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Outage and Diversity of Linear Receivers in
Flat-Fading MIMO Channels

Ahmadreza Hedayat Member, IEEE, and Aria Nosratinia Senior Member, IEEE

Abstract— This correspondence studies linear receivers for
MIMO channels under frequency-nonselective (flat) quasi-static
Rayleigh fading. The outage probability and diversity gain of
MMSE and Zero Forcing (ZF) receivers are investigated. It
is found that contrary to intuition, MMSE and zero-forcing
receivers may not perform similarly at high SNR. Assuming
M transmit and N receive antennas, the zero-forcing receiver
always has diversity N−M+1, unlike the MMSE receiver, whose
behavior can vary. Under separate spatial encoding, where data
from each transmit antenna is separately encoded, MMSE is
no better than ZF in terms of diversity. But for joint spatial
encoding systems, where an encoded stream is sent from all
the antennas, the MMSE receiver achieves diversity MN at low
spectral efficiencies but has diversity only M − N + 1 at high
spectral efficiencies.

I. INTRODUCTION

The fading wireless MIMO channel is characterized by a
mixing (interference) of the signals arriving from multiple
transmitter antennas. Sometimes multiple transmit antennas
are only used to increase reliability, e.g. orthogonal space-time
codes, thus the signals from multiple antennas are tightly struc-
tured and the interference can be undone at the receiver. How-
ever, transmit signals do not always have as much structure
(e.g. in the case of spatial multiplexing) thus more elaborate
methods may be needed to remove the spatial interference [1],
[2]. For example, nulling-and-cancelling detectors [1], [2], [3]
are capable of providing optimal detection.

Linear receivers, even though suboptimal, are much simpler
and therefore useful for many applications. In this corre-
spondence, we study linear MIMO receivers under quasi-
static flat fading. We calculate the diversity of linear receivers
via their outage probabilities. Since the outage probability is
closely related to the frame error rate, this also provides a
tangible measure of the performance of realistic systems. A
summary of our results is as follows: For a MIMO system
consisting of M transmit and N receive antennas, under flat
Rayleigh fading, zero-forcing receivers achieve diversity order
M −N + 1 under all cases studied. MMSE receivers achieve
the same diversity for transmission strategies that do not
allow combined coding of data streams, e.g. horizontal spatial
encoding. However, for coding strategies that allow joint
encoding of data streams, e.g. D-BLAST, a more interesting
scenario emerges. In such systems, for low spectral efficiencies
MMSE receivers can achieve the full diversity of MN , while
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for high spectral efficiencies only a diversity of M +N −1 is
possible. For intermediate values of R, diversities in between
the two extremes are observed.

II. LINEAR RECEIVERS

The input-output system model for flat fading MIMO chan-
nel with M transmit and N ≥ M receive antennas is r =
Hc + n, where c is the M × 1 transmitted vector, n ∈ CN×1

is the Gaussian noise vector, and r is the N × 1 received vector
at a given time instant. Throughout this paper, we assume H

has independent and identically distributed complex Gaussian
entries, i.e. H ∈ CN×M .

We consider linear receivers and evaluate the outage prob-
ability of a flat fading MIMO channel followed by a ZF or
MMSE receiver, assuming the channel is perfectly known to
the receiver. The ZF receiver is FZF = (HH

H)−1
H

H , which
transforms the received signal to

r̂ = FZF r = c + (HH
H)−1

H
H
n .

The MMSE receiver is FMMSE = (HH
H + ρ−1

I)−1
H

H ,
where ρ is the received SNR.

Since the symbols are detected individually, the SINR of the
individual symbols determines the performance. The detection
noise of ZF receiver, ñ

4
= (HH

H)−1
H

H
n, is a complex

Gaussian vector with zero-mean and covariance matrix Rñ =
σ2

n(HH
H)−1 . The kth diagonal element of Rñ is given by:

Rñ(k, k) = σ2
n(HH

H)−1
k = σ2

n

det
(

Ĥ
H
Ĥ

)

det (HHH)
, (1)

where (M)−1
k represents the kth diagonal element of the

inverse of M, and Ĥ is obtained by removing the kth row of
H. The associated SINR is γk = Ex/Rñ(k, k), which can be
shown to be a chi-square random variable with 2(N −M +1)
degrees of freedom [4], [5]. The CDF of Y ∼ χ2(N−M+1),
with variance 0.5 for the participating Gaussian random vari-
ables, is:

FY (y) = 1 − e−y
N−M+1
∑

i=1

yi−1

(i − 1)!
. (2)

The SINR of the kth symbol of MMSE detector is deter-
mined by noise and residual interference

γk = h
H
k

(

ĤkĤ
H
k + ρ−1

I

)−1

hk =
1

(I + ρHHH)
−1
k

− 1 ,(3)

where hk is the kth column of H. Removing this column from
H gives Ĥk ∈ CN×(M−1) [6].
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Equation (3) shows that γk is a quadratic form whose
statistics has been derived in [7] as follows. Considering
the random matrix Ĥ ∈ CN×(M−1) and the random vector
h ∈ CN , the quadratic form Y = h

H(ĤĤ
H + ρ−1

I)−1
h has

the CDF

FY (y) = 1 − exp(−y

ρ
)

N
∑

n=1

An(y)

(n − 1)!

(

y

ρ

)n−1

, (4)

where the auxiliary functions An(y) are given by

An(y) =

{

1 N ≥ M + n − 1
1+
∑N−n

i=1
Ciy

i

(1+y)M−1 N < M + n − 1 .
, (5)

and Ci is the coefficient of yi in (1 + y)M−1 [7]. In general,
the SINR of the output symbols of the MMSE receiver are
correlated, unlike those of the zero-forcing receiver.

III. OUTAGE PROBABILITY IN SEPARATE SPATIAL
ENCODING

In separate spatial encoding, the data stream is demulti-
plexed to several sub-streams, one for each transmit antenna.
Furthermore, the resulting streams are not jointly encoded,
to achieve easier decoding. Horizontally encoded V-BLAST
is a prominent example of this strategy. In this scenario, if
any of the data streams is in outage, the entire system is in
outage. Hence, the outage event O occurs when any of the sub-
channels cannot support the rate that is assigned to it. In our
analysis, we consider equal rate for the sub-channels, however,
it is also possible to have a non-uniform rate assignment.

After linear transformation, the mutual information between
the elements of r̂ and the transmitted data vector c is
I(ck; r̂k) = log(1 + γk). Assume the target rate is R, and
let L

4
= N −M . According to (2) and (4), the statistics of γk

is invariant to k. Thus, the outage probability Pr(O) is :

Pr(O) = 1 − Pr

(

M
⋂

k=1

{

I(ck; r̂k) ≥ R

M

}

)

= 1 −
(

Pr

(

I(ck; r̂k) ≥ R

M

))M

≈ M Pr

(

I(ck; r̂k) <
R

M

)

, (6)

where (6) is accurate when sub-channel outage probabilities
are small. In the above, we have assumed that sub-channel
outage events are independent, which is valid for ZF. For
MMSE receivers the sub-channel outage events are not strictly
independent, but the approximation (used only in this section)
makes the analysis tractable and does not affect diversity.
Simulations show that the approximation has been properly
used. Alternatively, one may consider only the outage event
of a single sub-channel, which is an approximation that is
accurate enough for diversity calculation.

Using the CDF of χ2(N−M+1) in the evaluation of (6) gives
the outage probability for the ZF receiver, which is

Pr(O) ≈ MFY

(

2R/M − 1
)

◦
=

M(2R/M − 1)L+1

(L + 1)!
ρ−(L+1) , (7)

where ◦
= denotes equivalence in the limit as ρ → ∞. Thus the

ZF diversity order is L + 1. Substituting the distribution (4)
in (6), the MMSE outage probability is calculated:

Pr(O) ≈ MFY

(

2
R
M − 1

)

◦
=

yL+1

(L + 1)!
· yM−1

(1 + y)M−1
ρ−(L+1)

∣

∣

∣

∣

y=2
R
M −1

,(8)

which shows that MMSE diversity order is also L + 1.
However, the ZF and MMSE outage probabilities are not
exactly the same. The ratio of (7) to (8) is:

Pr(O)ZF

Pr(O)MMSE
=

(1 + y)M−1

yM−1

∣

∣

∣

∣

y=2
R
M −1

=

(

2
R
M

2
R
M − 1

)M−1

.

(9)
Note that the ratio of outage probabilities in (9) remains

fixed regardless of SNR and it only depends on the relative
target rate R

M . When R
M is small the outage probability of ZF

becomes larger than that of MMSE. The ratio (9) approaches
one when R

M is large (see Section V).
Generalization of the above results to non-uniform rate

assignment is straightforward. Uniform and non-uniform rate
assignment have the same diversity, even though they have
different outage probability performance.

IV. OUTAGE PROBABILITY IN JOINT SPATIAL ENCODING

In joint spatial encoding, the data stream is encoded and
then demultiplexed into sub-streams, each going to one an-
tenna (e.g. D-BLAST). Thus, each data symbol can contribute
to signals of all the transmit antennas. The receiver is in outage
when the aggregate mutual information of all the sub-channels
fails to support the target rate.

The mutual information between the elements of the linearly
transformed receive signal, r̂ and the transmitted data vector
c is I(ck; r̂k) = log(1 + γk). Assuming the target rate is R,
the probability of the outage event O is

Pr(O) = Pr

(

M
∑

k=1

log(1 + γk) < R

)

(10)

= Pr

(

M
∏

k=1

(1 + γk) < 2R

)

. (11)

Theorem 1: Consider a flat MIMO channel with M trans-
mit and N ≥ M receive antennas, and joint spatial encod-
ing. Under perfect channel state information available to the
receiver, the outage probability of ZF receivers decays with
order of N − M + 1.
Proof: See the Appendix.

Thus, we observe that the ZF diversity is the same for
separate and joint spatial encoding.

To obtain the MMSE outage probability, we substitute the
SINR from (3) in (11), which gives:

Pr(O) = Pr

(

M
∏

k=1

(

I + ρHH
H
)−1

k
> 2−R

)

. (12)

The dependence on the diagonal elements of the random
matrix

(

I + ρHH
H
)−1

makes further analysis intractable.
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Therefore, we proceed to provide an upper bound to this
probability. Rewriting the sum mutual information as in (10),
we have

−
M
∑

k=1

I(ck; r̂k) =

M
∑

k=1

log
(

(

I + ρHH
H
)−1

k

)

≤ M log

(

M
∑

k=1

1

M

(

I + ρHH
H
)−1

k

)

(13)

= M log

(

1

M
tr
(

(

I + ρHH
H
)−1
)

)

= M log

(

1

M

M
∑

k=1

1

1 + ρλk

)

, (14)

where (13) is due to Jensen’s inequality, and λk’s are the
eigenvalues of the Wishart matrix H

H
H. Substituting (14)

into (10) gives:

Pr(O) ≤ Pr

(

M
∑

k=1

1

1 + ρλk
≥ M2−

R
M

)

. (15)

Though (15) is an upper bound of the outage probability, in
Section V, through simulation, we show that it is a tight upper
bound in low and high spectral efficiency. Assuming N ≥ M ,
the joint PDF of the eigenvalues of H

H
H, λk’s, λ1 ≤ λ2 ≤

· · · ≤ λM , is

fΛ(λ) = KM,N

M
∏

i=1

λN−M
i

∏

i<j

(λi − λj)
2
exp

(

−
∑

i

λi

)

,

(16)
where KM,N is a normalizing constant [8].

The evaluation of (15) for a specific outage rate R is rather
difficult, due to the shape of the outage region. However, one
can calculate the bound for small and large values of R where
the the outage region can be approximated by regions with
simpler shapes.

For a MIMO channel with M = 2 and N ≥ 2, the
bound (15) is

Pr(O) ≤ Pr

(

1

1 + ρλ1
+

1

1 + ρλ2
≥ 21−R

2

)

. (17)

For convenience define

S(λ1, λ2)
4
=

1

1 + ρλ1
+

1

1 + ρλ2

and also define the set

A 4
=

{

(λ1, λ2) :
1

1 + ρλ1
+

1

1 + ρλ2
≥ 21−R

2

}

.

Then the right hand side of (17) is Pr(A). Exact calculation
of Pr(A) is not easy, thus we show its asymptotic behavior
by bounding it from below and above.

Let 0 ≤ R < 2. If λ1 = 0 outage occurs only when λ2 ≤
c2

4
= 2−b

ρ(b−1) , where b
4
= 21−R

2 . Because the curve S(λ1, λ2) =
b is convex, the region A is contained in the isosceles right
triangle with the base λ1 + λ2 = c2 and the two sides λ1 = 0
and λ2 = 0, and integral over the triangle is always larger
than Pr(A).

We now build another triangle that is contained by A. Using
the symmetry of S(λ1, λ2), it is not difficult to calculate that
an isosceles triangle with base λ1+λ2 = c̃2, where c̃2 = (2−b)

bρ ,
is contained in A and integration over this triangle is always
smaller than Pr(A).

Finally, we show that probability integrals over the two
triangles behave the same asymptotically, thus completing a
sandwich argument. To do so, consider the integral over any
such isosceles triangle with parameter c:

K2,N

∫ c

0

e−λ1λN−2
1

∫ c−λ1

0

λN−2
2 (λ1 − λ2)

2e−λ2dλ2 dλ1

= 2K2,N (N − 1)!(N − 2)!

(

1 − e−c
2N−1
∑

k=1

ck

k!

)

◦
= ρ−2N

(18)

where c could be c2 or c̃2. Since Pr(A) is bounded above
and below by values that have diversity-2N , it must have
diversity 2N . Now recall that Pr(O) ≤ Pr(A) therefore we
have established that outage has diversity no less than 2N .
Considering that 2N is also the maximum achievable diversity
order, we conclude that outage has exactly diversity order 2N .
This concludes the arguments for small spectral efficiencies.

Now we consider high spectral efficiencies, namely R > 2
and 0 ≤ b < 1. In this case, λ2 can drive the system to outage
regardless of the value of λ1 (and vice versa). For instance, let
λ1 → ∞, as long as λ2 ≤ d2 = 1−b

ρb , outage occurs. Thus, the
outage region has a strip along the λ1 axis for large enough
λ1, and likewise along λ2. In fact, the set of strips defined as
0 ≤ λ2, 0 ≤ λ1 ≤ d2 and 0 ≤ λ1, 0 ≤ λ2 ≤ d2 is contained
in A. Since S(λ1, λ2) = b is convex, it is possible to find d̃2,
which is proportional to ρ−1 but d̃2 > d2, such that A contains
the strips 0 ≤ λ2, 0 ≤ λ1 ≤ d̃2 and 0 ≤ λ1, 0 ≤ λ2 ≤ d̃2.
The probability of the above sets can be characterized using
the following expression:

2K2,N

∫ d

0

e−λ1λN−2
1

∫ ∞

0

λN−2
2 (λ1 − λ2)

2e−λ2dλ2 dλ1

◦
= ρ−(N−1) , (19)

where d could be d2 or d̃2. Therefore (19) indicates that the
upper bound (17) has the diversity N −1 = L+1, where L =
N −M . In the calculation of (19), the intersection of the two
orthogonal strips is calculated twice, but the intersection has
a probability that decays with ρ−2(N−1) and does not affect
the asymptotic behavior of (19).

The outage bounds developed above show the surprising
fact that MMSE receivers can achieve the same diversity as
the ML receiver for small values of R in joint spatial encoding.
However, for large values of R the diversity performance of
MMSE and ZF is the same. Hence, for MMSE the diversity
varies from the diversity of an unconstrained receiver to that
of ZF, depending of the target rate R. Comparing to the
results from Section III for separate spatial encoders, the
MMSE receiver has different diversity in joint spatial encoding
architecture, except for large outage rate R.

The previous results of the case M = 2, N ≥ 2 can be
extended to arbitrary values of M and N ≥ M . We state the
general result in the following theorem.
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Fig. 1. Outage probability of linear receivers, M = N = 2. The pairs
of solid and dashed lines, from left, correspond to MMSE and ZF for rates
R = 1, 2, 4, 10 bits/sec/Hz.

Theorem 2: Consider a flat MIMO channel with M trans-
mit and N ≥ M receive antennas, and joint spatial encod-
ing. Under perfect channel state information available to the
receiver, the upper bound (15) on the outage probability of
MMSE receivers decays with order of MN at low spectral
efficiency, i.e. R < M log

(

M
M−1

)

, resulting in the diversity
order of MN for the outage probability. At high spectral
efficiency R > M log M , (15) decays with the order of
N − M + 1.
Proof: See the Appendix.

V. SIMULATION RESULTS

We consider a MIMO system with two antennas in transmit
and receive sides: M = N = 2. The outage probability
of the linear receivers in the separate architecture is shown
in Figure 1. The target rate is R = 1, 2, 4, 10 bits/sec/Hz.
As expected, both linear detectors show diversity order of
one, regardless of the target rate. For higher values of R the
difference of ZF and MMSE performance is negligible. But,
for lower values of R, MMSE performs better than ZF for
all SNR. The dependency of the relative performance of these
receivers on the target rate R is in agreement with (9). In high
SNR, the ratio of the outage probabilities remains fixed.

Figure 2 shows the outage probability of the unconstrained
receiver and linear receivers in a joint spatial encoding archi-
tecture. The unconstrained receiver has the full diversity of the
channel. The ZF receiver has diversity one as expected from
the analysis in Section IV. The diversity order of ZF remains
unchanged regardless of the target rate R. Surprisingly, MMSE
diversity depends on R: in lower values of R the diversity
order is very close to that of the unconstrained receiver, and
in higher values of R its diversity becomes the same as ZF
diversity. These results are in agreement with the analysis in
Section IV.

Figure 2 also shows the outage probability of the MMSE
receiver and the upper bound (15). The bound is tight at
either low or high values of R. Though the bound is loose

in the intermediate values of R, it does predict diversity order
varying with R.

Figure 3 presents similar results for a flat fading MIMO
channel with M = N = 2 and correlated transmit antennas
with correlation factor ρt = 0.5. Outage probabilities are
slightly higher than the uncorrelated case, however, the behav-
ior of outage probabilities are the same. Figure 3 also shows
the results for uncorrelated MIMO channel with M = N = 4.

VI. CONCLUSION

We present new results on the performance of linear re-
ceivers for the removal of spatial interference in MIMO
Rayleigh flat fading channels, and calculate their diversity or-
der. Our analytical and experimental results show that MMSE
receivers have outage probability with varying decaying slope:
it may decay as fast as the outage probability of unconstrained
receiver, with the full order of MN , or as slowly as that of
ZF receivers, with the order of N −M + 1, depending on the
spectral efficiency.

The authors gratefully acknowledge comments from Dr.
Naofal Al-Dhahir.

APPENDIX

Proof of Theorem 1: The SINR of the sub-channels under
ZF are independent chi-square random variables with degrees
2(N − M + 1). Let Yk ∼ χ2(N−M+1), k = 1, · · · ,M . The
outage probability of ZF is given by the CDF of the random
variable

M
∏

k=1

(1 + Yk) = 1 +
M
∑

k=1

Yk + · · · +
M
∏

k=1

Yk . (20)

Among the components of the above random variable, the last
term, which is the product of Yk’s, determines the diversity
order since it is a chi-square with the lowest degree. In the
following, through recursion, we show that Y1 · Y2 · · ·YM has
diversity order L + 1. Let us start by Z

4
= Y1 · Y2. The PDF

of Z is

fZ(z) =
2

((L − 1)!)2
zLK0

(

2
√

z
)

, (21)

where K0(·) is the zeroth order modified Bessel function of
the second kind [9], which for small values of z is a constant1.
Therefore, for small values of z the first order approximation
of fZ(z) is zL. This shows that the CDF of Z, FZ(z), has
first order approximation equal to zL+1, which indicates the
diversity order of L + 1. Now consider the CDF of W

4
=

Y1 · Y2 · Y3 = Z · Y , where Y ∼ χ2(N−M+1):

FW (w) = Pr(W ≤ w) = Pr(Z · Y ≤ w)

=

∫ ∞

0

fZ(z)FY (
w

z
)dz

= α

∫ ∞

0

zLK0

(

2
√

z
)

e−
w
z

∞
∑

k=L+2

wk−1

zk−1(k − 1)!
dz

1For small values of x: Km(x) ∼
Γ(m)

2
(2/x)m [9].
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Fig. 2. Left: Comparison of receivers. Right: MMSE outage and the upper bound (15). M = N = 2 and the curves show rates R=1,2,4,10 bits/sec/Hz.
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Fig. 3. Comparison of receivers. Left: M = N = 2, correlated transmit antennas with ρt = 0.5, R=1,2,4,10 bits/sec/Hz. Right: M = N = 4, uncorrelated,
R=4,8,12,16 bits/sec/Hz.

where α is a constant. The first order approximation of above
around zero is

wL+1

∫ ∞

0

α

z(L + 1)!
K0

(

2
√

z
)

dz .

Thus, FW (w) behaves like the (L+1)th power of w, indicating
the diversity order L + 1. This procedure can be applied
recursively to find that the first order approximation of the
CDF of Y1 · Y2 · · ·YM behaves like wL+1. As mentioned, the
product term in (20) dominates the diversity. We just showed
that the product term Y1 · Y2 · · ·YM has the diversity order
L + 1. Therefore, the ZF diversity order is L + 1.

Proof of Theorem 2: First, we state and prove the following
lemma.

Lemma 1: Let

IM =

∫

· · ·
∫

∑

i
λi≤x

e−
∑

i
λi

M
∏

i=1

λki

i dλ1 · · · dλM . (22)

IM is polynomial in x with the minimum exponent of g(M) =

M +
M
∑

i=1

ki, where M and ki are integers.

Proof: With some algebra, one can obtain
∫ x

0

λme−λ dλ = m!

∞
∑

i=m+1

xi

i!
, (23)

∫ x

0

λm(x − λ)ne−λ dλ =
n
∑

j=0

C(j, n)(−1)jxn−j(m + j)!

×
∞
∑

`=m+j+1

x`

`!
, (24)

where m and n are integers and C(·, ·) are the binomial
coefficients. Using (23) and (24), I2 can be calculated as

I2 =
∞
∑

i=k1+1

n!

i!

i
∑

j=0

C(j, i)(−1)jxi−j(k2 + j)!
∞
∑

`=k2+j+1

x`

`!
,

where the minimum exponent of x is g(2) = k1 + k2 + 2.
Now we use induction. Assume that IM−1 =



6

∞
∑

i=g(M−1)

aix
i. Then

IM =

∫ x

0

λkM

M e−λM

∫

· · ·
∫

M−1
∑

i

λi≤x−λM

e
−

M−1
∑

i

λi
M−1
∏

i=1

λki

i dλ1 · · · dλM

=

∞
∑

i=g(M−1)

ai

∫ x

0

λkM

M e−λM (x − λM )i dλM

=

∞
∑

i=g(M−1)

ai

i
∑

j=0

C(j, i)(−1)jxi−j(kM + j)!

∞
∑

`=kM+j+1

x`

`!
,

(25)

where (25) is obtained using (24). Equation (25) indicates that
IM is polynomial in x with the minimum exponent of g(M −
1) + kM + 1 = g(M).

To prove Theorem 2, we first note that

∏

i<j

(λi − λj)
2 =

∑

(k1,...,kM )∈S

p(k1, · · · , kM )

M
∏

i=1

λki

i , (26)

where the set S is a subset of the (k1, · · · , kM ) indexes that
M
∑

i=1

ki = M(M − 1), and p(k1, · · · , kM ) is the corresponding

integer coefficient.
In low spectral efficiency, R < M log

(

M
M−1

)

, we can write
the right-hand side of (15) as

KM,N

∫

· · ·
∫

A

e−
∑

i
λi

M
∏

i=1

λN−M
i

∏

i<j

(λi − λj)
2 dλ1 · · · dλM

= KM,N

∑

(k1,...,kM )∈S

p(k1, · · · , kM )

×
∫

· · ·
∫

A

e−
∑

i
λi

M
∏

i=1

λN−M+ki

i dλ1 · · · dλM . (27)

We now bound the integration region A, from inside and from
outside, by polyhedra. Then we use a sandwich argument by
showing that the integration over the inner and outer polyhedra
gives the same asymptotic performance.

Using a direct extension of the argument developed in
the two-dimensional case (proceeding Equation (18)), it can
be seen that the polyhedron defined by λi ≥ 0,

∑

i λi ≤ cM ,
where

cM = ρ−1 M(1 − 2−
R
M )

1 + M(2−
R
M − 1)

,

contains the integration region A. Therefore an integral over
this polyhedron upper bounds the outage probability.

Now consider another polyhedron defined by
λi ≥ 0,

∑

i λi ≤ c̃M , where c̃M is proportional to ρ−1

but small enough so that A contains this polyhedron. The
base of this polyhedron can be calculated similarly to
Section IV.

c̃M = ρ−1(2R/M − 1)

Integration over this new polyhedron, which is characterized
by c̃M , lower bounds Pr(A).

Finally Lemma 1 establishes that the asymptotic behavior
of (27), while integrating over either of the two polyhedra, is
the same. Each multiple integral in (27) is in the form of IM

of Lemma 1, i.e., polynomial in cM with smallest exponent
M +

∑M
i=1(N − M + ki) = MN . Therefore, the upper

bound (15) decays with ρ−MN in low spectral efficiency,
indicating diversity order is no less than MN . At the same
time, MN is actually the maximum possible diversity order,
so the outage probability of MMSE receiver has diversity of
MN .

We now proceed to show the high-rate result, where the
developments parallel those for M = 2 in (19). For R >
M log M the outage region A can be upper and lower bounded
with orthogonal slabs along the coordinates. The first set
that is a subset of A has M orthogonal slabs where the
j-th slab is defined as λj ≤ dM and λi6=j ≥ 0, where
dM = ρ−1

(

1
M 2

R
M − 1

)

. The outage region A is a subset
of the second set of slabs whose definition is the same as the
first set with dM replaced with d̃M , which is also proportional
to ρ−1 and d̃M > dM .

Therefore, the right-hand side of the bound (15) is the same
as (27) with the exception that the integration region A could
be either of above sets. Considering the possibility of some
zero ki in (26) and the unbounded shape of A, there are
dominating terms such as

∫

· · ·
∫

λj≤dM ,λi6=j≥0

e−
∑

i
λiλN−M

j

M
∏

i6=j

λN−M+ki

i dλ1 · · · dλM ,

which is polynomial in dM with the minimum exponent of
N − M + 1. This indicates that the bound (15) decays with
ρ−(N−M+1) in high spectral efficiency. This completes the
proof of Theorem 2.
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