjmj) = 1; if kj = k; and P (kjmj) = 0; otherwise. This prior

structure leads to the joint prior of k;mj being P (k;mj) = �kj (1 � �)K�kjI(kj = k) and to

the natural Binomial(K;�) marginal prior on k. Then, the marginal posterior distribution of
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k, under the �th quantile regression is given by

P (�)(kjr1:t) / �k(1� �)K�k
MX
j=1

bL(�)(r1:tjmj ; k)I(kj = k):

Below we present and discuss the results of our likelihood-based approach to selecting k

for the �xed and time-varying weighting schemes of Section 3 and the respective combining

methods (see Appendix A.2).

5.2 Algorithm Performance

To gain some insight on the selected values of k for the quantiles of interest, Figures 1 and 2

plot the selected values under the above speci�ed prior distribution with �=1/2 and �=1/3,

respectively. It is evident that, at each time-point in both the holdout and the out-of-sample

period, the selected value of k varies across quantiles. In general, larger values of k are selected

for the extreme quantiles (�=0.10 and �=0.90). For the remaining ones, our algorithm almost

always chooses k = 2; 3; 4 in the out of sample period. Thus, the produced �optimal�forecasts

are based on the combination of quantile forecasts obtained from k di¤erent complete subsets

for all quantiles considered in our analysis. Moreover, some large values of k are selected for

the quantiles of the left part of the return distribution (�=0.10, 0.25, 0.33) in the holdout

period. This may be due to the weaker likelihood information (i.e. likelihoods formed on

smaller samples) used for selecting k throughout the holdout period. Finally, it is interesting

to note that the selected values of k are slightly lower if the prior probability of inclusion is set

to 1/3, thus penalizing the larger values of k:

[FIGURE 1 AROUND HERE]

[FIGURE 2 AROUND HERE]

Table 6 reports the out-of-sample performance of the �optimal�QFC forecasts based both

on �xed weighting schemes (FW1-FW3) and time-varying weights (TVW1-TVW3), under both

prior speci�cations considered (i.e. �=1/2 (Panel A) and �=1/3 (Panel B)). The results of Table

6 reveal that our likelihood-based approach to selecting k in real time is extremely successful,

since the values of R2OS obtained under all weighting schemes and for all combining methods are

very high. Regarding the �xed weighting schemes, the largest R2OS values are obtained for the
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Median combining method, being in all cases close to or higher than 4%, with the highest value

being equal to 4.58% (for the FW2 scheme, under �=1/2). In accordance with our statistical

signi�cance results (Table 4), the DALFE(0.5) method ranks second with R2OS values very close

to those obtained by the Median combining method. It is interesting to note that the results

of the recursive k-selection exercise are quite robust across the combining methods considered,

apart from the AL Cluster(3) method. Moreover, it appears that the FW2 scheme constantly

outperforms the other two schemes of producing robust point forecasts based on �xed weights.

Similar �ndings pertain with respect to our TVW forecasts.13 More in detail, the largest

R2OS values are obtained for the Median combining method, ranging from 3.34% (for the TVW1

scheme, under �=1/2) to 4.33% (for the TVW2 scheme, under �=1/3), while the TVW2 scheme

constantly outperforms the other two time-varying weighting schemes. In the time-varying

weights framework, though, the results are slightly better in the case that the prior probability

of inclusion is set to 1/3. This may be attributed to the fact that some very large values of k are

selected throughout the holdout period, possibly due to weak likelihood information, especially

in the case of �=1/2.

[TABLE 6 AROUND HERE]

In conclusion, let us note that the �ndings of our recursive experiment are very encouraging,

since they show that the proposed approach of selecting k in real time, based only on the past

history of the data, produces particularly well-performing forecasts and that these results are

very robust to the choice of weighting scheme and combining method.

6 Economic Evaluation

Campbell and Thompson (2008) and Rapach, Strauss and Zhou (2010) suggest that even small

predictability gains, in a statistical sense, can give an economically meaningful degree of return

predictability providing increased portfolio returns for a mean-variance investor that maximizes

expected utility. We follow this utility-based approach within this stylized asset allocation

framework in order to rank the performance of competing models in a way that captures the

13Recall that only the Mean, Median and Trimmed Mean combining methods can be used within the time-
varying weighting framework which requires a holdout period for the construction of robust point forecasts.
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risk return trade-o¤.14 Moreover, we not only exploit the information content in our forecasts

for the expected equity premium but for the expected volatility of returns, as well. This is done

by constructing robust volatility forecasts via a set of quantile forecasts utilizing the selection

algorithm introduced in Section 5. Below, we outline our framework for measuring economic

value along with the proposed framework for volatility forecast construction.

6.1 The framework for measuring economic value

Consider a risk-averse investor who constructs a dynamically rebalanced portfolio consisting of

the risk-free asset and one risky asset. Her portfolio choice problem is how to allocate wealth

between the safe (risk-free Treasury Bill) and the risky asset (stock market), while risk stems

from the uncertainty over the future path of the stock market (both in terms of future returns

and the uncertainty surrounding them). This approach involves only one risky asset and as

such it can be thought of as a standard exercise of market timing in the stock market. In a

mean-variance framework, the solution to the maximization problem of the investor yields the

following weight (wt) on the risky asset

wt =
Et(rt+1)

V art(rt+1)
=

brt+1
V art(rt+1)

; (6)

where Et and V art denote the conditional expectation and variance operators, rt+1 is the equity

premium and  is the Relative Risk Aversion (RRA) coe¢ cient that controls the investor�s

appetite for risk (Campbell and Viceira, 2002; Campbell and Thompson, 2008; Rapach, Strauss

and Zhou, 2010). The conditional expectation Et(rt+1) of each model is given by the �optimal�

forecast from the speci�c model, brt+1; and the variance, V art(rt+1) is calculated using four
alternative ways. The �rst method we employ is the ten-year rolling window of quarterly returns

(b�21;t+1). The remaining volatility forecasts are constructed using the interval approximation
approach of Pearson and Tukey (1965). Speci�cally, we employ the following approximations

14This utility-based approach, initiated by West et al. (1993), has been extensively employed in the literature
(Fleming, Kirby and Ostdiek, 2001; Marquering and Verbeek, 2004; Della Corte, Sarno and Tsiakas, 2009; Della
Corte, Sarno and Valente, 2010; Wachter and Warusawitharana, 2009).
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to conditional standard deviation based on symmetrical quantiles as follows:

b�2;t+1 =
brt+1(0:99)� brt+1(0:01)

4:65
; (7)

b�3;t+1 =
brt+1(0:975)� brt+1(0:025)

3:92
; (8)

b�4;t+1 =
brt+1(0:95)� brt+1(0:05)

3:25
: (9)

The denominators in the above formulae are based on the central distances between esti-

mated quantiles under Pearson curves which are slightly di¤erent from a Gaussian curve. The

forecasts for the quantiles of interest, �=0.01, �=0.025, �=0.05, �=0.95, �=0.975 and �=0.99,

are based on the combination of quantile forecasts within the kth complete subset, with the

values of k being optimally selected at each point of time employing our proposed selection

algorithm. Figures 3 and 4 show the selected values of k for the six quantiles required for the

calculation of the volatility forecasts under prior probability of inclusion equal to 1/2 and 1/3,

respectively, over the out-of-sample period. It can be seen that the selected values of k for the

right tail quantiles are, in general, larger than the respective values of k for the more central

quantiles (see Figures 1 and 2). As previously, the values of k chosen by our algorithm are

slightly lower if a smaller value for the prior probability of inclusion is considered.

[FIGURE 3 AROUND HERE]

[FIGURE 4 AROUND HERE]

Equation (6) implies that the optimal weights depend on both the conditional mean and

variance and as a result on the respective forecasts each model/ speci�cation gives. In this

setting the optimally constructed portfolio gross return over the out-of-sample period, Rp;t+1;

is equal to

Rp;t+1 = wt � rt+1 +Rf;t;

where Rf;t = 1 + rf;t denotes the gross return on the risk-free asset from period t to t + 1:15

Over the forecast evaluation period the investor with initial wealth of Wo realizes an average

utility of

U =
Wo

(P � P0)

"
P�P0�1X
t=0

(Rp;t+1)�


2

P�P0�1X
t=0

(Rp;t+1 �Rp)2
#
; (10)

15We constrain the portfolio weight on the risky asset to lie between 0% and 150% each month, i.e. 0 � wt � 1:5:
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where Rp;t+1 is the gross return on her portfolio at time t+1: At any point in time, the investor

prefers the predictive model that yields the highest average realized utility.16

The economic value of our modeling approaches is assessed by comparing their average utility

to the corresponding value obtained under the benchmark prevailing mean model. Our results

are reported in the form of the annualized Certainly Equivalent Return (CER), i.e. the return

that would leave an investor indi¤erent between using the prevailing mean forecasts versus the

forecasts produced by one of our proposed approaches and is calculated as follows:

CER = �U = U i � UPM ; (11)

where U i is the average realized utility over the out-of-sample period of any of our competing

models/ speci�cations (i) and UPM is the respective value for the prevailing mean (PM) model.

If our proposed model does not contain any economic value, CER is negative; while positive

values of the CER suggest superior predictive ability against the PM benchmark.

6.2 Empirical evidence on the economic value of predictive regressions

We assume that the investor dynamically rebalances her portfolio (updates the weights) quar-

terly over the out-of-sample period employing the forecasts given by the QFC approach and our

selection algorithm for � = 1=2 and � = 1=3: Similarly to Section 4 and 5, the out-of-sample

period of evaluation is 1965:1-2010:4 and the benchmark strategy against which we evaluate our

forecasts is the PM model. For every model/speci�cation we calculate the CER associated with

each strategy calculated from Equation (11) setting RRA () equal to 3. Table 7 reports our

�ndings for the aforementioned prior speci�cations. Panels A-C and Panels D-F report CER

in annualized percentage points for the �xed weighting schemes and the time-varying weighting

schemes, respectively under the alternative variance forecasts. The columns labeled �1 refer to

the rolling variance forecast, while �2 to �4 refer to the robust subset variance forecasts given

by equations (7)-(9). CER1 and CER2 refer to the prior speci�cations of � = 1=2 and � = 1=3;

respectively.

The most striking feature of Table 7 is the robustness of bene�ts generated to an investor

willing to adopt our modelling approaches which range from 3.91% to an impressive 6.27%

16We standardize the investor problem by assuming Wo = 1:
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per year. More in detail, the maximum CER is attained when the Median TVW1 scheme is

employed in conjunction with a robust variance forecast given by (8) and a prior of � = 1=3;

which penalizes large values of subsets. On the other hand, the minimum CER, albeit quite high,

is attained under the FW scheme when the AL Cluster (3) FW1 scheme is employed combined

with the rolling variance forecast and the same prior speci�cation. Overall, the TVW schemes

appear superior to their FW counterparts. The minimum bene�ts to an investor increase to

4.58% when TVW schemes are employed compared to 3.91% under FW speci�cations. When

comparing the alternative prior speci�cations, the prior of � = 1=3 appears superior as it leads

to greater gains in all the approaches considered with the exception of the FW and TVW3

schemes under a rolling variance speci�cation scheme. In accordance with our �ndings from

the statistical evaluation of the forecasts obtained under alternative combination methods, the

DALFE(0.5) combining method emerges as the optimal one when FW schemes are considered,

while the Median one generates the highest CERs among the TVW schemes. With respect to

the alternative conditional variance speci�cations, we have to note that the proposed robust

subset variance forecasts add signi�cant economic value within our asset allocation framework.

Further bene�ts are achieved when either �2 or �3 (given by equations (7)-(8)) are employed as

opposed to �4 which employs closer to the central location quantile forecasts.

[TABLE 7 AROUND HERE]

7 Conclusions

In this study we propose a complete subset quantile regression approach to equity premium

prediction. The aim of our analysis is to construct equity premium forecasts, which take into

account the bene�ts emerging from the subset framework, the quantile regression framework

and the information given by the potential predictors.

The quantile predictive approach proposed in this paper is based on the combination of the

quantile forecasts, or the robust point forecasts, across complete subsets of model speci�cations

that keep the number of predictors, k, �xed. Forecast combination is based on severall well-

established combining methods, while robust and accurate forecasts of the equity premium are

constructed as weighted averages of a set of quantile forecasts by employing either �xed or

time-varying weighting schemes.
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An important contribution of this study is the development of a likelihood-based method for

selecting the value of k recursively. The proposed algorithm is able to identify the best subset

for predicting each quantile of the return distribution in real time, based only on the past history

of the data. Then, these �optimal�quantile forecasts are combined to produce robust equity

premium forecasts.

The results of our study are very promising. Our �ndings suggest that our complete subset

quantile regression framework achieves superior predictive performance relative to the historical

average benchmark, the combination approach, and the subset linear regression approach, both

in statistical and economic evaluation terms. More importantly, our economic evaluation results

suggest that a mean-variance investor that adopts our framework can gain sizable bene�ts

which range from 3.91% to 6.27% per year relative to a naive strategy based on the historical

benchmark performance.

26



Appendix A. Forecast Combination Schemes

Combining individual models� forecasts can reduce uncertainty risk associated with a single

predictive model and display superior predictive ability (Bates and Granger, 1969; Hendry and

Clements, 2004). In Appendix A.1, we brie�y discuss existing combination schemes that are

appropriate for combining either subset mean regression forecasts or subset robust forecasts

based on quantile regression models (RFC approach), while in Appendix A.2 we introduce the

respective combining methods that are appropriate for producing combined subset quantile

forecasts (QFC approach).

A.1. Combination Methods for Mean forecasting

The combination forecasts of rt+1, denoted by r̂
(C)
t+1, are weighted averages of the k�variate

predictor individual forecasts within each subset, r̂i;t+1, i = 1; : : : ; nk;K , of the form r̂
(C)
t+1 =

nk;KP
i=1

w
(C)
i;t r̂i;t+1; where w

(C)
i;t ; i = 1; :::; nk;K ; are the a priori combining weights at time t for each

speci�c subset, k; k � K:

The simplest combining scheme is the one that attaches equal weights to all k-variate models

for a speci�c k, i.e. w
(C)
i;t = 1=nk;K , for i = 1; :::; nk;K , called the Mean combining scheme.

The next schemes we employ are the Trimmed Mean and Median ones. The Trimmed Mean

combination scheme sets w(C)i;t = 0 for the smallest and largest forecasts and w(C)i;t = 1=(nk;K �

2) for the remaining ones, while the Median combination scheme employs the median of the

fr̂i;t+1g
nk;K
i=1 forecasts.

The methods we describe below require a holdout out-of-sample period during which the

combining weights are estimated. To this end, the �rst P0 out-of-sample observations are

employed as the initial holdout period over which we construct combination forecasts and the

remaining T � (T0 + P0) = P � P0 forecasts are available for evaluation. The second class

of combining methods we consider, proposed by Stock and Watson (2004), suggests forming

weights based on the historical performance of the individual models over the holdout out-of-

sample period. Speci�cally, their Discount Mean Squared Forecast Error (DMSFE) combining

method suggests forming weights as follows

w
(C)
i;t = m�1

i;t =

nk;KX
j=1

m�1
j;t ; mi;t =

t�1X
s=T0

 t�1�s(rs+1 � bri;s+1)2;
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where  is a discount factor which attaches more weight on the recent forecasting accuracy of

the individual models in the cases where  2 (0; 1). The values of  we consider are 1:0, 0:9 and

0:5:When  equals one, there is no discounting and the combination scheme coincides with the

optimal combination forecast of Bates and Granger (1969) in the case of uncorrelated forecasts.

Finally, the third class of combining methods, namely the Cluster combining method, was

introduced by Aiol� and Timmermann (2006). In order to create the Cluster combining fore-

casts, we form L clusters of forecasts of equal size based on the MSFE performance. Each

combination forecast is the average of the k-variate model forecasts in the best performing clus-

ter. This procedure begins over the initial holdout out-of-sample period and goes through the

end of the available out-of-sample period using a rolling window. In our analysis, we consider

L = 2; 3.

A.2. Combination Methods for Quantile Forecasting

The DMSFE, Cluster and Principal Components combining methods have been designed in the

framework of standard linear regression, in order to construct forecasts that exploit the entire

set of predictive variables. The combining weights, w(C)i;t , are computed based on the MSFE,

that is on a quadratic loss function that measures how close to the realized excess returns the

individual forecasts are. These methods are appropriate within the framework of the RFC

approach since, according to this approach, several robust point forecasts are �rst obtained

from di¤erent single predictor quantile regressions and then these point forecasts are combined

in order to exploit information from the available set of predictors. However, these combining

schemes are not appropriate for combining predictor information within the QFC approach

since variable information is now combined in the context of forecasting several quantiles of

returns rather than producing point forecasts. In this case, the MSFE is no longer suitable for

measuring the performance of the produced forecasts and has to be replaced by a metric based

on the asymmetric linear loss function.

Below we describe how we modify the existing combining methods in order to produce

quantile forecasts that exploit variable information. The combined quantile forecasts, r̂(C)t+1(�),

are weighted averages of the form r̂
(C)
t+1(�) =

nk;KP
i=1

w
(C)
i;t r̂i;t+1(�); where the combining weights,

w
(C)
i;t , have to be computed based on the check function (3).

First, we introduce the Discount Asymmetric Loss Forecast Error (DALFE) combining
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method which suggests forming weights as follows

w
(C)
i;t = m�1

i;t =

nk;KX
j=1

m�1
j;t ; mi;t =

t�1X
s=T0

 t�1�s�� (rs+1 � bri;s+1(�));
where  2 (0; 1) is a discount factor. The combining weights are computed based on the

historical performance of the individual quantile regression models over the holdout out-of-

sample period and  is set equal to 0.5, 0.9 and 1.

We also modify the Cluster combining method by forming L clusters of forecasts based on

their performance as measured by the asymmetric loss forecast error. The Asymmetric Loss

Cluster (AL Cluster) combination forecast is the average of the individual quantile forecasts in

the best performing cluster which contains the forecasts with the lower expected asymmetric

loss values. We consider forming L = 2; 3 clusters.

Appendix B. The Clark and West (2007) test of equal forecasting ability.

Clark and West (2007) develop an adjusted version of the Diebold and Mariano (1995) and West

(1996) statistic, namely the MSFE-adjusted statistic, which in conjunction with the standard

normal distribution generates asymptotically valid inferences when comparing forecasts from

nested linear models. Suppose that we want to evaluate the forecasts of a parsimonious model

A relative to a larger model B. Under the null hypothesis of equal MSFE, model B should

generate larger MSFE than model A, due to the estimation of additional parameters that

introduces noise into the forecasts while these do not improve predictions. A smaller MSFE

should not be considered as evidence of superiority of model A over B. In this respect, the

testing procedure of Clark and West (2007) aims at correcting for the in�ation in the MSFE

of the larger model before evaluating the relative forecasting accuracy of the two models. Let

r̂A;t+1 and r̂B;t+1 denote the one-step ahead forecasts for rt obtained from models A and B

respectively. We de�ne

ft+1 = (rt+1 � r̂A;t+1)2 � [(rt+1 � r̂B;t+1)2 � (r̂A;t+1 � r̂B;t+1)2]

The test statistic of Clark and West, denoted as MSFE � adjusted, is given by the standard

t� statistic of the regression of ffs+1gT�1s=T0+P0
on a constant. Given that under the alternative

hypothesis of the test, model B has lower MSFE than model A, this is an one-sided test. Clark
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and West (2007) recommend using 1.282, 1.645 and 2.326 as critical values for a 0.10, 0.05 and

0.01 test, respectively. Extensive simulations performed by them, which consider a variety of

di¤erent processes and settings show that the aforementioned critical values provide reliable

results.
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Table 1. Out-of-sample performance of complete subset linear regression models
Mean Median Trimmed Mean DMSFE(1) DMSFE(0:9) DMSFE(0:5) Cluster(2) Cluster(3)

k R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv

1 2.99 0.002 2.48 0.001 2.81 0.001 3.00 0.002 3.04 0.003 3.83 0.007 2.53 0.015 1.58 0.070
2 4.10 0.004 4.40 0.001 4.22 0.003 4.03 0.004 4.13 0.005 4.58 0.007 2.21 0.033 0.76 0.083
3 3.92 0.006 4.07 0.004 4.04 0.005 3.82 0.007 3.98 0.007 4.22 0.009 1.92 0.026 0.77 0.052
4 2.98 0.009 2.65 0.011 3.02 0.009 2.88 0.010 3.04 0.011 3.23 0.012 1.61 0.022 0.54 0.037
5 1.64 0.014 1.17 0.016 1.60 0.014 1.54 0.014 1.63 0.016 1.84 0.016 0.52 0.024 -0.69 0.040
6 0.07 0.020 -0.41 0.023 0.00 0.020 -0.02 0.020 -0.05 0.023 0.19 0.022 -1.17 0.031 -2.56 0.047
7 -1.70 0.027 -2.64 0.033 -1.78 0.027 -1.79 0.027 -1.93 0.031 -1.64 0.029 -3.15 0.039 -4.51 0.054
8 -3.72 0.035 -4.52 0.039 -3.83 0.036 -3.82 0.036 -4.05 0.041 -3.69 0.037 -5.58 0.049 -6.39 0.056
9 -6.10 0.046 -5.88 0.039 -6.29 0.046 -6.20 0.046 -6.47 0.051 -6.04 0.047 -8.17 0.058 -8.53 0.059
10 -8.98 0.058 -11.49 0.077 -9.28 0.058 -9.08 0.058 -9.32 0.062 -8.84 0.059 -10.98 0.068 -10.98 0.062
11 -12.53 0.072 -14.84 0.081 -13.06 0.071 -12.60 0.072 -12.75 0.074 -12.31 0.073 -13.92 0.073 -14.40 0.082
12 -16.95 0.090

Notes: The Table reports the out-of-sample R2 statistic with respect to the prevailing mean (PM) benchmark model for the out-of-sample period 1965:1-2010:4. Statistical
signi�cance for the R2OS statistic is based on the p-value of the Clark and West (2007) out-of-sample MSFE-adjusted statistic (CWpv).



Table 2. Out-of-sample performance of Robust Forecast Combination (RFC) approach-Fixed weighting (FW) schemes
Panel A: RFC-FW1

Mean Median Trimmed Mean DMSFE(1) DMSFE(0:9) DMSFE(0:5) Cluster(2) Cluster(3)

k R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv

1 2.01 0.021 1.51 0.039 1.76 0.030 2.11 0.018 2.20 0.019 3.26 0.013 2.49 0.018 1.01 0.128
2 4.22 0.003 4.51 0.001 4.36 0.003 4.23 0.003 4.29 0.004 4.68 0.007 3.26 0.019 2.22 0.042
3 4.83 0.003 5.06 0.002 4.98 0.003 4.77 0.003 4.85 0.004 4.88 0.005 3.46 0.011 2.72 0.018
4 4.35 0.003 4.30 0.004 4.45 0.003 4.26 0.004 4.40 0.004 4.34 0.005 3.41 0.007 2.94 0.010
5 3.30 0.005 3.25 0.005 3.31 0.004 3.20 0.005 3.34 0.005 3.25 0.006 2.84 0.006 2.01 0.011
6 1.93 0.006 1.66 0.006 1.90 0.006 1.84 0.006 1.97 0.007 1.87 0.007 1.67 0.007 0.89 0.011
7 0.49 0.007 0.00 0.008 0.46 0.007 0.40 0.008 0.49 0.008 0.42 0.008 0.24 0.009 -0.46 0.013
8 -1.17 0.009 -1.58 0.010 -1.22 0.009 -1.27 0.009 -1.21 0.010 -1.21 0.010 -1.28 0.010 -1.90 0.013
9 -3.35 0.012 -3.28 0.010 -3.47 0.012 -3.45 0.012 -3.40 0.014 -3.28 0.013 -3.61 0.013 -3.65 0.014
10 -6.28 0.018 -7.23 0.018 -6.60 0.018 -6.37 0.018 -6.28 0.019 -5.95 0.017 -6.55 0.018 -5.91 0.016
11 -10.52 0.030 -12.31 0.034 -11.06 0.029 -10.57 0.030 -10.41 0.030 -10.00 0.027 -11.45 0.031 -10.44 0.026
12 -15.47 0.041

Panel B: RFC-FW2

1 1.87 0.028 1.06 0.078 1.70 0.036 1.96 0.025 2.01 0.027 2.96 0.017 2.52 0.026 1.11 0.125
2 3.99 0.005 4.13 0.002 4.14 0.004 4.02 0.005 4.06 0.006 4.44 0.008 3.20 0.024 1.29 0.080
3 4.70 0.003 4.90 0.003 4.86 0.003 4.66 0.003 4.75 0.004 4.79 0.006 4.06 0.008 2.89 0.019
4 4.33 0.004 4.55 0.003 4.43 0.004 4.25 0.004 4.41 0.004 4.37 0.005 4.05 0.005 3.09 0.011
5 3.36 0.004 3.37 0.005 3.36 0.005 3.28 0.005 3.48 0.005 3.46 0.006 3.43 0.005 2.69 0.009
6 2.01 0.006 1.90 0.006 1.96 0.006 1.93 0.006 2.14 0.006 2.17 0.007 2.39 0.006 1.79 0.009
7 0.43 0.007 -0.02 0.008 0.38 0.007 0.35 0.007 0.55 0.008 0.65 0.008 0.83 0.007 0.35 0.010
8 -1.42 0.009 -1.72 0.010 -1.50 0.009 -1.50 0.009 -1.30 0.010 -1.09 0.009 -1.17 0.009 -1.22 0.010
9 -3.67 0.012 -3.54 0.010 -3.80 0.012 -3.76 0.012 -3.56 0.013 -3.21 0.012 -3.71 0.011 -3.10 0.010
10 -6.52 0.016 -7.65 0.015 -6.79 0.016 -6.60 0.016 -6.42 0.017 -5.90 0.015 -7.24 0.016 -5.64 0.011
11 -10.54 0.023 -12.99 0.028 -11.18 0.023 -10.57 0.024 -10.47 0.023 -9.94 0.022 -11.40 0.023 -10.56 0.020
12 -16.46 0.041

Panel C: RFC-FW3

1 2.29 0.010 1.65 0.025 1.98 0.016 2.37 0.009 2.44 0.011 3.42 0.010 2.47 0.020 1.79 0.073
2 4.42 0.002 4.65 0.001 4.55 0.002 4.41 0.003 4.44 0.003 4.83 0.006 3.05 0.022 1.84 0.057
3 4.96 0.003 5.08 0.002 5.12 0.002 4.88 0.003 4.94 0.003 5.01 0.005 3.25 0.012 2.14 0.026
4 4.43 0.003 4.43 0.004 4.53 0.003 4.32 0.004 4.43 0.004 4.43 0.005 3.11 0.009 2.63 0.013
5 3.34 0.005 3.15 0.005 3.35 0.005 3.24 0.005 3.34 0.006 3.32 0.006 2.54 0.008 1.61 0.014
6 1.95 0.007 1.73 0.007 1.92 0.007 1.86 0.007 1.94 0.008 1.94 0.008 1.36 0.010 0.39 0.015
7 0.51 0.009 -0.04 0.010 0.46 0.009 0.42 0.009 0.46 0.010 0.49 0.010 -0.11 0.011 -0.95 0.016
8 -1.13 0.011 -1.31 0.011 -1.18 0.011 -1.23 0.011 -1.21 0.012 -1.11 0.012 -1.65 0.013 -2.26 0.016
9 -3.18 0.014 -3.14 0.012 -3.29 0.014 -3.28 0.015 -3.29 0.016 -3.08 0.015 -3.72 0.016 -4.02 0.018
10 -5.94 0.020 -7.22 0.023 -6.18 0.020 -6.03 0.020 -6.00 0.021 -5.62 0.019 -6.74 0.023 -6.13 0.019
11 -9.86 0.031 -11.29 0.034 -10.25 0.031 -9.91 0.032 -9.82 0.032 -9.46 0.030 -10.54 0.031 -10.69 0.031
12 -14.69 0.042

Notes: The Table reports the out-of-sample R2 statistic of the Robust Forecast Combination (RFC) approach, under �xed weighting (FW) schemes with respect to the prevailing mean (PM)
benchmark model for the out-of-sample period 1965:1-2010:4. Statistical signi�cance for the R2OS statistic is based on the p-value of the Clark and West (2007) out-of-sample MSFE-adjusted
statistic (CWpv).



Table 3. Out-of-sample performance of Robust Forecast Combination (RFC) approach-Time-varying weighting (TVW) schemes
Panel A: RFC-TVW1 Panel B: RFC-TVW2 Panel C: RFC-TVW3

Mean Median Trimmed Mean Mean Median Trimmed Mean Mean Median Trimmed Mean

k R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv

1 3.49 0.001 2.66 0.002 3.35 0.001 3.41 0.001 2.50 0.000 3.28 0.001 3.39 0.005 2.53 0.015 3.07 0.007
2 4.82 0.002 5.59 0.000 4.96 0.002 4.65 0.003 4.84 0.001 4.82 0.002 4.56 0.003 4.81 0.002 4.61 0.003
3 4.82 0.003 4.93 0.003 4.96 0.003 4.82 0.004 5.05 0.003 4.99 0.003 4.54 0.004 4.55 0.004 4.67 0.004
4 3.95 0.005 3.55 0.007 4.05 0.005 4.08 0.005 4.01 0.005 4.19 0.005 3.66 0.007 3.22 0.010 3.75 0.007
5 2.64 0.008 2.27 0.010 2.66 0.008 2.90 0.007 2.97 0.007 2.91 0.007 2.40 0.010 1.95 0.013 2.41 0.010
6 1.09 0.011 0.95 0.011 1.08 0.011 1.38 0.009 1.42 0.009 1.37 0.009 0.88 0.014 0.55 0.015 0.85 0.014
7 -0.46 0.014 -0.73 0.014 -0.46 0.014 -0.30 0.011 -0.68 0.012 -0.29 0.011 -0.68 0.017 -1.07 0.019 -0.70 0.017
8 -2.19 0.017 -2.50 0.017 -2.18 0.016 -2.23 0.014 -2.50 0.014 -2.23 0.014 -2.40 0.021 -2.63 0.021 -2.41 0.021
9 -4.37 0.022 -4.51 0.019 -4.43 0.021 -4.50 0.018 -3.92 0.013 -4.55 0.018 -4.55 0.026 -4.64 0.023 -4.63 0.026
10 -7.30 0.030 -8.28 0.030 -7.50 0.029 -7.39 0.023 -8.06 0.020 -7.57 0.023 -7.49 0.036 -8.14 0.035 -7.68 0.036
11 -11.64 0.049 -12.53 0.050 -11.97 0.046 -11.47 0.032 -13.59 0.036 -12.10 0.032 -11.70 0.057 -12.80 0.062 -11.96 0.054
12 -17.08 0.077 -17.97 0.063 -17.36 0.087

Notes: The Table reports the out-of-sample R2 statistic of the Robust Forecast Combination (RFC) approach, under time-varying weighting (TVW) schemes with respect to the prevailing
mean (PM) benchmark model for the out-of-sample period 1965:1-2010:4. Statistical signi�cance for the R2OS statistic is based on the p-value of the Clark and West (2007) out-of-sample
MSFE-adjusted statistic (CWpv).



Table 4. Out-of-sample performance of Quantile Forecast Combination (QFC) approach-Fixed weighting (FW) schemes
Panel A: QFC-FW1

Mean Median Trimmed Mean DALFE(1) DALFE(0:9) DALFE(0:5) AL Cluster(2) AL Cluster(3)

k R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv

1 2.01 0.021 1.29 0.055 1.72 0.031 2.06 0.019 2.12 0.019 2.78 0.013 2.44 0.017 2.42 0.024
2 4.22 0.003 4.71 0.001 4.33 0.003 4.22 0.003 4.29 0.004 4.69 0.004 3.66 0.011 3.02 0.017
3 4.83 0.003 5.22 0.002 5.00 0.003 4.79 0.003 4.89 0.003 5.11 0.004 4.53 0.005 3.73 0.010
4 4.35 0.003 4.50 0.003 4.48 0.003 4.30 0.004 4.44 0.004 4.59 0.004 4.32 0.004 3.81 0.007
5 3.30 0.005 3.56 0.004 3.35 0.004 3.24 0.005 3.38 0.005 3.51 0.005 3.32 0.005 2.83 0.006
6 1.93 0.006 2.00 0.006 1.93 0.006 1.88 0.006 2.01 0.006 2.13 0.006 1.92 0.006 1.58 0.007
7 0.49 0.007 0.41 0.007 0.45 0.007 0.44 0.007 0.54 0.008 0.65 0.007 0.44 0.007 -0.09 0.009
8 -1.17 0.009 -1.34 0.009 -1.25 0.009 -1.23 0.009 -1.16 0.010 -1.07 0.009 -1.20 0.008 -1.58 0.009
9 -3.35 0.012 -3.40 0.011 -3.51 0.012 -3.40 0.012 -3.38 0.013 -3.31 0.012 -3.81 0.012 -3.66 0.011
10 -6.28 0.018 -6.95 0.016 -6.65 0.019 -6.33 0.018 -6.33 0.018 -6.20 0.017 -7.19 0.018 -6.74 0.017
11 -10.52 0.030 -12.77 0.037 -11.17 0.030 -10.56 0.030 -10.52 0.029 -10.31 0.028 -11.31 0.029 -11.05 0.025
12 -15.47 0.041

Panel B: QFC-FW2

1 1.87 0.028 0.71 0.124 1.58 0.042 1.90 0.027 1.96 0.027 2.56 0.018 2.29 0.023 2.87 0.024
2 3.99 0.005 4.54 0.002 4.10 0.004 3.99 0.005 4.06 0.005 4.44 0.006 3.47 0.014 3.00 0.020
3 4.70 0.003 5.22 0.002 4.87 0.003 4.67 0.003 4.78 0.004 4.93 0.004 4.36 0.005 4.01 0.008
4 4.33 0.004 4.48 0.004 4.46 0.003 4.29 0.004 4.43 0.004 4.49 0.004 4.48 0.004 3.93 0.005
5 3.36 0.004 3.60 0.004 3.42 0.004 3.32 0.004 3.49 0.004 3.55 0.005 3.71 0.004 3.32 0.004
6 2.01 0.006 2.06 0.006 2.01 0.006 1.97 0.006 2.15 0.006 2.23 0.005 2.55 0.004 2.16 0.005
7 0.43 0.007 0.24 0.008 0.44 0.007 0.39 0.007 0.57 0.007 0.70 0.007 0.98 0.005 0.45 0.005
8 -1.42 0.009 -1.52 0.009 -1.45 0.009 -1.47 0.009 -1.28 0.009 -1.09 0.008 -0.87 0.006 -1.15 0.006
9 -3.67 0.012 -3.36 0.009 -3.78 0.012 -3.72 0.012 -3.55 0.012 -3.27 0.011 -3.44 0.008 -3.04 0.007
10 -6.52 0.016 -7.41 0.015 -6.81 0.016 -6.57 0.016 -6.43 0.016 -6.07 0.014 -6.72 0.012 -5.84 0.009
11 -10.54 0.023 -12.53 0.026 -11.26 0.024 -10.55 0.023 -10.48 0.023 -10.18 0.021 -11.41 0.021 -11.32 0.020
12 -16.46 0.041

Panel C: QFC-FW3

1 2.29 0.010 1.50 0.032 1.97 0.015 2.34 0.010 2.37 0.010 3.02 0.008 2.47 0.015 2.40 0.022
2 4.42 0.002 4.80 0.001 4.52 0.002 4.41 0.002 4.46 0.003 4.85 0.004 3.79 0.009 3.08 0.015
3 4.96 0.003 5.32 0.002 5.14 0.002 4.92 0.003 5.00 0.003 5.22 0.003 4.50 0.005 3.67 0.010
4 4.43 0.003 4.58 0.003 4.56 0.003 4.38 0.004 4.48 0.004 4.60 0.004 4.22 0.005 3.69 0.007
5 3.34 0.005 3.56 0.005 3.40 0.005 3.29 0.005 3.38 0.005 3.45 0.005 3.16 0.006 2.67 0.008
6 1.95 0.007 1.97 0.007 1.94 0.007 1.91 0.007 1.97 0.007 2.02 0.007 1.74 0.007 1.34 0.009
7 0.51 0.009 0.38 0.009 0.46 0.009 0.47 0.009 0.50 0.009 0.52 0.009 0.25 0.009 -0.30 0.011
8 -1.13 0.011 -1.27 0.010 -1.21 0.011 -1.17 0.011 -1.18 0.012 -1.18 0.011 -1.34 0.010 -1.76 0.012
9 -3.18 0.014 -3.21 0.013 -3.32 0.015 -3.23 0.014 -3.28 0.015 -3.32 0.015 -3.84 0.014 -3.79 0.014
10 -5.94 0.020 -6.39 0.018 -6.25 0.021 -5.99 0.020 -6.05 0.021 -6.04 0.020 -7.07 0.021 -6.79 0.020
11 -9.86 0.031 -11.80 0.038 -10.40 0.031 -9.91 0.031 -9.92 0.032 -9.81 0.030 -10.97 0.033 -10.75 0.029
12 -14.69 0.042

Notes: The Table reports the out-of-sample R2 statistic of the Quantile Forecast Combination (QFC) approach under �xed weighting (FW) schemes with respect to the prevailing mean (PM)
benchmark model for the out-of-sample period 1965:1-2010:4. Statistical signi�cance for the R2OS statistic is based on the p-value of the Clark and West (2007) out-of-sample MSFE-adjusted
statistic (CWpv).



Table 5. Out-of-sample performance of Quantile Forecast Combination (QFC) approach-Time-varying weighting (TVW) schemes
Panel A: QFC-TVW1 Panel B: QFC-TVW2 Panel C: QFC-TVW3

Mean Median Trimmed Mean Mean Median Trimmed Mean Mean Median Trimmed Mean

k R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv

1 3.93 0.001 3.41 0.001 3.64 0.001 3.85 0.001 2.99 0.000 3.54 0.001 3.15 0.010 2.73 0.010 2.87 0.011
2 5.06 0.002 5.71 0.001 5.23 0.002 4.99 0.002 5.54 0.001 5.18 0.002 4.45 0.004 5.02 0.002 4.63 0.003
3 4.61 0.004 4.95 0.003 4.84 0.004 4.96 0.003 5.33 0.002 5.17 0.003 4.46 0.005 4.76 0.004 4.65 0.004
4 3.73 0.006 3.88 0.006 3.86 0.006 4.16 0.005 4.34 0.005 4.32 0.005 3.67 0.007 3.65 0.007 3.74 0.006
5 2.35 0.009 2.55 0.008 2.39 0.009 2.80 0.007 3.05 0.007 2.87 0.007 2.26 0.010 2.44 0.010 2.26 0.010
6 0.78 0.013 0.99 0.011 0.78 0.013 1.28 0.010 1.44 0.009 1.33 0.010 0.57 0.015 0.72 0.014 0.55 0.015
7 -0.82 0.017 -0.64 0.014 -0.83 0.017 -0.40 0.013 -0.59 0.013 -0.35 0.012 -1.05 0.019 -1.03 0.017 -1.09 0.019
8 -2.49 0.020 -2.77 0.019 -2.57 0.020 -2.43 0.016 -2.50 0.015 -2.42 0.016 -2.84 0.025 -3.04 0.023 -2.92 0.025
9 -4.70 0.026 -4.89 0.023 -4.85 0.026 -4.81 0.021 -4.40 0.016 -4.89 0.021 -4.97 0.031 -5.18 0.030 -5.12 0.032
10 -7.75 0.036 -8.58 0.035 -8.12 0.037 -7.80 0.027 -8.54 0.024 -8.06 0.027 -7.84 0.041 -8.68 0.040 -8.20 0.043
11 -12.11 0.057 -14.50 0.070 -12.77 0.058 -11.88 0.037 -13.87 0.040 -12.65 0.037 -12.24 0.065 -14.41 0.077 -12.89 0.066
12 -17.08 0.077 -17.97 0.063 -17.36 0.087

Notes: The Table reports the out-of-sample R2 statistic of the Quantile Forecast Combination (QFC) approach under time-varying weighting (TVW) schemes with respect to the prevailing
mean (PM) benchmark model for the out-of-sample period 1965:1-2010:4. Statistical signi�cance for the R2OS statistic is based on the p-value of the Clark and West (2007) out-of-sample
MSFE-adjusted statistic (CWpv).



Table 6. Out-of-sample performance of the �optimal�QFC forecasts
Panel A: � = 1=2

Mean Median Trimmed Mean DALFE(1) DALFE(0:9) DALFE(0:5) AL Cluster(2) AL Cluster(3)
R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv

FW1 3.97 0.005 4.26 0.004 4.11 0.005 3.92 0.005 4.03 0.005 4.22 0.005 3.79 0.007 3.11 0.011
FW2 4.31 0.004 4.58 0.003 4.42 0.003 4.28 0.004 4.42 0.004 4.47 0.004 4.53 0.003 4.12 0.005
FW3 4.01 0.005 4.29 0.004 4.15 0.005 3.96 0.005 4.03 0.006 4.20 0.006 3.64 0.008 2.94 0.013
TVW1 3.10 0.011 3.34 0.006 3.23 0.008
TVW2 3.79 0.009 3.99 0.005 3.88 0.006
TVW3 3.50 0.011 3.79 0.005 3.61 0.008

Panel B: � = 1=3

Mean Median Trimmed Mean DALFE(1) DALFE(0:9) DALFE(0:5) AL Cluster(2) AL Cluster(3)
R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv R2OS CWpv

FW1 3.37 0.007 3.93 0.005 3.49 0.007 3.34 0.007 3.41 0.008 3.70 0.007 2.81 0.011 2.03 0.016
FW2 3.67 0.009 4.13 0.006 3.78 0.008 3.64 0.009 3.76 0.010 3.97 0.010 3.44 0.018 2.93 0.030
FW3 3.49 0.009 3.94 0.006 3.60 0.009 3.46 0.009 3.49 0.009 3.78 0.008 2.85 0.011 1.99 0.015
TVW1 3.10 0.015 3.71 0.009 3.28 0.013
TVW2 3.85 0.008 4.33 0.006 3.97 0.008
TVW3 3.18 0.012 3.64 0.009 3.33 0.011

Notes: The Table reports the out-of-sample R2 statistic of the Quantile Forecast Combination (QFC) approach under �xed (FW) and time-varying weighting (TVW) schemes
with respect to the prevailing mean (PM) benchmark model for the out-of-sample period 1965:1-2010:4. Statistical signi�cance for the R2OS statistic is based on the p-value of
the Clark and West (2007) out-of-sample MSFE-adjusted statistic (CWpv).



Table 7. Economic evaluation of the �optimal�QFC forecasts
Panel A: FW1 Panel D: TVW1

�1 �2 �3 �4 �1 �2 �3 �4

CER1 CER2 CER1 CER2 CER1 CER2 CER1 CER2 CER1 CER2 CER1 CER2 CER1 CER2 CER1 CER2

Mean 4.82 4.56 5.16 5.26 5.13 5.16 4.66 4.79 4.74 4.91 4.87 5.68 5.03 5.61 4.85 5.31
Median 4.95 4.92 5.23 5.51 5.38 5.39 4.81 5.09 4.91 5.43 5.13 6.27 5.50 6.20 5.15 5.86
Trimmed Mean 4.90 4.64 5.30 5.33 5.23 5.25 4.74 4.85 4.82 5.03 4.99 5.78 5.09 5.73 4.86 5.40
DALFE(1) 4.81 4.58 5.20 5.31 5.16 5.20 4.65 4.81
DALFE(0:9) 5.05 4.83 5.42 5.35 5.33 5.34 4.90 4.96
DALFE(0:5) 5.27 5.19 5.53 5.58 5.49 5.68 5.23 5.46
AL Cluster(2) 4.83 4.28 5.30 5.13 5.29 5.13 5.32 5.27
AL Cluster(3) 4.38 3.91 4.91 4.87 5.03 4.98 5.14 5.32

Panel B: FW2 Panel E: TVW2
Mean 4.72 4.76 5.15 5.45 5.18 5.39 4.70 5.03 4.68 4.79 4.99 5.34 5.08 5.21 4.65 5.11
Median 4.89 5.33 5.25 5.79 5.43 5.85 4.84 5.50 4.75 5.16 5.14 5.87 5.28 5.71 4.66 5.48
Trimmed Mean 4.79 4.85 5.25 5.51 5.27 5.49 4.77 5.11 4.64 4.88 5.06 5.40 5.12 5.30 4.58 5.15
DALFE(1) 4.71 4.75 5.20 5.47 5.22 5.42 4.70 5.01
DALFE(0:9) 5.01 4.98 5.48 5.56 5.43 5.52 5.00 5.29
DALFE(0:5) 5.13 5.17 5.59 5.71 5.55 5.74 5.26 5.60
AL Cluster(2) 4.99 4.55 5.48 5.49 5.53 5.48 5.66 5.76
AL Cluster(3) 4.57 4.31 5.23 5.36 5.40 5.46 5.63 5.83

Panel C: FW3 Panel F: TVW3
Mean 4.87 5.82 5.10 5.58 5.03 5.53 4.64 5.15 4.95 4.81 4.96 5.63 5.17 5.58 5.00 5.24
Median 4.96 5.89 5.20 5.68 5.32 5.81 4.90 5.52 5.15 5.33 5.11 6.23 5.54 6.14 5.24 5.76
Trimmed Mean 4.92 5.86 5.23 5.71 5.12 5.62 4.66 5.12 4.99 4.92 5.00 5.73 5.21 5.70 4.99 5.33
DALFE(1) 4.86 5.81 5.14 5.62 5.07 5.57 4.66 5.19
DALFE(0:9) 5.06 5.99 5.31 5.79 5.20 5.70 4.77 5.19
DALFE(0:5) 5.29 6.17 5.47 5.94 5.40 5.88 5.10 5.50
AL Cluster(2) 4.65 5.48 5.06 5.54 5.07 5.55 4.93 5.34
AL Cluster(3) 4.22 4.97 4.68 5.12 4.80 5.26 4.75 5.12

Notes: CER denotes the Certainty Equaivalent Return (reported in annualized percentage points) that an investor with mean-variance preferences and risk aversion coe¢ cient
of three would gain when employing the alternative speci�cations. CER1 and CER2 correspond to the selection of the best subset k on the basis of a prior of � = 1=2 and
� = 1=3; respectively. The weight on stocks in the investor�s portfolio is restricted to lie between zero and 1.5. .
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Figure 1: Selection of k over the holdout and out-of-sample period for the quantiles employed for equity premium prediction with prior probability of inclusion � = 1=2
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Figure 2: Selection of k over the holdout and out-of-sample period for the quantiles employed for equity premium prediction with prior probability of inclusion � = 1=3
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Figure 3: Selection of k over the out-of-sample period for the quantiles employed for calculating volatility forecasts with prior probability of inclusion � = 1=2
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Figure 4: Selection of k over the out-of-sample period for the quantiles employed for calculating volatility forecasts with prior probability of inclusion � = 1=3


