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Abstract— In this paper, we demonstrate that the packet outage
probability for fading channels can be significantly reduced by
exploiting queuing delay and transmitter channel information.
Queuing delay gain is conceptually similar to delay diversity,
but at a packet time-scale instead of symbol time-scale. First,
we compute a lower bound on outage probability assuming full
channel state information at the transmitter (CSIT). We then
construct simple outage minimizing transmission policies which
adapt the rate and power of the transmitted signal based jointly
on buffer occupancy and channel conditions. We demonstrate
that the rate of decrease of outage with increasing transmitter
channel information is higher for larger delays. We also address
the closely coupled problem of designing a practical feedback
channel which supplies the CSIT.

I. INTRODUCTION

In this paper, we propose a generalized framework for the
design of transmission policies that reduce the probability of
outage in block fading channels. Our emphasis is the interplay
between queuing delay, amount of channel state information at
the transmitter (CSIT) and outage probabilities. The proposed
policies adapt the transmission rate and power to minimize
the outage probability based on both the instantaneous buffer
state and CSIT. Using the proposed scheme, we show that
the outage probability reduces significantly (by an order of
magnitude or more) for small increases in packet delays.

Communication through fading channels has been investi-
gated under a variety of conditions (see [1] for a comprehen-
sive review). The capacity of fading channels with channel
state information (CSI) at the transmitter and receiver has
been studied in [2]–[4]. Power control (PC) mechanisms have
been widely investigated to improve performance in fading
channels. With perfect CSIT and instantaneous (low delay)
transmission of packets,1 the PC mechanism to minimize
channel outage is given by “channel inversion” of the form,
P = eR−1

γt
when the instantaneous channel gain, γt, is greater

than some threshold and zero otherwise. Thus, higher the
instantaneous channel gain, lower the transmission power.

On the other hand, with infinite delay and buffering, the PC
mechanism that achieves ergodic capacity, Ce, is given by the
well known “water-filling” technique [5], Pt = 1

γ̄
− 1

γt
if γ is

greater than some threshold and zero otherwise. In this case,
higher the instantaneous channel gain, higher the transmission
power. The proposed adaptation schemes for finite delays are
a combination of the two PC mechanisms discussed above;

1no packet can be queued for future transmission

the transmit power is a piecewise decreasing function of the
instantaneous channel gain (see Fig. 1b).

Recently, there have been many works that adapt the system
based jointly on the channel and traffic conditions. Transmit
power minimization with increasing delays in Gaussian and
fading channels has been investigated in [6]–[8]. The feedback
of quantized CSI has been investigated in [9] with the objective
of minimizing PC error caused by errors in feedback infor-
mation using a loop filter at the transmitter. A combination
of water-filling and channel inversion type power policy is
proposed in [10] to minimize probability of service outage (as
opposed to information outage).

In contrast to these, our work presented here is the first
known work on investigating the interplay between outage
probabilities, queuing delay and amount of CSIT in fading
channels. Given F−bits of CSIT, we show that its utility is
higher for larger delays. In other words, the rate of decrease
of outage with increasing F is larger for larger delays. We
also compute a lower bound on outage assuming full CSIT
and show that the amount of feedback required to achieve
the outage lower bound increases with delay. We also give an
empirical rule for choosing buffer size (equivalently delay) L
to ‘best’ utilize the F bits of CSIT; choose L to be the largest
integer such that F ≥ log2(L(L + 1)/2 + 1). We also use
a simple scalar quantizer of the instantaneous channel gain at
the receiver to determine the feedback information. The results
of this paper illustrate that similar outage performance can be
achieved using various amounts of CSIT, delays and transmit
powers. Thus the system designer has a lot of flexibility
in choosing these quantities depending on the quality of
service (QoS) requirements of the application.

Throughout the paper we assume constant rate packet
arrivals.2 The outage minimization problems in this paper
are analytically intractable except in some simple cases and
are solved using numerical techniques. We provide analytical
results using Lagrangian techniques for small delays and con-
jecture some properties of the optimal solution in the general
case, which are verified numerically. Also the receiver is
assumed to have perfect instantaneous knowledge of CSI. We
also assume packets are indivisible and have to be transmitted
completely with in a time-slot; however, multiple packets may
be transmitted in one time-slot.

The remainder of this paper is organized as follows. We

2Our results can be readily extended to time varying arrival traffic [11].



introduce the notations used and formulate the problem in
Section II. We compute a lower bound on outage probabilities
in Section III. We propose outage reducing schemes with finite
CSIT in Section IV. We conclude in Section V.

II. PROBLEM SETUP

Consider a single user time-slotted system in which exactly
one packet of fixed size R arrives into a buffer of size L
packets, at the beginning of every time-slot. The number of
packets in the queue at time t is denoted by qt. We use the
convention that if a packet is transmitted in the same time-slot
that it arrives, then the delay equals 1. We assume a first come
first serve policy and thus buffer size L is assumed to be equal
to the absolute delay bound, D.

We assume a block fading channel model in which the
complex channel gain ht is constant over Tc consecutive
symbols, which is also the length of one time-slot. The channel
fading ht is assumed to vary independently from one time-slot
to another. The transmitted signal xt depends on the number of
packets transmitted at time t and on the coding and modulation
scheme used. The complex received signal yt is given by,

yt = htxt + zt, (1)

where zt is the additive noise. The transmitted signal xt,
the received signal yt and the additive noise zt are Tc

dimensional complex vectors (vector quantities are represented
in boldface). The real and imaginary parts of ht are assumed
to be independent zero mean Gaussian, each with variance
1/2. Also, the additive noise zt is assumed to be circularly
symmetric Gaussian with zero mean and covariance σ2ITc

where ITc
is the identity matrix of size Tc.

For large Tc, the conditional mutual information between xt

and yt, I(yt;xt|ht), is a good indicator of the performance
of practical codes [12]. This mutual information is given by

I(yt;xt|ht) = Tc log

(

1 +
Pt|ht|

2

σ2

)

= Tc log (1 + Ptγt) ,

where γt = |ht|
2

σ2 is the normalized channel gain and Pt is the
transmit power during time-slot t.

The total packet loss probability, Π, depends on the prob-
ability of buffer overflows, Πb, and the frame error rate
of the actual transmission scheme. In this paper, we use
the probability of outage in the channel given by Πo =
Pr{I(yt;xt|ht) < R}, as an indicator of the frame error rate3

in practical systems [12]. Hence, Π = Πb + (1 − Πb)Πo.
The transmit power Pt during a time-slot depends on two

factors: the number of packets qt available for transmission
and γ̂t the estimate at the transmitter of the normalized channel
gain γt: Thus, Pt = f(qt, γ̂t).4 Note that once Pt is computed,
the instantaneous transmission rate is also determined. In
this paper, we consider a generalized class of thresholding
functions f which are described later in this section.

3By using the information theoretically defined Πo, we abstract away from
the actual coding scheme used.

4In this paper we assume that γ̂t is an error free quantized version of γt.
The channel estimation error and errors in the feedback channel are ignored.

The optimization problem we consider can be formally
stated as follows,

min
f

Π

E[Pt]≤P0

, (2)

where P0 is the average power constraint. The optimization
problem (2) is solved for a given delay bound D. First, we
compute a lower bound for outage probability by considering
γ̂t = γt, i.e., by assuming full CSIT. Then, we consider γ̂t to
be a F -bit quantization of γt and construct outage minimizing
policies that vary the transmission power and rate. Finally,
when there is no CSIT, γ̂t = E[γt]: The transmission power
is then a constant and that case is treated in [13]. Next, we
define the class of functions f considered in solving (2).

A. Special class of functions

Solving (2) over the set of all feasible functions f is
a hard (and open) problem. In this paper, we consider a
generalized class of functions that determine the instantaneous
transmission rate and power. The class of functions f consid-
ered involve the selection of thresholds γk,l, 1 ≤ l ≤ k ≤ L
such that during time-slot t, l packets are transmitted if qt = k
and γk,l ≤ γ̂t < γk,l+1, i.e., if buffer has k packets and
channel gain lies between certain thresholds. No packets are
transmitted if buffer state qt = k and channel gain γt < γk,1.
For notational simplicity, we let γk,0 = 0, γk,k+1 = ∞, ∀k.
There is also a natural constraint imposed on the thresholds
γk,l namely γk,l ≤ γk,m if l ≤ m, i.e., more packets are
transmitted when the instantaneous channel gain γt is higher.
The thresholds {γk,l}(illustrated in Fig. 1 for buffer state L)
are also the boundary regions of a scalar quantizer of γt at the
receiver. We consider transmission schemes (determined by f )

Fig. 1. Rate and power control policy with partial or full CSIT. The number
of packets transmitted in each case is also indicated.



in which outage does not occur in the channel, but only due to
packet dropping arising from buffer overflows. Hence, Πo = 0
and Π = Πb.5 Zero outage in the channel can be ensured
by choosing enough power to ensure that the instantaneous
mutual information is greater than R (see (7) and (11)).6 Since
we assume that exactly one packet arrives during every time-
slot, buffer overflows only occurs in the qt = L buffer state.7

The queue state qt forms a stationary Markov chain with L
states. The transition probabilities pji between the different
queue states defined as pji = Pr{qt+1 = j|qt = i}, can be
computed as

pji =































e−γi,1 − e−γi,2 if i = j 6= K

1 − e−γi,1 if j = i + 1

1 − e−γK,2 if i = j = K

e−γi,i−j+1 − e−γi,i−j+2 if j < i

0 else

(3)

The stationary probability of being in buffer state qt = i,
denoted by si (which is also the invariant distribution of the
Markov chain) is then given by,

Cs = s, (4)

where s = [s1s2 . . . sL]
′

and C is an L×L matrix whose ith

row and jth column is pij . Thus, the packet loss probability,
which depends on the thresholds γi,j , is given by

Π = Πb = sL

∫ γL,1

0

e−γdγ = sL(1 − e−γL,1). (5)

We now proceed to find a lower bound on outage probabilities
assuming full CSIT.

III. OUTAGE MINIMIZATION - LOWER BOUND

Delay bound D = 2: To gain a better understanding of
the tradeoffs between Π and D, we first solve (2) for the
special case of D = 2 ≡ L = 2 packets. Now, the stationary
probabilities of being in queue states qt = 1 and qt = 2 can
be computed in closed form by solving (4) and are given by,

s1 =
1− e−γ1,1

1 − e−γ1,1 + e−γ2,2
; s2 =

e−γ2,2

1 − e−γ1,1 + e−γ2,2
(6)

Recall that l packets are transmitted when qt = k and γk,l ≤
γ̂t ≤ γk,l+1. The transmission power, Pt, which ensures zero
outage in the channel is given by

Pt = f(k, γ̂t) =
elR − 1

γ̂t

if γk,l ≤ γ̂t ≤ γk,l+1 (7)

Consequently, the total transmission power is given by E[Pt] =
(eR − 1) (s1Ei(γ1,1) + s2Ei(γ2,1) − Ei(γ2,2)) + s2(e

2R −

1)Ei(γ2,2), where Ei(x) =
∫∞

x
e−γ

γ
dγ. The outage is given

5In this paper, we use outage or total packet loss probability to refer to Π

and channel outage to refer to Πo.
6Note that with no CSIT, zero outage in the channel can not be guaranteed.
7Also, the probability of buffer being empty is zero.

by Π2 = s2

∫ γ2,1

0 e−γdγ = s2(1 − e−γ2,1), where subscript 2
in Π2 indicates that D equals 2. Thus, (2) can be rewritten as,

Π∗
2 = min

γ1,1,γ2,1,γ2,2
E[Pt]<P0

s2(1 − e−γ2,1). (8)

Proposition 1: If γ∗
2,2 and γ∗

1,1 are solution to (8), then
γ∗
2,2 = γ∗

1,1e
R

Proof: The result follows from Lagrangian optimization tech-
niques and is omitted here in the interest of space. �

Using Lagrangian techniques to solve (8) also results in the
following closed form relationship,

γ∗
2,1 = Ei−1

[(

1 +
e−γ∗

1,1eR

1 − e−γ∗
1,1

)

P

(eR − 1)
−

e−γ∗
1,1eR

1 − e−γ∗
1,1

Ei(γ∗
1,1) − eREi(γ∗

1,1e
R)

]

.

Finding the optimal thresholds completely in closed form is in-
tractable and hence we use numerical optimization techniques.
Arbitrary delays: An approach similar to the D = 2 case can
be used to compute the lower bound for larger delays. In this
case, the optimization problem is

Π∗
L = min

{γi,j}
Pfull CSIT =

PL
k=1

Pk
l=1

sk(elR−1)(Ei(γk,l)−Ei(γk,l+1))<P0

sL(1 − e−γL,1). (9)

Based on Proposition 1, we conjecture that the optimal thresh-
olds follow the relations

γ∗
i,i = e(i−1)Rγ∗

1,1, i = 2, 3, . . . , L. (10)

Although proving (10) analytically is intractable, we found
it to hold in all our simulations. A consequence of (10) is
that the power required to transmit k packets when qt = k

is no greater than ekR−1
e(k−1)Rγ1,1

≈ eR−1
γ1,1

, which is the power
needed to transmit 1 packet when qt = 1. In other words, by
increasing the delay and waiting for buffer to build up to k
packets, we transmit k packets with the same power as that
needed to transmit one packet in buffer state 1. We solve (9)
using numerical optimization and a typical solution is given
below.

Example 1: Let L = 4, R = 0.8 and P0 = 1. The
optimal thresholds {γk,l} are given by γ∗

1,1 = 0.6762, γ∗
2,1 =

0.5859, γ∗
2,2 = 1.5067, γ∗

3,1 = 0.5367, γ∗
3,2 = 1.3043, γ∗

3,3 =
3.352, γ∗

4,1 = 0.4998, γ∗
4,2 = 1.1945, γ∗

4,3 = 2.8999, γ∗
4,4 =

7.4476 Clearly, log
(

γ∗
2,2

γ∗
1,1

)

= 0.801, log
(

γ∗
3,3

γ∗
1,1

)

=

1.601, log
(

γ∗
4,4

γ∗
1,1

)

= 2.399 thus strengthening conjecture (10).
Further note that conditioned on qt, the power Pt is a
piecewise decreasing function of γt (see Fig. 1). For
γk,l ≤ γt < γk,l+1, the power decreases with γt. At each of
the thresholds γk,l, there is a discontinuity, and the power
increases to transmit one additional packet.
The plot of the lower bound on Π versus delay D is given in
Fig. 2 for two different values of SNR. The arrival rate equals
0.9 nats/sec/Hz. At low SNR, the ergodic capacity Ce of the



channel equals 0.7 nats/sec/Hz which is lower than the average
arrival rate. Consequently, the lower bound on packet outage
probability does not approach zero with increasing delays:
The lower bound asymptotically equals 1 − Ce

R
= 2

9 . At high
SNR, the ergodic capacity equals 1 nats/sec/Hz which is larger
than the average arrival rate and the lower bound on outage
decreases rapidly with increasing delays and approaches zero.
The variation of lower bound with SNR for three different
delays is given in Fig. 4. Clearly, with increasing SNR, the
lower bound reduces for all delays. For a fixed SNR, the
reduction in the lower bound as D increases from 1 to 3 is
substantial.

IV. OUTAGE PROBABILITIES WITH PARTIAL CSIT

In Section III we found lower bounds on outage probability
assuming perfect CSIT. In this section, we propose thresh-
olding type power and rate control mechanisms that uses F
feedback bits to reduce the outage for various delays.

In the thresholding scheme introduced in Section II-A, the
number of thresholds in buffer state i equals i and hence the
total number of thresholds N =

∑L

i=1 i = L(L+1)
2 . These N

thresholds partition R+ (which is the range of γt) into N + 1
regions and hence we need log2(N + 1) bits to signal the
region in which the instantaneous channel gain lies.

Initially assume that F ≥ log2(N + 1). We now consider
a modified version of the thresholding scheme introduced in
Section II-A. In addition to the different γi,j thresholding
parameters, we introduce parameters β1, β2, . . . , βm, where
m = 2F − N − 1. The {γi,j} and {βi} parameters partition
R+ into 2F regions. While the γi,j parameters determine the
number of packets transmitted, the β parameters determine
the transmit power. It is assumed that both the transmitter and
receiver know these thresholding parameters a priori. Thus γ̂t

is an F -bit scalar quantized value of γt where the quantizer
thresholds are chosen to minimize the outage probability. The
receiver transmits a F -bit code word corresponding to the
region to which γt belongs.

As before, l packets are transmitted if qt = k and γk,l ≤
γt < γk,l+1 using power Pt given by

Pt = f(k, γ̂t) =
elR − 1

β
if γk,l ≤ γ̂t < γk,l+1, (11)

where β is the largest threshold that lies between γk,l and γ̂t

and is given by
β = argmax x

{β1,β2,...,βm,γk,l}

x<γ̂t

(12)

The transmit power is now a step function (Fig. 1). In the
special case of F = log2(N + 1) ⇒ m = 0, the transmit
power is given by elR−1

γk,l
. Asymptotically, as F → ∞,

this scheme approaches the adaptation mechanism for full
CSIT (Section III) and therefore the outage lower bound is
achieved. The total transmit power, Ppartial CSIT , can be
computed as,

Ppartial CSIT =

L
∑

k=1

sk

k
∑

l=1

∫ γk,l+1

γk,l

(elR − 1)

β
e−γdγ
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Fig. 2. Outage probabililty versus delay for 4 bit CSIT.

In this case, the outage minimization problem is similar
to (9) with Pfull CSIT replaced by Ppartial CSIT , which
we solve using numerical optimization techniques. We study
the variation of outage with regard to 3 different system
parameters: delay D, number of feedback bits F and SNR
by keeping the other parameters constant.
Outage versus delay: The variation of outage versus delay
is given in Fig. 2 for two different values of SNR. We see
that for low SNR the outage lower bound is achieved at all
delays. For high SNR, the outage decreases at a slower rate
with finite amount of CSIT than the lower bound. Thus the
difference between the lower bound and outage with 4-bits of
F increases with D. We see that at high SNR, as D increases
from 1 to 3, the outage probability reduces by nearly 2 orders
of magnitude.
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Fig. 3. Outage probabilities versus number of feedback bits. The horizontal
lines indicate the lower bound on outage probabilities.

Outage versus number of feedback bits: The plot of outage
probabilities versus F is given in Fig. 3 for D = 1. The loss
probability with 0 feedback bits is the outage probability with
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no CSIT. We find that with 1 bit of feedback, the outage
probability does not reduce much from the no CSIT case.
However, as the feedback increases beyond 1 bit, the outage
probability reduces drastically. Asymptotically, as F increases,
the outage probability approaches the lower bound.

The reason why one bit of feedback does not reduce outage
much is as follows. With no CSIT, the optimal PC policy
transmits at constant power P0∀γt. With one bit CSIT, the PC
policy we consider is of the form,

Pt =

{

(eR−1)
γ1,1

if γt > γ1,1

0 else
, (13)

where γ1,1 is chosen to satisfy the average power constraint,
∫∞

γ1,1

(eR−1)
γ1,1

e−γdγ ≤ P0. As the SNR increases, γ1,1 de-
creases and (13) is almost equivalent to transmitting at constant
power P0∀γt. Hence, there is no significant reduction in outage
with 1 bit CSIT.8

We also plot the variation of outage with F for delays 2
and 3 in Fig. 3.Again, note that as F increases, the outage
decreases and eventually reaches the lower bound. However,
larger the delay D, higher the number of feedback bits F
needed to achieve the lower bound.9 We find that the rate of
decrease of outage with F is larger for larger delays. Hence,
for given F , to best utilize the partial CSIT, the delay should be
chosen as the largest D′ (≡ L′) such that log2(

D′(D′+1)
2 +1) ≤

F , subject to not violating the delay bound.
Outage versus SNR: The plot of outage versus SNR using
F = 3 bits is given for three different delays in Fig. 4. For
comparison, the outage lower bounds for each of the three
buffer lengths is shown. We see that the rate of decrease of
outage with SNR is larger for larger D, similar to the variation
of the lower bound. The savings in power for small increases in
D is substantial. For example, at an outage of 10−2 increasing
D from 1 to 3, results in more than 5dB savings in power.

8PC policies in which Pt 6= 0∀γt also resulted in similar outage values.
9The lower bound for D = 2, 3 lies outside the scale of the figure and is

not shown.

Most of the power savings comes from the initial increase in
delays. The power savings by increasing delays further only
results in diminishing returns. An important implication of our
result is that small increases in delay leads to large reductions
in power at any given outage probability.

So far, we have proposed outage minimizing techniques
when F ≥ log2(N + 1). If F < log2(N + 1) then one
can still use the thresholding scheme of Section II-A, but
instead of allowing the buffer to build up to L packets, we
allow the buffer only to build up to the largest L̃ such that
F ≥ log2(

L̃(L̃+1)
2 +1). Clearly, such a scheme does not utilize

the available buffer optimally and is only an upper bound
on achievable performance. If F equals 0, then we have no
CSIT and outage reduction is possible by increasing encoding
delay:see [13] for preliminary results.

V. CONCLUSIONS

In this paper, we showed that outage probabilities in fading
channels can be reduced by exploiting a combination of
queuing delay and CSIT. We introduced simple threshold-
ing type power control mechanisms that significantly reduce
outage probabilities for small increases in delay. The effects
of imperfections in the channel estimate at the receiver and
in the feedback channel on outage performance needs to be
investigated in future work.
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