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Abstract. The goal of this work is to determine the audio-video syn-
chronisation between mouth motion and speech in a video.
We propose a two-stream ConvNet architecture that enables the mapping
between the sound and the mouth images to be trained end-to-end from
unlabelled data. The trained network is used to determine the lip-sync

error in a video.
We apply the network to two further tasks: active speaker detection and
lip reading. On both tasks we set a new state-of-the-art on standard
benchmark datasets.

1 Introduction

Audio to video synchronisation (or lack of it) is a problem in TV broadcasting
for the producer and the viewer. In television, a lip-sync error of up to several
hundred milliseconds is not uncommon. The video usually lags the audio if the
cause of the error is in the transmission. These errors are often noticeable – the
threshold for detectability by an average viewer is around -125ms (the audio lags
the video) to +45ms (the audio leads the video) [1].

In film production, audio to video synchronisation is a routine task, as the
audio and the video are typically recorded using different equipment. Conse-
quently, many solutions have been developed in this industry, the clapperboard
being the most traditional one. Modern solutions use timecodes or sometimes
time warping between the audio from the camera’s built-in microphone and the
external microphone, but it is not common to use the visual content as a guide
to alignment.

Our objective in this work is to develop a language independent and speaker

independent solution to the lip-sync problem, using only the video and the audio
streams that are available to the TV viewer. The key contributions are the
ConvNet architecture, and the data processing pipeline that enables the mapping
between the sound and the mouth shapes to be learnt discriminatively from TV
broadcast, without labelled data. To our knowledge, we are the first to end-to-
end train a working AV synchronisation system.

This solution is of relevance to a number of different applications. We demon-
strate that the method can be applied to three different tasks: (i) determining
the lip-sync error in videos; (ii) detecting the speaker in a scene with multiple
faces; and (iii) lip reading. The experimental performance on all of these tasks
is extremely strong. In speaker detection and lip reading, our results exceed the
state-of-the-art on public datasets, Columbia [4] and OuluVS2 [2].
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1.1 Related works

There is a large body of work on the audio to video synchronisation problem. The
majority of these are based on methods that are not available to the television
receiver (e.g. embedding timestamps in the transport stream); instead we focus
on computer vision methods that only rely on the audio-visual data.

A number of papers have used phoneme recognition as a proxy task for solving
the lip-sync problem. In Lewis et al. [15], linear prediction is used to provide
phoneme recognition from audio, and the recognised phonemes are associated
with mouth positions to provide lip-sync video. Morishima et al. [19] classifies
the face parameters into visemes, and uses the viseme to phoneme mapping to
obtain the synchronisation. Although [13] and [18] do not explicitly classify the
sounds into phonemes, their approaches are similar to those above in that they
develop models by having the speaker record a set of vowels. Both [13] and [18]
correlate face parameters such as jaw position to the FFT of the sound signal.
Zoric and Pandzic [29] have used neural networks to tackle the problem. A multi-
layer feedforward neural network is trained to predict the viseme from MFCC
input vectors. A parametric face model is used for the visual processing. We do
not make an intermediate classification of sounds and mouth shapes into vowels
or phonemes.

More recent papers have attempted to find correpondence between speech
and visual data without such labels. A number of approaches are based on canon-
ical correlation analysis (CCA) [3, 22] or co-inertia analysis (CoIA) [20] of audio
and visual features (e.g. geometric parameters or 2D DCT features). The most
related work to ours is that of Marcharet et al. [17] that uses a Deep Neu-
ral Network (DNN)-based classifier to determine the time offset based also on
pre-defined visual features (speech class likelihoods, bottleneck features, etc.),
whereas we learn the visual features directly.

Of relevance to the architectures developed in this paper are Siamese net-
works [6], in which similarity metrics are learnt for face classification without
explicit class labels. [23, 27] are also relevant in that they simultaneously train
multi-stream networks in which the inputs are of different domains.

2 Representations and architecture

This section describes the representations and network architectures for both the
audio and the video inputs. The network ingests 0.2-second clips of each data
type. In the dataset (Section 3), no explicit annotation (e.g. phonemes labels, or
the precise time offset) is given for the audio-video data, however we make the
assumption that in television broadcasts, the audio and the video are usually

synced.

The network consists of two asymmetric streams for audio and video, each
of which is described below.
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2.1 Audio stream

The input audio data is MFCC values. This is a representation of the short-
term power spectrum of a sound on a non-linear mel scale of frequency. 13 mel
frequency bands are used at each time step. The features are computed at a
sampling rate of 100Hz, giving 20 time steps for a 0.2-second input signal.
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Fig. 1. Input representations. Left: temporal representations as heatmaps for au-
dio. The 13 rows (A to M) in the audio image encode each of the 13 MFCC features
representing powers at different frequency bins. Right: Grayscale images of the mouth
area.

Representation. The audio is encoded as a heatmap image representing MFCC
values for each time step and each mel frequency band (see Figure 1). The top
and bottom three rows of the image are reflected to reduce boundary effects.
Previous work [9] has also attempted to train image-style ConvNet for similar
inputs.

Architecture. We use a convolutional neural network inspired by those de-
signed for image recognition. Our layer architecture (Figure 2) is based on VGG-
M [5], but with modified filter sizes to ingest the inputs of unusual dimensions.
VGG-M takes a square image of size 224×224 pixels, whereas our input size is
20 pixels (the number of time steps) in the time-direction, and only 13 pixels in
the other direction (so the input image is 13× 20 pixels).

2.2 Visual stream

Representation. The input format to the visual network is a sequence of mouth
regions as grayscale images, as shown in Figure 1. The input dimensions are
111×111×5 (W×H×T) for 5 frames, which corresponds to 0.2-seconds at the
25Hz frame rate.

Architecture. We base our architecture on that of [7], which is designed for
the task of visual speech recognition. In particular, the architecture is based on
the Early Fusion model, which is compact and fast to train. The conv1 filter has
been modified to ingest the 5-channel input.
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layer   support   # filts

Key

pool1 3x3                  
conv1  3x3     96

pool2 3x3
conv2  3x3      256

120x120x5

conv3 3x3    512

conv4 3x3    512

pool5 3x3 
conv5 3x3        512

fc6 6x6        4096

fc7 1x1        256

conv1  3x3     96

pool2 1x3
conv2  3x3      256

conv3 3x3    512

conv4 3x3    512

pool5 3x3 
conv5 3x3        512

fc6 5x4       4096

fc7 1x1        256contrastive loss

13x20x1

Fig. 2. Two-stream ConvNet architecture. Both streams are trained simultaenously.

2.3 Loss function

The training objective is that the output of the audio and the video networks are
similar for genuine pairs, and different for false pairs. Specifically, the Euclidean
distance between the network outputs is minimised or maximised. We propose
to use the contrastive loss (Equation 1), originally proposed for training Siamese
networks [6]. v and a are fc7 vectors for the video and the audio streams, re-
spectively. y ∈ [0, 1] is the binary similarity metric between the audio and the
video inputs.

E =
1

2N

N∑

n=1

(y) d2 + (1− y)max (margin− d, 0)
2

(1)

d = ||vn − an||2 (2)

An alternative to this would be to approach the problem as one of classi-
fication (on-sync/ off-sync, or into different offset bins using synthetic data),
however we were unable to achieve convergence using this method.

2.4 Training

The training procedure is an adaptation of the usual procedure for a single-
stream ConvNet [14, 24] and inspired by [6, 23]. However our network is different
in that it consists of non-identical streams, two independent sets of parameters
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and inputs from two different domains. The network weights are learnt using
stochastic gradient descent with momentum. The parameters for both streams
of the network are learnt simultaneously.

Data augmentation. Applying data augmentation often improves validation
performance and reduces overfitting in ConvNet image classification tasks [14].
For the audio, the volume is randomly altered in the range of ±10%. We do not
make changes to the audio playback speed, as this could affect the important
timing information. For false examples only, we take random crops in time. For
the video, we apply the standard augmentation methods used on the ImageNet
classification task by [14, 24] (e.g. random cropping, flipping, colour shift). A
single transformation is applied to all video frames in a single clip.

Details. Our implementation is based on the MATLAB toolbox MatConvNet [26]
and trained on a NVIDIA Titan X GPU with 12GB memory. The network is
trained with batch normalisation [10]. A learning rate of 10−2 to 10−4 is used,
which is slower than that typically used for training a ConvNet with batch nor-
malisation. The training was stopped after 20 epochs, or when the validation
error did not improve for 3 epochs, whichever is sooner.

3 Dataset

Fig. 3. Still images of BBC News videos.

In this section, we describe the pipeline for automatically generating a large-
scale audio-visual dataset for training the lip synchronisation system. Using the
methods described, we collect several hundred hours of speech from BBC videos,
covering hundreds of speakers. We start from BBC News programs recorded be-
tween 2013 and 2016 (Figure 3), given that a large number of different people
appear in the news, in contrast to dramas with a fixed cast. The training, vali-
dation and test sets are divided in time, and the dates of videos corresponding
to each set are shown in Table 1.

The processing pipeline is summarised in Figure 4. The visual part of the
pipeline is based on the methods used by Chung and Zisserman [7], and we
give a brief sketch of the method here. First, shot boundaries are determined
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Set Dates # pairs # hours

Train 01/07/2013 - 31/08/2015 3,707K 606

Val 01/09/2015 - 31/12/2015 316K 42

Test 01/01/2016 - 31/05/2016 350K 47

Table 1. Dataset statistics: recording dates, and number of genuine (positive) and
false lip-sync audio-video training samples, number of hours of facetrack.

by comparing color histograms across consecutive frames [16]. The HOG-based
face detection method of [12] is then performed on every frame, and the face
detections are grouped across frames using a KLT tracker [25]. We discard any
clips in which more than one face appears in the video, as the speaker is not
known in this scenario.

Video Audio extraction MFCC
feature extraction

Shot detection Face detection Face tracking

Fig. 4. Pipeline to generate the audio-visual dataset.

The audio part of the pipeline is straightforward. The Mel-frequency cepstral
coefficient (MFCC) [8] features are used to describe the audio, which are com-
monly used in speech recognition systems. No other pre-processing is performed
on the audio.

3.1 Compiling the training data

Positive pair Negative pair

Fig. 5. The process of obtaining genuine and false audio-video pairs.
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Genuine audio-video pairs are generated by taking a 5-frame video clip and
the corresponding audio clip. Only the audio is randomly shifted by up to 2
seconds in order to generate synthetic false audio-video pairs. This is illustrated
in Figure 5. We take the audio from the same clip, so that the network learns
to recognise the alignment, rather than the speaker.

Refining the training data. The training data generated using the proposed
method is noisy in that it contains videos in which the voice and the mouth
shapes do not correlate (e.g. dubbed videos) or are off-sync.

A network is initially trained on this noisy data, and the trained network is
used to discard the false positives in the training set by rejecting positive pairs
with distance over a threshold. A network is then re-trained on this new data.

Discussion. The method does not require annotation of the training data,
unlike some previous works that are based on phoneme recognition. We train
on audio-video pairs, and the advantage of this approach is that the amount of
available data is virtually infinite, and the cost of obtaining it is minimal (almost
any video of speech downloaded from the Internet can be used for training).
The key assumption is that the majority of the videos that we download are
approximately synced, although some videos may have lip-sync errors. ConvNet
loss functions and training are generally tolerant to the data being somewhat
noisy.

4 Experiments

In this section we use the trained network to determine the lip-sync error in
videos. The 256-dimensional fc7 vectors for each stream are used as features
representing the audio and the video. To obtain a (dis)similarity metric between
the signals, the Euclidean distance of the features is taken. This is the same
distance function that is used at training time. The histogram (Figure 6) shows
the distribution of the metric.

Fig. 6. The distribution of Euclidean distances for genuine and false audio-video pairs,
using a single 0.2-second sample. Note that this is on the noisy validation data that
may include clips of non-speakers or dubbed videos.
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4.1 Determining the lip-sync error

To find the time offset between the audio and the video, we take a sliding-window
approach. For each sample, the distance is computed between one 5-frame video
feature and all audio features in the ± 1 second range. The correct offset is when
this distance is at a minimum. However as Table 2 suggests, not all samples in
a clip are discriminative (for example, there may be samples in which nothing
is being said at that particular time), therefore multiple samples are taken for
each clip, and then averaged. Typical response plots are shown in Figure 8.

Evaluation. The precise time offset between the audio and the video is not
known. Therefore, the evaluation is done manually, where the synchronisation
is considered successful if the lip-sync error is not detectable to a human. We
take a random sample of several hundred clips from the part of the dataset that
has been reserved for testing, as described in Section 3. The success rates are
reported in Table 2.

Method Accuracy

Single sample (0.2s) 81%

Averaged over a clip >99%

Table 2. Accuracy to within human-detectable range.

Experiments were also performed on a sample of Korean and Japanese videos
(Figure 7), to show that our method works across different languages. Qualitative
results are extremely good, and will be available from our research page.

Fig. 7. Images of Korean and Japanese videos that were used for testing.

Performance. The data preparation pipeline and the network runs signifi-
cantly faster than real-time on a mid-range laptop (Apple MacBook Pro with
NVIDIA GeForce GT 750M graphics), with the exception of the face detection
step (external application), which runs at around ×0.3 real-time.

4.2 Application: active speaker detection

The problems of AV synchronisation and active speaker detection are closely re-
lated in that the correspondence between the video and the accompanying audio
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Fig. 8. Mean distance between the audio and the video features for different offset
values, averaged over a clip. The actual offset lies at the trough. The three example
clips shown here are for different scenarios. Left: synchronised AV data; Middle: the
audio leads the video; Right: the audio and the video are uncorrelated.

must be established. Therefore, the synchronisation method can be extended to
determine the speaker in a scene where multiple faces are present. We define
the confidence score of a time offset (synchronisation error) as the difference be-
tween the minimum and the median of the Euclidean distances (e.g. this value is
around 6 to 7 for both plots in Figure 8). In a multi-subject scene, the speaker’s
face is naturally the one with the highest correspondence between the audio and
the video. A non-speaker should have a correlation close to zero and therefore
also a very low score.

Unlike the uni-modal methods for active speaker detection that rely on the
lip motion only, our method also can detect cases where the person is speaking,
but is uncorrelated to the audio (e.g. in dubbed videos).

Evaluation. We test our method using the dataset (Figure 9) and the evaluation
protocol of Chakravarty et al. [4]. The objective is to determine who the speaker
is in a multi-subject scene.

Fig. 9. Still images from the Columbia dataset [4].

The dataset contains 6 speakers, of which 5 (Bell, Bollinger, Lieberman, Long, Sick)
are used for testing. A score threshold is set using the annotations on the remain-
ing speaker (Abbas), at the point where the ROC curve intersects the diagonal
(the equal error rate).

We report the F1-scores in Table 3. The scores for each test sample are av-
eraged over a 10-frame or 100-frame window. The performance is almost perfect
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for the 100-frame window. The disadvantage of increasing the size of the aver-
aging window is that the method cannot detect examples in which the person
speaks for a very short period; though that is not a problem in this case.

Method [4] Ours

Window 10 100 10 100

Bell 82.9% 90.3% 93.7% 100%

Bollinger 65.8% 69.0% 83.4% 100%

Lieberman 73.6% 82.4% 86.8% 100%

Long 86.9% 96.0% 97.7% 99.8%

Sick 81.8% 89.3% 86.1% 99.8%

Table 3. F1-scores on the Columbia speaker detection dataset. The results of [4] have
been digitised from Figure 3b of their paper, and are accurate to around ±0.5%.

4.3 Application: lip reading

Training a deep network for any task requires large quantities of data, but for
problems such as lip reading, large-scale annotated data can be prohibitively
expensive to collect. However, unlabelled spoken videos are copious and easy to
obtain.

A useful by-product of the synchronisation network is that it enables very
strong mouth descriptors to be learnt without any labelled data. We use this
result to set the new state-of-the-art on the OuluVS2 [2] dataset. This consists of
52 subjects uttering the same 10 phrases (e.g. ‘thank you’, ‘hello’, etc.) or 10 pre-
determined digit sequences. It is assessed on a speaker-independent experiment,
where 12 specified subjects are reserved for testing. Only the video stream is
used for training and testing, i.e. this is a ‘lip reading’ experiment rather than
one of audio-visual speech recognition.

Experimental setup. A simple uni-directional LSTM classifier with one layer
and 250 hidden units is used for this experiment. The setup is shown in Fig-
ure 10. The LSTM network ingests the visual features (fc7 activations from the
ConvNet) of the 5-frame sliding window, moving 1-frame at a time, and returns
the classification result at the end of the sequence.

Training details. Our implementation of the recurrent network is based on the
Caffe [11] toolbox. The network is trained with stocastic gradient descent, with
a learning rate of 10−3. The gradients are back-propagated for the full length
of the clip. Softmax log loss is used, which is typical for a n-way classification
problem. Here n = 10 for the 10 phrases or digit sequences. The loss is computed
only at the final timestep.
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CNN
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Fig. 10. Network configuration for the lip reading experiment. ConvNet weights are
not updated at the time of LSTM training.

Method Short phrases Fixed digits

Zhou et al. [28] 73.5% -

Chung and Zisserman [7] 93.2% -

VGG-M + LSTM 31.9% 25.4%

SyncNet + LSTM 94.1% 92.8%

Table 4. Test set classification accuracy on OuluVS2, frontal view.

Evaluation. We compare our results to the previous state-of-the-art on this
dataset; and also the same LSTM setup, but instead with a VGG-M [5] convo-
lutional network pre-trained on ImageNet [21]. We report the results in Table 4.
In particular, it is notable that our result beats that of [7], which is obtained
using a network that has been pre-trained on a very large labelled dataset.

5 Conclusion

We have demonstrated that a two-stream ConvNet can be trained to synchronise
audio to mouth motion, from natural videos of speech that are easy to obtain.
A useful application of this method is in media players, where the lip-sync error
can be corrected on a local machine at run-time. Furthermore, the approach
can be extended to any problem where it is useful to learn a similarity metric
between correlated data in different domains.

We have also shown that the trained network works effectively for the tasks
of speaker detection in video, and lip reading.
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