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Outage Probability Analysis of Dual Hop
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Abstract

Cooperative relaying improves the performance of wireless networks by forming a network of

multiple independent virtual sources transmitting the same information as the source node. However,

interference induced in the network reduces the performance of cooperative communications. In this

work the statistical properties, the cumulative distribution function (CDF) and the probability density

function (PDF) for a basic dual hop cooperative relay network with an arbitrary number of interferers

over Rayleigh fading channels are derived. Two system models are considered: in the first system model,

the interferers are only at the relay node; and in the second system model, interferers are both at the

relay and the destination. This work is further extended to Nakagami-m faded interfering channels.

Simulation results are presented on outage probability performance to verify the theoretical analysis.
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I. INTRODUCTION

Wireless channels often suffer severe performance degradation due to multipath fading and

interference. The increase of spectral reuse in wireless systems exposes the network to ever-

large number of interfering nodes. Ad-hoc and multiuser networks often face interference from

other user nodes operating in multiple parallel channels. Interference can also appear in the

network as cochannel interference. Cooperative relay communications, originally introduced by

van der Meulen [1] has been extensively studied in [2]–[5] without the presence of interference.

In cooperative relay networks, cooperating nodes help the information source node by jointly

forming a virtual antenna array and thus providing higher diversity gain and information reception

reliability. In addition, cooperating relays can offer a very flexible extension of network coverage

without substantial development of infrastructure. However to date, research efforts on the

interference channels have mainly concentrated on information theoretic analysis [6]–[11] and

using assisted relay networks in [12]–[26]. Statistical modeling for single hop multiple antenna

systems with active interferers has been performed for maximal ratio combining (MRC) receivers

in [27]–[31] and using optimum combining receivers in [32]–[35].

Interference in cooperative relay networks has been extensively studied in previous publications

[12]–[22]. Authors of [12] and [13] consider a scenario where only the relay node experiences

interference in interference limited networks and the receiver node remains interference free. The

relays here can estimate the instantaneous CSI of interfering channels to scale the gain. A fixed

gain AF relay with interference limited destination is considered in [14]. However, the assumption

that the AF relay gain parameter includes the instantaneous or average channel information of

interfering channels (as assumed in [12]–[15], [17], [19], [20]) requires additional computational

capability at the relaying node, and in certain cases where the interfering signals are not known

to the relay a priori, the technique can not be applied. Furthermore, in many previous results

authors consider interference limited cooperative networks [17]–[22]. Outage performance of

a dual hop network has been studied using a fixed gain relay in [17] and hypothetical gain

AF relay in [18] with an arbitrary number of interferers. The system is assumed to be an
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interference dominated network where noise power is negligible compared to interfering signal

power. Closed form PDF and CDF of signal to interference ration (SIR) are derived. Avoiding the

noise in receiver systems usually provides an opportunity to express some of the integrals used

to obtain the CDF and the PDF in very standard formats. Outage probability using DF relays

in Nakagami-m fading channels is studied in [22]. The authors consider that the destination

faces a negligible amount of interference, but non-negligible noise. The PDF and CDF of

corresponding receiver SNR is derived. In [25], the authors have studied transmission techniques

designed to manage interference using an information-theoretic approach. Bit error rate (BER)

performance has been presented in [36] for a multi-user network in which multiple sources

communicate with one receiver node via a common relay in a dual hop network. A different

approach has also been proposed to cancel the interference at the relay node. In [37], the authors

have investigated the effect of cooperation in an interference-limited system utilizing a decode-

and-forward (DF) relaying protocol over Rayleigh fading channels. It divides the cooperating

nodes into different cooperating regions and quantifies the relation between cooperative region

radius and the interference level. It also analyzes the network sum rate optimization problem for

a cooperative region radius.

In this work, we derive the closed form expressions of statistical properties, the CDF and

the PDF of signal to noise plus interference ratio (SINR) of an interference relay network that

is operating under the influence of arbitrary number of interferes and noise. An amplify-and-

forward (AF) relaying protocol is adopted due to its simplicity and ease of deployment at relay

nodes. Lastly numerical results on the outage probability performance are presented to verify

the theoretical analysis via Monte-Carlo simulations.

II. SYSTEM AND CHANNEL MODEL

Consider a single source-destination pair communicating via a single antenna relay without any

direct link. We will denote source-relay and relay-destination links as S-R and R-D respectively.

A half duplex AF protocol has been considered over independent and non identically distributed

(i.n.i.d.) Rayleigh fading channels. In this paper, two different system models are investigated:
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system model 1 (SM 1), in which the interferers are only at the relay node; and system model

2 (SM 2), where interferers affect both the relay and destination nodes. In both models, all the

interfering channels are i.n.i.d. Rayleigh faded. The destination is assumed to have full channel

state information (CSI) of the two main channels, S-R and R-D, while the relay has full CSI of

the S-R channel only. The source and relay have no CSI of forwarding transmitting channels.

None of the nodes, source (S), relay (R) and destination (D) possess information about the

interfering channels.

The instantaneous and average signal to noise ratio (SNR) of 1st and 2nd hops are denoted as

γi ,
P |hi|

2

σ2
i

and λi ,
PΩi

σ2
i

respectively, where i ∈ {1, 2}, P is the corresponding source and relay

power; hi and Ωi are the instantaneous and average channel gain of the ith hop respectively1 and

σ2
i is the one sided additive white Gaussian noise (AWGN) power at relay or destination node,

i.e. i ∈ {R,D}. We assume the total power of the network (source and relay) is constrained to

Ptot. This total power is split between the source and the relay by a power sharing coefficient

ζ ∈ (0, 1] such that the source and the relay powers are given by, PS = (1−ζ)Ptot and PR = ζPtot

respectively. Thus if equal power sharing protocol is adopted, ζ will be 0.5.

Let there be a total of L interferers in the system, and define an interferer set I, the set of all

interfering source nodes. For example, any interferer Il ∈ I, where l ∈ L, L = {1, 2, 3....., L}.

The elements of interfering channel row vectors hI,i ∈ CL represent the corresponding interfer-

ence channels from the source element nodes of the interfering signal source vectors xI,i ∈ CL,

i ∈ {R,D}.2 Furthermore, we assume the interferer Il has individual transmit power PI,l. Thus

the instantaneous and the average interference power to noise ratio (INR) for any interferer Il

is γI,l ,
PI,l|hI,l|2

σ2
i

and λI,l ,
PI,lΩI,l

σ2
i

respectively. hI,l and σ2
i are the fading channel gain from

the interfering source Il to the node i and the noise power at node i respectively, l ∈ L and

i ∈ {R,D}. ΩI,l is the average interfering channel gain, ΩI,l , E
[
|hl,l|2

]
. Throughout this paper

the term INR will be used to indicate individual interferer signal power to noise ratio unless

1The average channel gain, Ωi is in fact the statistical average of the squared instantaneous channel gain hi, i.e. Ωi , E
[

|hi|
2
]

.

2 CL denotes a L-dimensional complex vector.
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otherwise specified.

A. System Model 1: Interference at Relay

In the network model as shown in Fig. 1, interference occurs only at the relay node. The

received signal at the relay node R is

yR = h1xs + hI,1x
T
I,1 + n1 (1)

where, hI,1 ∈ CL and xI,1 ∈ CL are the row vectors for the interference channels and the

corresponding interfering signal sources respectively. The notation (.)T represents the transpose

operation on a vector. The signal at the destination node is

yD = Gh2h1xs +Gh2hI,1x
T
I,1 + Gh2n1 + n2 (2)

where G is the AF relay gain. n1 ∼ CN (0, σ2
1) and n2 ∼ CN (0, σ2

2) are additive white Gaussian

noise at the relay and destination respectively.3 At the receiver node, the signal to interference

plus noise ratio (SINR) will be

γSINR1 =
G2|h1|2|h2|2PS

G2|h2|2hI,1ΣI,1h
†
I,1 +G2|h2|2σ2

1 + σ2
2

(3)

where the diagonal matrix ΣI = E
{

x
†
I,1xI,1

}

is composed of interference signal powers. With

hypothetical AF relay gain G2 = PR

PS |h1|
2 , the end-to-end SINR is [3]4,

γSINR1 =
γ1γ2

γ1 + γ2 + γ2γI
(4)

where γ1 and γ2 are the instantaneous SNRs for S-R and R-D links respectively. γI is the total

interference to noise ratio at the relay node, which is literally the sum of all individual INRs.

Note that due to the Rayleigh fading assumption, the first and second hop SNR γ1 and γ2 are

exponentially distributed with mean parameter λ1 and λ2 respectively. Later, it will be shown that

under an equal power sharing protocol at the source and relay nodes, the system performance

3CN
(

λ, σ2
)

denotes a circularly symmetric complex Gaussian random variable with mean λ and variance σ2.

4 A CSI assisted relay gain G2 = PR

|h1|
2PS+σ2

1

proposed in [2] render the end-to-end SINR as γSINR = γ1γ2
γ1+γ2+γ2γI+1

. Eq. (4)

proposes a tight upper bound on the CSI assisted SINR γSINR.
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metric of system model 1 does not vary if the interferers are switched from the relay to the

destination node.

B. System Model 2: Interference at Relay and Destination

In this network model, interference occurs both at the relay and at the destination nodes.

We let there are L1 interferers at the relay node and L2 interferers at the destination. All the

interfering channels are independent and non-identically distributed. In this case, the received

signal at the destination is

yD = Gh2h1xs +Gh2hI,1x
T
I,1 + hI,2x

T
I,2 +Gh2n1 + n2 (5)

where xI,1 ∈ CL1 and xI,2 ∈ CL2 are the vectors with interference sources for the relay and

receiver nodes respectively, and hI,1 ∈ CL1 and hI,2 ∈ CL2 are the corresponding fading channels

from interferers to the relay and receiver nodes respectively. Again, as for SM 1, G is the AF

relay gain, n1 ∼ CN (0, σ2
1) and n2 ∼ CN (0, σ2

2) are AWGN at the relay and the destination

respectively. Thus the SINR with arbitrary relay gain is given by

γSINR2 =
G2|h1|2|h2|2PS

G2|h2|2hI,1ΣI,1h
†
I,1 + hI,2ΣI,2h

†
I,2 +G2|h2|2σ2

1 + σ2
2

(6)

ΣI,1 = E
{

x
†
I,1xI,1

}

and ΣI,2 = E
{

x
†
I,2xI,2

}

are diagonal matrices of the transmission powers

of interfering signals at the relay node and the destination respectively. Applying the similar

hypothetical relay gain as used in SM 1 at the AF relay, the receiver SINR is given by

γSINR2 =
γ1γ2

γ1 + γ2 + γ1γI,2 + γ2γI,1
(7)

where γI,1 and γI,2 are the total interference to noise ratio at the relay node and the destination

respectively.

III. STATISTICAL ANALYSIS

In the following sections statistical theorems related to the network of interest are developed.
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Definition 1: Let random variables X , Y and U be statistically independent, where X ∼

E
(

1
λx

)

and Y ∼ E
(

1
λy

)

.5 Random variable U =
L∑

l=1

Ul+1, where Ul ∼ E
(

1
λul

)

are i.n.i.d. expo-

nentially distributed random variables and U has the PDF, fU (u) =
ζ(Λ)∑

i=1

τi(Λ)∑

j=1

Xi,j(Λ)(u−1)j−1

Γ(j)λj

u〈i〉

e
−

(u−1)
λu〈i〉 ,6

u ≥ 1 [39]. A r.v. W is defined as

W =
XY

X + Y U
(8)

Theorem 1 (CDF and PDF): The cumulative distribution function (CDF) and probability den-

sity function (PDF) of random variable W are given respectively as

FW (w) = 1−
ζ(Λ)
∑

i=1

τi(Λ)∑

j=1

Xi,j (Λ)e
−w

(

1
λx

+ 1
λy

)

(
λx

λx + wλu〈i〉

)j
[

1 +

∞∑

k=0

k+1∑

n=0

(
k + 1

n

)

× w2k+2

Γ (j) (λxλy)
k+1 k!(k + 1)!

(
λxλu〈i〉
λx + wλu

)n
[

2Γ (j + n)

{

ln

(

w
√
λxλy

)

− ψk

}

+ G1,3
3,2




λxλu〈i〉

λx + wλu〈i〉

∣
∣
∣
∣
∣
∣

1− j − n, 1, 1

1, 0











 (9)

fW (w) =

ζ(Λ)
∑

i=1

τi(Λ)∑

j=1

Xi,j (Λ)e
−w

(

1
λx

+ 1
λy

)

(
λx

λx + wλu〈i〉

)j [
1

λx
+

1

λy
+

jλu〈i〉
λx + wλu〈i〉

−
∞∑

k=0

k+1∑

n=0

(
k + 1

n

)
w2k+1

Γ (j) (λxλy)
k+1 k!(k + 1)!

(
λxλu〈i〉

λx + wλu〈i〉

)n
[

2Γ (j + n) + I1 (w, λ)

{

2k + 2

−w (λx + λy)

λxλy
− (j + n)wλu〈i〉

λx + wλu〈i〉

}

+
wλu〈i〉

λx + wλu〈i〉
G2,3

4,3




λxλu〈i〉

λx + wλu〈i〉

∣
∣
∣
∣
∣
∣

1− j − n, 1, 1, 0

1, 1, 0













(10)

5 E
(

1
λx

)

denotes an exponential distribution with a hazard rate 1
λx

.

6 where Λ = diag (λu1
, λu2

, ...., λuL
). ζ (Λ) is the number of distinct diagonal elements of Λ and λu〈1〉 > λu〈2〉 > ...... >

λu〈ζ(Λ)〉 are the distinct diagonal elements in decreasing order. τi (Λ) is the multiplicity of λu〈i〉 and Xi,j (Λ) is the (i, j)th

characteristic coefficient of Λ [38].
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where ψk , 1
2
ψ (k + 1) + 1

2
ψ (k + 2), and I1 (w, λ) , G1,3

3,2




λxλu〈i〉

λx+wλu〈i〉

∣
∣
∣
∣
∣
∣

1− j − n, 1, 1

1, 0



 +

2Γ (j + n)

{

ln

(

w√
λxλy

)

− ψk

}

. Gm,n
p,q



x

∣
∣
∣
∣
∣
∣

ap

bq



 and ψ (x) are the Meijer-G function and the

Euler psi function defined as [40, eq. 8.2.1.1] and [41, eq. 8.360.1] respectively.

Note that, exchanging X and Y in Definition 1, represents the switching of the interference

from relay to destination node in (4). Hence, the CDF and PDF equations of SM1 are also

applicable to the general case when either the relay or destination is subject to interference. In

addition, the performance metric will be the same if an equal power sharing is adopted between

the source and relay nodes, that is, when ζ = 0.5.

Proof: See Appendix A.

Definition 2: Let random variables X , Y , U and V are statistically independent where X ∼

E
(

1
λx

)

and Y ∼ E
(

1
λy

)

. Random variables U =
L1∑

l=1

Ul + 1 and V =
L1∑

l=1

Vl + 1, Ul and Vl are

i.n.i.d. exponentially distributed random variables with PDFs [39]

fU (u) =

ζ(Λ1)∑

i=1

τi(Λ1)∑

j=1

Xi,j (Λ1)

Γ (j)λju〈i〉
(u− 1)j−1e

− (u−1)
λu〈i〉 , u ≥ 1 (11)

fV (v) =

ζ(Λ2)∑

p=1

τi(Λ2)∑

q=1

Xp,q (Λ2)

Γ (q)λqv〈p〉
(v − 1)q−1e

− (v−1)
λv〈p〉 , v ≥ 1 (12)

respectively. We define a r.v. Z such that

Z =
XY

XU + Y V
(13)

Theorem 2 (CDF and PDF): The cumulative distribution function (CDF) and probability den-

sity function (PDF) of random variable Z are given respectively as
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FZ (z) = 1−
ζ(Λ1)∑

i=1

τi(Λ1)∑

j=1

ζ(Λ2)∑

p=1

τp(Λ2)∑

q=1

Xi,j (Λ1)Xp,q (Λ2) e
−z

(

1
λx

+ 1
λy

)

(
λy

λy + zλu〈i〉

)j

×
(

λx
λx + zλv〈p〉

)q
[

1 +
∞∑

k=0

k+1∑

n=0

k+1∑

r=0

(
k + 1

n

)(
k + 1

r

)
z2k+2

Γ (j) Γ (q) (λxλy)
k+1 k! (k + 1)!

×
(

λyλu〈i〉
λy + zλu〈i〉

)r ( λxλv〈p〉
λx + zλv〈p〉

)n
[

2Γ (j + r) Γ (q + n)

{

ln

(

z
√
λxλy

)

− ψk

}

+ Γ (j + r)

× G1,3
3,2




λxλv〈p〉

λx + zλv〈p〉

∣
∣
∣
∣
∣
∣

1− q − n, 1, 1

1, 0



+ Γ (q + n) G1,3
3,2




λyλu〈i〉

λy + zλu〈i〉

∣
∣
∣
∣
∣
∣

1− j − r, 1, 1

1, 0













(14)

fZ (z) =

ζ(Λ1)∑

i=1

τi(Λ1)∑

j=1

ζ(Λ2)∑

p=1

τp(Λ2)∑

q=1

Xi,j (Λ1)Xp,q (Λ2) e
−z

(

1
λx

+ 1
λy

)

(
λy

λy + zλu〈i〉

)j (
λx

λx + zλv〈p〉

)q

×
[{

1

λx
+

1

λy
+

qλv〈p〉
λx + zλv〈p〉

+
jλu〈i〉

λy + zλu〈i〉

}

−
∞∑

k=0

k+1∑

n=0

k+1∑

r=0

(
k + 1

n

)(
k + 1

r

)

× z2k+1

Γ (j) Γ (q) k! (k + 1)! (λxλy)
k+1

(
λyλu〈i〉

λy + zλu〈i〉

)r ( λxλv〈p〉
λx + zλv〈p〉

)n
[

2Γ (q + n) Γ (j + r)

+ I2 (z, λ)

{

2k + 2− z (λx + λy)

λxλy
− (j + r) zλu〈i〉

λy + zλu〈i〉
− (q + n) zλv〈p〉

λx + zλv〈p〉

}

+
Γ (j + r) zλv〈p〉
λx + zλv〈p〉

G2,3
4,3




λxλv〈p〉

λx + zλv〈p〉

∣
∣
∣
∣
∣
∣

1− q − n, 1, 1, 0

1, 1, 0





+
Γ (q + n) zλu〈i〉
λy + zλu〈i〉

G2,3
4,3




λyλu〈i〉

λy + zλu〈i〉

∣
∣
∣
∣
∣
∣

1− j − r, 1, 1, 0

1, 1, 0











 (15)

where,

I2 (z, λ) , 2Γ (q + n) Γ (j + r)

{

ln z√
λxλy

− ψk

}

+Γ (j + r) G1,3
3,2




λxλv〈p〉

λx+zλv〈p〉

∣
∣
∣
∣
∣
∣

1− q − n, 1, 1

1, 0





+ Γ (q + n) G1,3
3,2




λyλu〈i〉

λy+zλu〈i〉

∣
∣
∣
∣
∣
∣

1− j − r, 1, 1

1, 0





Proof: See Appendix B.
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Proposition 1: Consider a system with L interferers in both relay and destination nodes where

the interfering channels are i.i.d. Rayleigh faded. Adopting an equal power allocation protocol

for source and relay node the cumulative distribution function of γSINR2 in (7) can be written as

FγSINR2
(γ) = 1− e−2γ/λ

(
λ

λ + γλI

)2L

− 1

Γ (L)2
e−2γ/λ

∞∑

k=0

k+1∑

n=0

k+1∑

r=0

(
k + 1

n

)(
k + 1

r

)

× λI
n+rγ2k+2

λ2k+2k!(k + 1)!

(
λ

λ+ γλI

)2L+n+r
[

2Γ (L+ n) Γ (L+ r)
{

ln
γ

λ
− ψk

}

+Γ (L+ r)G1,3
3,2




λλI

λ+ γλI

∣
∣
∣
∣
∣
∣

1− L− n, 1, 1

1, 0



 + Γ (L+ n)G1,3
3,2




λλI

λ+ γλI

∣
∣
∣
∣
∣
∣

1− L− r, 1, 1

1, 0









(16)

Proof: See Appendix C.

IV. INTERFERENCE AT RELAY: I.I.D. NAKAGAMI-m INTERFERERS

Proposition 2: Suppose the interfering channels are i.i.d. Nakagami-m distributed while the

main channels (S-R and R-D) are Rayleigh faded. In this case the CDF of γSINR2 can be written

as

FγSINR2
(γ) = 1− e

−γ
(

1
λ1

+ 1
λ2

)

(
λ2

λ2 + γαI,1

)m1L1
(

λ1
λ1 + γαI,2

)m2L2

×
[

1 +

∞∑

k=0

k+1∑

n=0

k+1∑

r=0

(
k + 1

n

)(
k + 1

r

)
γ2k+2 (λ1λ2)

−k−1

Γ (m1L1) Γ (m2L2) k! (k + 1)!

(
λ2αI,1

λ2 + γαI,1

)r

×
(

λ1αI,2

λ1 + γαI,2

)n [

2Γ (m1L1 + r) Γ (m2L2 + n)

{

ln

(
γ√
λ1λ2

)

− ψk

}

+Γ (m1L1 + r) G1,3
3,2




λ1αI,2

λ1 + γαI,2

∣
∣
∣
∣
∣
∣

1−m2L2 − n, 1, 1

1, 0





+Γ (m2L2 + n) G1,3
3,2




λ2αI,1

λ2 + γαI,1

∣
∣
∣
∣
∣
∣

1−m1L1 − r, 1, 1

1, 0











 (17)
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where αI,i = λI,i/mi, i ∈ {1, 2}. λI,1 and λI,2 are the average INR at the relay and the destination

respectively; similarly, m1 and m2 are i.i.d. Nakagami-m parameter at the relay and destination

respectively. The average SNR of the 1st and 2nd hop are λ1 and λ2 respectively.

Proof: See Appendix D.

V. OUTAGE PROBABILITY

In this section the derived analytical results are used to the investigate wireless network

outage probability performance. We define outage probability as the probability that the in-

stantaneous receiver SINR falls below a predefined threshold value of SINR γth. We consider

γth = ρ
(
2MR − 1

)
, where ρ varies from 1 to 6.4 depending on the degree of coding, M be the

number of hops and R the data rate in bits/s/Hz [42]. The CDF equations (9), (14) and (17)

may be used to evaluate the outage probabilities in SM 1 and SM 2 with an arbitrary number

of interferers and interfering powers.

VI. NUMERICAL ANALYSIS

In this section, numerical results on the derived equations are presented and compared with

Monte-Carlo simulations. Due to lack of transmitter CSI we assume the source and the relay

evenly share the total system power Ptot. Furthermore, for fair comparison with relevant studies

the average channel gain of all hops in this network are set to unity and the noise variance at

the relay and destination nodes are set to σ2. We consider γth = 3 which achieve a data rate

R = 1 in a dual hop network unless otherwise specified. The maximum value of k = 100 for

sum terms in (9) and (14) is used, which is sufficient to match the analytical result with the

simulation data. The number of interferers at the relay and destination are assumed to be same

(L1 = L2) in SM 2 networks, and all the interferers have equal transmit power. Throughout this

section we will use total average transmit SNR, λtot , Ptot/σ
2 as a function in performance of

SINR plots.

Fig. 2 shows the outage probability (OP) as a function of total transmit SNR for a total of

{4, 8, 16} interferers in SM 1 and SM 2 with INR fixed at 3 dB. All wireless channels (main
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channels and the interfering channels) are assumed to be Rayleigh faded. As expected, outage

probability increases with an increase in the number of interferers. However, when SM 1 has

the same number of interferers as the total number of interferers for SM 2, SM1 shows slightly

better performance compared to SM2 at a moderately low SINR region only. To study the OP

performance with different interfering powers Fig. 3 shows outage probability as a function of

λtot for a system with 4 interferers at the relay and 4 interferers at the destination. The INR

values {3, 6, 9, 12} dB are considered. Interestingly, the figure suggests that every 3 dB increase

in average INR values requires a subsequent increase of 3 dB total SNR on average to ensure

an OP of around 10−3. In contrast, Fig. 4 shows OP in a fixed 3 dB INR system in SM 2 with

a total of {4, 8, 12, 16} number of interferers at the relay and destination respectively. To see

how the interference system behaves if one of the nodes experiences most of the interference,

Fig. 4 shows OP with a large L2 and L1 = 4. For very high interference levels e.g. L2 = 10000

interferers at the destination node, a λtot = 77 dB is required to achieve an outage probability

of 10−3 compared to 50dB when L2 = 4.

Fig. 5 shows outage probability with number of interferers L in relay and destinations where

L1 = L2 = L and each interferer has an INR of 3dB. The figure shows how the outage

probability increases exponentially as the number of interferers increases. The plot includes

graphs for transmit SNRs of 20, 30, 40, 50 and 60 dB. A very interesting phenomenon observed

is that at 60dB of total transmit SNR the system can support up to 40 interferers at the relay

and destination, ensuring an outage probability of 10−3, however, with a reduction of only 10dB

in total transmit SNR the performance reduces drastically and it can support only 4 interferers

at the relay and destination for the same outage probability.

Fig. 6 shows the outage probability as a function of interference power when the relay

and destination are both subject to 4 interferers. The figure compares the outage probability

of an interference limited system (dashed line) studied in [18] to a system where both noise

and interference are present. To express total transmit power and interference power in dB we

normalize the terms considering noise power equal to 1 unit. Total transmission power of 20,
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30 and 40 dB are considered in the figure and the power of each interferer is rated from -30dB

to +30dB. Figure shows that the outage probability the noise plus interference network will be

similar to an interference limited network when the transmission power of each interferer is more

than 10 dB. However, performance will vary if the number of interferers in the network changes.

The figure also illustrates how noise dominates outage probability metric when interference power

is low.

The PDF of γSINR2 is presented in Fig. 7 for two different λtot, 20 dB and 25 dB, when the

individual interferer INRs are {3, 6, 9} dB. The figure implies that a lower INR per interferer

increases the probability of higher output SINR at the receiver and similarly when the INR is

constant, an increase in average total signal power results in a higher output SINR. In addition,

Fig. 8 shows the CDF of γSINR2 as a function of γth in dB for two λtot groups, 20 dB and 30

dB. Each group contains plots for 3 INRs 3, 6 and 9 dB. It reveals that higher average total

SNR and lower INR per interferer decreases the probability of outage.

Finally, Fig. 9 presents a plot over Nakagami-m faded interfering channels. The outage

probability is plotted as a function of λtot for different number of interferers and different

Nakagami channel parameter m in SM 2. Surprisingly, varying the Nakagami m parameter does

not result in any significant effects on outage performance if the number of interferers and INR

remain constant in the network.

VII. CONCLUSION

In this work, we derive the cumulative distribution function and the probability density function

of a dual hop interference relay network with arbitrary number of interferers, where the main

channels and the interfering channels are i.n.i.d. Rayleigh faded. Later the analysis is extended

for i.i.d. Nakagami-m faded interfering channels. This analysis has been performed for two

system models; in SM 1 interference is only at the relay node while in SM 2, interference

is at both the relay and destination nodes. The derived CDF and PDF expressions for SM 1

can also be used for analyzing an interference network where interference occurs only at the

destination node. Numerical results for outage probability performance for different network
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parameter configurations are presented. The Monte-Carlo simulations show an exact match with

the analytical expressions. Results indicate that in a total INR constrained interference network,

the number of interferers do not affect the performance of the system in a large scale. Similarly,

if the interfering channels are Nakagami-m distributed, changing in Nakagami-parameter m does

not affect the performance of the system if the number of interferers and the INR per interferer

remain constant.

APPENDIX

A. Proof of Theorem 1

According to the PDF of X , Y and U as defined in Definition 1, the random variables X , Y

and U are nonnegative, thus FW (w) = 0 for w < 0. For w ≥ 0 we have

FW (w) = P

{
XY

X + Y U
≤ w

}

= P {X (Y − w) ≤ wY U}

= 1− e−w/λy +

∫ ∞

1

∫ ∞

w

∫ wyu
y−w

0

fX (x) fY (y) fU (u) dxdydu (18)

The two inner integrals in (18) can easily be solved by using [41, eq. 3.351.3] and [41,

eq. 3.471.9] and after some manipulation the CDF of W is obtained,

FW (w) = 1−
ζ(Λ)
∑

i=1

τi(Λ)∑

j=1

2wXi,j (Λ) e
−w/λy

Γ (j)λju〈i〉
√
λxλy

∫ ∞

1

√
u(u− 1)j−1e−(u−1)/λu〈i〉

× e−wu/λxK1

(

2w

√
u

λxλy

)

du (19)

where Kν (x) is the νth order modified Bessel function of the second kind. Using [41, eq. 8.446]

we expand the first order modified Bessel function of second kind, then [40, eq. 8.4.6.5],

[43, eq. 3.40.1.1] and [41, eq. 3.351.3] are applied to solve the related integrals. After some

manipulation we arrive at the desired result (9). The PDF of W follows directly from the
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differentiation of the CDF of W in eq. (9) w.r.t. w by using [40, eq. 8.2.2.30],

d

dx



xσGm,n
p,q



x

∣
∣
∣
∣
∣
∣

ap

bq







 = −xσ−1Gm+1,n
p+1,q+1



x

∣
∣
∣
∣
∣
∣

ap,−σ

1− σ, bq



 (20)

B. Proof of Theorem 2

Following a similar argument as used in the proof of Theorem 1, the random variables X , Y ,

U and V are nonnegative, and thus FZ (z) = 0 for z < 0. For z ≥ 0,

FZ (z) = P

{
XY

XU + Y V
≤ z

}

= P {X (Y − zU) ≤ zY V } (21)

=

∫ ∞

1

∫ uz

0

fY (y) fU (u) dydu

︸ ︷︷ ︸

, Iuy

+

∫ ∞

1

∫ ∞

1

∫ ∞

uz

∫ zyv
y−zu

0

fX (x) fY (y) fV (v) fU (u) dxdydvdu

︸ ︷︷ ︸

, Iuvyx

The first part of this expression, integral Iuy can be solved by using [41, eq. 3.351.3], resulting

in

Iuy = 1−
ζ(Λ1)∑

i=1

τi(Λ1)∑

j=1

Xi,j (Λ1) e
−z/λy

(
λy

λy + zλu〈i〉

)j

(22)

In Iuvyx, the first two integrals for variables x and y can be solved using a similar approach,

via [41, eq. 3.351.3], [41, eq. 3.471.9], [41, eq. 8.446], [40, eq. 8.4.6.5] and [43, eq. 3.40.1.1].

Substituting (22) in (21) and after some manipulation we have the CDF of Z

FZ (z) = 1−
ζ(Λ1)∑

i=1

τi(Λ1)∑

j=1

ζ(Λ2)∑

p=1

τp(Λ2)∑

q=1

Xi,j (Λ1)Xp,q (Λ2)

Γ (j) Γ (q)λju〈i〉λ
q
v〈p〉

[

e−z/λxΓ (q)

(
λxλv〈p〉

λx + zλv〈p〉

)q

×
∫ ∞

1

(u− 1)j−1 e
− u−1

λu〈i〉 e−uz/λydu+

∞∑

k=0

k+1∑

n=0

(
k + 1

n

)
z2k+2e−z/λx

k! (k + 1)! (λxλy)
k+1

(
λxλv〈p〉

λx + zλv〈p〉

)q+n

×G1,3
3,2




λxλv〈p〉

λx + zλv〈p〉

∣
∣
∣
∣
∣
∣

1− q − n, 1, 1

1, 0





∫ ∞

1

uk+1 (u− 1)j−1 e
− u−1

λu〈i〉 e−uz/λydu

+
∞∑

k=0

k+1∑

n=0

(
k + 1

n

)
2z2k+2e−z/λxΓ (q + n)

k! (k + 1)! (λxλy)
k+1

(
λxλv〈p〉

λx + zλv〈p〉

)q+n

×
∫ ∞

1

uk+1 (u− 1)j−1 e
− u−1

λu〈i〉 e−uz/λy

{

ln

√
u

λxλy
z − ψk

}

du

]

(23)
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where ψk , 1
2
ψ (k + 1) + 1

2
ψ (k + 2). Now using [41, eq. 3.351.3], [40, eq. 8.4.6.5] and [43,

eq. 3.40.1.1] it is possible to solve (23), which then results in the desired eq. (14). Eq (15)

directly follows the differentiation of eq.(14) utilizing the property [40, eq. 8.2.2.30].

C. Proof of Proposition 1

When the interfering signals are from L equal power sources with i.i.d. interfering channels,

λu〈i〉 = λu = λI , λv〈p〉 = λv = λI and the characteristic coefficient Xi,j (Λ) of Λ becomes [39],

Xi,j (Λ) =







0 j = 1, 2, 3..

1 j = L
(24)

Using the above facts the proof of the Proposition 1 immediately follows from Theorem 2. Due

to equal power allocation, average 1st and 2nd hop SNR λ1 = λ2 = λ.

D. Proof of Proposition 2

If the interfering channels are i.i.d. Nakagami-m faded, in Definition 2, the PDF of r.v. U and

V can be modified to,

fU (u) =
(u− 1)L1m1−1

Γ (L1m1)α
L1m1
u

e−
(u−1)
αu , u ≥ 1 (25)

and

fV (v) =
(v − 1)L2m2−1

Γ (L2m2)α
L2m2
v

e−
(v−1)
αv , v ≥ 1 (26)

respectively, where αu = λu/mu and αv = λv/mv respectively, and m is the corresponding

Nakagami-m channel parameter. The r.v.s X and Y are exponentially distributed with hazard rate

1/λx and 1/λy respectively. The CDF of FγSINR2
(γ) for i.i.d. Nakagami-m interfering channels

can be obtained by replacing λu = αu, λv = αv, j = L1m1 and q = L2m2 in (14).
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Fig. 1. Interference relay network.
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Fig. 2. Outage probability vs total SNR in system model 1 and 2.
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Fig. 4. Outage probability vs total SNR in system model 2 with different number of interferers when INR=3 dB.
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Outage Probability Analysis of Dual Hop

Relay Networks in Presence of Interference

Bappi Barua, Mehran Abolhasan, Daniel Franklin and Farzad Safaei

Abstract

Cooperative relaying improves the performance of wireless networks by forming a network of

multiple independent virtual sources transmitting the same information as the source node. However,

interference induced in the network reduces the performance of cooperative communications. In this

work the statistical properties, the cumulative distribution function (CDF) and the probability density

function (PDF) for a basic dual hop cooperative relay network with an arbitrary number of interferers

over Rayleigh fading channels are derived. Two system models are considered: in the first system model,

the interferers are only at the relay node; and in the second system model, interferers are both at the

relay and the destination. This work is further extended to Nakagami-m faded interfering channels.

Simulation results are presented on outage probability performance to verify the theoretical analysis.
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Signal to interference plus noise ratio, interference to noise ratio, amplify and forward, probability
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I. INTRODUCTION

Wireless channels often suffer severe performance degradation due to multipath fading and

interference. The increase of spectral reuse in wireless systems exposes the network to ever-

large number of interfering nodes. Ad-hoc and multiuser networks often face interference from

other user nodes operating in multiple parallel channels. Interference can also appear in the

network as cochannel interference. Cooperative relay communications, originally introduced

by van der Meulen [?] has been extensively studied in [?], [?], [?], [?] without the presence

of interference. In cooperative relay networks, cooperating nodes help the information source

node by jointly forming a virtual antenna array and thus providing higher diversity gain and

information reception reliability. In addition, cooperating relays can offer a very flexible extension

of network coverage without substantial development of infrastructure. However to date, research

efforts on the interference channels have mainly concentrated on information theoretic analysis

[?], [?], [?], [?], [?], [?] and using assisted relay networks in [?], [?], [?], [?], [?], [?], [?], [?],

[?], [?], [?], [?], [?], [?], [?]. Statistical modeling for single hop multiple antenna systems with

active interferers has been performed for maximal ratio combining (MRC) receivers in [?], [?],

[?], [?], [?] and using optimum combining receivers in [?], [?], [?], [?].

Interference in cooperative relay networks has been extensively studied in previous publications

[?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?]. Authors of [?] and [?] consider a scenario

where only the relay node experiences interference in interference limited networks and the

receiver node remains interference free. The relays here can estimate the instantaneous CSI of

interfering channels to scale the gain. A fixed gain AF relay with interference limited destination

is considered in [?]. However, the assumption that the AF relay gain parameter includes the

instantaneous or average channel information of interfering channels (as assumed in [?], [?],

[?], [?], [?], [?], [?]) requires additional computational capability at the relaying node, and in

certain cases where the interfering signals are not known to the relay a priori, the technique

can not be applied. Furthermore, in many previous results authors consider interference limited

cooperative networks [?], [?], [?], [?], [?], [?]. Outage performance of a dual hop network has
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been studied using a fixed gain relay in [?] and hypothetical gain AF relay in [?] with an

arbitrary number of interferers. The system is assumed to be an interference dominated network

where noise power is negligible compared to interfering signal power. Closed form PDF and

CDF of signal to interference ration (SIR) are derived. Avoiding the noise in receiver systems

usually provides an opportunity to express some of the integrals used to obtain the CDF and

the PDF in very standard formats. Outage probability using DF relays in Nakagami-m fading

channels is studied in [?]. The authors consider that the destination faces a negligible amount

of interference, but non-negligible noise. The PDF and CDF of corresponding receiver SNR is

derived. In [?], the authors have studied transmission techniques designed to manage interference

using an information-theoretic approach. Bit error rate (BER) performance has been presented in

[?] for a multi-user network in which multiple sources communicate with one receiver node via

a common relay in a dual hop network. A different approach has also been proposed to cancel

the interference at the relay node. In [?], the authors have investigated the effect of cooperation

in an interference-limited system utilizing a decode-and-forward (DF) relaying protocol over

Rayleigh fading channels. It divides the cooperating nodes into different cooperating regions

and quantifies the relation between cooperative region radius and the interference level. It also

analyzes the network sum rate optimization problem for a cooperative region radius.

In this work, we derive the closed form expressions of statistical properties, the CDF and

the PDF of signal to noise plus interference ratio (SINR) of an interference relay network that

is operating under the influence of arbitrary number of interferes and noise. An amplify-and-

forward (AF) relaying protocol is adopted due to its simplicity and ease of deployment at relay

nodes. Lastly numerical results on the outage probability performance are presented to verify

the theoretical analysis via Monte-Carlo simulations.

II. SYSTEM AND CHANNEL MODEL

Consider a single source-destination pair communicating via a single antenna relay without any

direct link. We will denote source-relay and relay-destination links as S-R and R-D respectively.

A half duplex AF protocol has been considered over independent and non identically distributed
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(i.n.i.d.) Rayleigh fading channels. In this paper, two different system models are investigated:

system model 1 (SM 1), in which the interferers are only at the relay node; and system model

2 (SM 2), where interferers affect both the relay and destination nodes. In both models, all the

interfering channels are i.n.i.d. Rayleigh faded. The destination is assumed to have full channel

state information (CSI) of the two main channels, S-R and R-D, while the relay has full CSI of

the S-R channel only. The source and relay have no CSI of forwarding transmitting channels.

None of the nodes, source (S), relay (R) and destination (D) possess information about the

interfering channels.

The instantaneous and average signal to noise ratio (SNR) of 1st and 2nd hops are denoted as

γi ,
P |hi|

2

σ2
i

and λi ,
PΩi

σ2
i

respectively, where i ∈ {1, 2}, P is the corresponding source and relay

power; hi and Ωi are the instantaneous and average channel gain of the ith hop respectively1 and

σ2
i is the one sided additive white Gaussian noise (AWGN) power at relay or destination node,

i.e. i ∈ {R,D}. We assume the total power of the network (source and relay) is constrained to

Ptot. This total power is split between the source and the relay by a power sharing coefficient

ζ ∈ (0, 1] such that the source and the relay powers are given by, PS = (1−ζ)Ptot and PR = ζPtot

respectively. Thus if equal power sharing protocol is adopted, ζ will be 0.5.

Let there be a total of L interferers in the system, and define an interferer set I, the set of all

interfering source nodes. For example, any interferer Il ∈ I, where l ∈ L, L = {1, 2, 3....., L}.

The elements of interfering channel row vectors hI,i ∈ CL represent the corresponding interfer-

ence channels from the source element nodes of the interfering signal source vectors xI,i ∈ CL,

i ∈ {R,D}.2 Furthermore, we assume the interferer Il has individual transmit power PI,l. Thus

the instantaneous and the average interference power to noise ratio (INR) for any interferer Il

is γI,l ,
PI,l|hI,l|2

σ2
i

and λI,l ,
PI,lΩI,l

σ2
i

respectively. hI,l and σ2
i are the fading channel gain from

the interfering source Il to the node i and the noise power at node i respectively, l ∈ L and

i ∈ {R,D}. ΩI,l is the average interfering channel gain, ΩI,l , E
[
|hl,l|2

]
. Throughout this paper

1The average channel gain, Ωi is in fact the statistical average of the squared instantaneous channel gain hi, i.e. Ωi , E
[

|hi|
2
]

.

2 CL denotes a L-dimensional complex vector.
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the term INR will be used to indicate individual interferer signal power to noise ratio unless

otherwise specified.

A. System Model 1: Interference at Relay

In the network model as shown in Fig. 1, interference occurs only at the relay node. The

received signal at the relay node R is

yR = h1xs + hI,1x
T
I,1 + n1 (1)

where, hI,1 ∈ CL and xI,1 ∈ CL are the row vectors for the interference channels and the

corresponding interfering signal sources respectively. The notation (.)T represents the transpose

operation on a vector. The signal at the destination node is

yD = Gh2h1xs +Gh2hI,1x
T
I,1 + Gh2n1 + n2 (2)

where G is the AF relay gain. n1 ∼ CN (0, σ2
1) and n2 ∼ CN (0, σ2

2) are additive white Gaussian

noise at the relay and destination respectively.3 At the receiver node, the signal to interference

plus noise ratio (SINR) will be

γSINR1 =
G2|h1|2|h2|2PS

G2|h2|2hI,1ΣI,1h
†
I,1 +G2|h2|2σ2

1 + σ2
2

(3)

where the diagonal matrix ΣI = E
{

x
†
I,1xI,1

}

is composed of interference signal powers. With

hypothetical AF relay gain G2 = PR

PS |h1|
2 , the end-to-end SINR is [?]4,

γSINR1 =
γ1γ2

γ1 + γ2 + γ2γI
(4)

where γ1 and γ2 are the instantaneous SNRs for S-R and R-D links respectively. γI is the total

interference to noise ratio at the relay node, which is literally the sum of all individual INRs.

Note that due to the Rayleigh fading assumption, the first and second hop SNR γ1 and γ2 are

exponentially distributed with mean parameter λ1 and λ2 respectively. Later, it will be shown that

3CN
(

λ, σ2
)

denotes a circularly symmetric complex Gaussian random variable with mean λ and variance σ2.

4 A CSI assisted relay gain G2 = PR

|h1|
2PS+σ2

1

proposed in [?] render the end-to-end SINR as γSINR = γ1γ2
γ1+γ2+γ2γI+1

. Eq. (4)

proposes a tight upper bound on the CSI assisted SINR γSINR.
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under an equal power sharing protocol at the source and relay nodes, the system performance

metric of system model 1 does not vary if the interferers are switched from the relay to the

destination node.

B. System Model 2: Interference at Relay and Destination

In this network model, interference occurs both at the relay and at the destination nodes.

We let there are L1 interferers at the relay node and L2 interferers at the destination. All the

interfering channels are independent and non-identically distributed. In this case, the received

signal at the destination is

yD = Gh2h1xs +Gh2hI,1x
T
I,1 + hI,2x

T
I,2 +Gh2n1 + n2 (5)

where xI,1 ∈ CL1 and xI,2 ∈ CL2 are the vectors with interference sources for the relay and

receiver nodes respectively, and hI,1 ∈ CL1 and hI,2 ∈ CL2 are the corresponding fading channels

from interferers to the relay and receiver nodes respectively. Again, as for SM 1, G is the AF

relay gain, n1 ∼ CN (0, σ2
1) and n2 ∼ CN (0, σ2

2) are AWGN at the relay and the destination

respectively. Thus the SINR with arbitrary relay gain is given by

γSINR2 =
G2|h1|2|h2|2PS

G2|h2|2hI,1ΣI,1h
†
I,1 + hI,2ΣI,2h

†
I,2 +G2|h2|2σ2

1 + σ2
2

(6)

ΣI,1 = E
{

x
†
I,1xI,1

}

and ΣI,2 = E
{

x
†
I,2xI,2

}

are diagonal matrices of the transmission powers

of interfering signals at the relay node and the destination respectively. Applying the similar

hypothetical relay gain as used in SM 1 at the AF relay, the receiver SINR is given by

γSINR2 =
γ1γ2

γ1 + γ2 + γ1γI,2 + γ2γI,1
(7)

where γI,1 and γI,2 are the total interference to noise ratio at the relay node and the destination

respectively.

III. STATISTICAL ANALYSIS

In the following sections statistical theorems related to the network of interest are developed.
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Definition 1: Let random variables X , Y and U be statistically independent, where X ∼

E
(

1
λx

)

and Y ∼ E
(

1
λy

)

.5 Random variable U =
L∑

l=1

Ul+1, where Ul ∼ E
(

1
λul

)

are i.n.i.d. expo-

nentially distributed random variables and U has the PDF, fU (u) =
ζ(Λ)∑

i=1

τi(Λ)∑

j=1

Xi,j(Λ)(u−1)j−1

Γ(j)λj

u〈i〉

e
−

(u−1)
λu〈i〉 ,6

u ≥ 1 [?]. A r.v. W is defined as

W =
XY

X + Y U
(8)

Theorem 1 (CDF and PDF): The cumulative distribution function (CDF) and probability den-

sity function (PDF) of random variable W are given respectively as

FW (w) = 1−
ζ(Λ)
∑

i=1

τi(Λ)∑

j=1

Xi,j (Λ)e
−w

(

1
λx

+ 1
λy

)

(
λx

λx + wλu〈i〉

)j
[

1 +

∞∑

k=0

k+1∑

n=0

(
k + 1

n

)

× w2k+2

Γ (j) (λxλy)
k+1 k!(k + 1)!

(
λxλu〈i〉
λx + wλu

)n
[

2Γ (j + n)

{

ln

(

w
√
λxλy

)

− ψk

}

+ G1,3
3,2




λxλu〈i〉

λx + wλu〈i〉

∣
∣
∣
∣
∣
∣

1− j − n, 1, 1

1, 0











 (9)

fW (w) =

ζ(Λ)
∑

i=1

τi(Λ)∑

j=1

Xi,j (Λ)e
−w

(

1
λx

+ 1
λy

)

(
λx

λx + wλu〈i〉

)j [
1

λx
+

1

λy
+

jλu〈i〉
λx + wλu〈i〉

−
∞∑

k=0

k+1∑

n=0

(
k + 1

n

)
w2k+1

Γ (j) (λxλy)
k+1 k!(k + 1)!

(
λxλu〈i〉

λx + wλu〈i〉

)n
[

2Γ (j + n) + I1 (w, λ)

{

2k + 2

−w (λx + λy)

λxλy
− (j + n)wλu〈i〉

λx + wλu〈i〉

}

+
wλu〈i〉

λx + wλu〈i〉
G2,3

4,3




λxλu〈i〉

λx + wλu〈i〉

∣
∣
∣
∣
∣
∣

1− j − n, 1, 1, 0

1, 1, 0













(10)

5 E
(

1
λx

)

denotes an exponential distribution with a hazard rate 1
λx

.

6 where Λ = diag (λu1
, λu2

, ...., λuL
). ζ (Λ) is the number of distinct diagonal elements of Λ and λu〈1〉 > λu〈2〉 > ...... >

λu〈ζ(Λ)〉 are the distinct diagonal elements in decreasing order. τi (Λ) is the multiplicity of λu〈i〉 and Xi,j (Λ) is the (i, j)th

characteristic coefficient of Λ [?].
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where ψk , 1
2
ψ (k + 1) + 1

2
ψ (k + 2), and I1 (w, λ) , G1,3

3,2




λxλu〈i〉

λx+wλu〈i〉

∣
∣
∣
∣
∣
∣

1− j − n, 1, 1

1, 0



 +

2Γ (j + n)

{

ln

(

w√
λxλy

)

− ψk

}

. Gm,n
p,q



x

∣
∣
∣
∣
∣
∣

ap

bq



 and ψ (x) are the Meijer-G function and the

Euler psi function defined as [?, eq. 8.2.1.1] and [?, eq. 8.360.1] respectively.

Note that, exchanging X and Y in Definition 1, represents the switching of the interference

from relay to destination node in (4). Hence, the CDF and PDF equations of SM1 are also

applicable to the general case when either the relay or destination is subject to interference. In

addition, the performance metric will be the same if an equal power sharing is adopted between

the source and relay nodes, that is, when ζ = 0.5.

Proof: See Appendix A.

Definition 2: Let random variables X , Y , U and V are statistically independent where X ∼

E
(

1
λx

)

and Y ∼ E
(

1
λy

)

. Random variables U =
L1∑

l=1

Ul + 1 and V =
L1∑

l=1

Vl + 1, Ul and Vl are

i.n.i.d. exponentially distributed random variables with PDFs [?]

fU (u) =

ζ(Λ1)∑

i=1

τi(Λ1)∑

j=1

Xi,j (Λ1)

Γ (j)λju〈i〉
(u− 1)j−1e

−
(u−1)
λu〈i〉 , u ≥ 1 (11)

fV (v) =

ζ(Λ2)∑

p=1

τi(Λ2)∑

q=1

Xp,q (Λ2)

Γ (q)λqv〈p〉
(v − 1)q−1e

− (v−1)
λv〈p〉 , v ≥ 1 (12)

respectively. We define a r.v. Z such that

Z =
XY

XU + Y V
(13)

Theorem 2 (CDF and PDF): The cumulative distribution function (CDF) and probability den-

sity function (PDF) of random variable Z are given respectively as
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FZ (z) = 1−
ζ(Λ1)∑

i=1

τi(Λ1)∑

j=1

ζ(Λ2)∑

p=1

τp(Λ2)∑

q=1

Xi,j (Λ1)Xp,q (Λ2) e
−z

(

1
λx

+ 1
λy

)

(
λy

λy + zλu〈i〉

)j

×
(

λx
λx + zλv〈p〉

)q
[

1 +
∞∑

k=0

k+1∑

n=0

k+1∑

r=0

(
k + 1

n

)(
k + 1

r

)
z2k+2

Γ (j) Γ (q) (λxλy)
k+1 k! (k + 1)!

×
(

λyλu〈i〉
λy + zλu〈i〉

)r ( λxλv〈p〉
λx + zλv〈p〉

)n
[

2Γ (j + r) Γ (q + n)

{

ln

(

z
√
λxλy

)

− ψk

}

+ Γ (j + r)

× G1,3
3,2




λxλv〈p〉

λx + zλv〈p〉

∣
∣
∣
∣
∣
∣

1− q − n, 1, 1

1, 0



+ Γ (q + n) G1,3
3,2




λyλu〈i〉

λy + zλu〈i〉

∣
∣
∣
∣
∣
∣

1− j − r, 1, 1

1, 0













(14)

fZ (z) =

ζ(Λ1)∑

i=1

τi(Λ1)∑

j=1

ζ(Λ2)∑

p=1

τp(Λ2)∑

q=1

Xi,j (Λ1)Xp,q (Λ2) e
−z

(

1
λx

+ 1
λy

)

(
λy

λy + zλu〈i〉

)j (
λx

λx + zλv〈p〉

)q

×
[{

1

λx
+

1

λy
+

qλv〈p〉
λx + zλv〈p〉

+
jλu〈i〉

λy + zλu〈i〉

}

−
∞∑

k=0

k+1∑

n=0

k+1∑

r=0

(
k + 1

n

)(
k + 1

r

)

× z2k+1

Γ (j) Γ (q) k! (k + 1)! (λxλy)
k+1

(
λyλu〈i〉

λy + zλu〈i〉

)r ( λxλv〈p〉
λx + zλv〈p〉

)n
[

2Γ (q + n) Γ (j + r)

+ I2 (z, λ)

{

2k + 2− z (λx + λy)

λxλy
− (j + r) zλu〈i〉

λy + zλu〈i〉
− (q + n) zλv〈p〉

λx + zλv〈p〉

}

+
Γ (j + r) zλv〈p〉
λx + zλv〈p〉

G2,3
4,3




λxλv〈p〉

λx + zλv〈p〉

∣
∣
∣
∣
∣
∣

1− q − n, 1, 1, 0

1, 1, 0





+
Γ (q + n) zλu〈i〉
λy + zλu〈i〉

G2,3
4,3




λyλu〈i〉

λy + zλu〈i〉

∣
∣
∣
∣
∣
∣

1− j − r, 1, 1, 0

1, 1, 0











 (15)

where,

I2 (z, λ) , 2Γ (q + n) Γ (j + r)

{

ln z√
λxλy

− ψk

}

+Γ (j + r) G1,3
3,2




λxλv〈p〉

λx+zλv〈p〉

∣
∣
∣
∣
∣
∣

1− q − n, 1, 1

1, 0





+ Γ (q + n) G1,3
3,2




λyλu〈i〉

λy+zλu〈i〉

∣
∣
∣
∣
∣
∣

1− j − r, 1, 1

1, 0





Proof: See Appendix B.
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Proposition 1: Consider a system with L interferers in both relay and destination nodes where

the interfering channels are i.i.d. Rayleigh faded. Adopting an equal power allocation protocol

for source and relay node the cumulative distribution function of γSINR2 in (7) can be written as

FγSINR2
(γ) = 1− e−2γ/λ

(
λ

λ + γλI

)2L

− 1

Γ (L)2
e−2γ/λ

∞∑

k=0

k+1∑

n=0

k+1∑

r=0

(
k + 1

n

)(
k + 1

r

)

× λI
n+rγ2k+2

λ2k+2k!(k + 1)!

(
λ

λ+ γλI

)2L+n+r
[

2Γ (L+ n) Γ (L+ r)
{

ln
γ

λ
− ψk

}

+Γ (L+ r)G1,3
3,2




λλI

λ+ γλI

∣
∣
∣
∣
∣
∣

1− L− n, 1, 1

1, 0



 + Γ (L+ n)G1,3
3,2




λλI

λ+ γλI

∣
∣
∣
∣
∣
∣

1− L− r, 1, 1

1, 0









(16)

Proof: See Appendix C.

IV. INTERFERENCE AT RELAY: I.I.D. NAKAGAMI-m INTERFERERS

Proposition 2: Suppose the interfering channels are i.i.d. Nakagami-m distributed while the

main channels (S-R and R-D) are Rayleigh faded. In this case the CDF of γSINR2 can be written

as

FγSINR2
(γ) = 1− e

−γ
(

1
λ1

+ 1
λ2

)

(
λ2

λ2 + γαI,1

)m1L1
(

λ1
λ1 + γαI,2

)m2L2

×
[

1 +

∞∑

k=0

k+1∑

n=0

k+1∑

r=0

(
k + 1

n

)(
k + 1

r

)
γ2k+2 (λ1λ2)

−k−1

Γ (m1L1) Γ (m2L2) k! (k + 1)!

(
λ2αI,1

λ2 + γαI,1

)r

×
(

λ1αI,2

λ1 + γαI,2

)n [

2Γ (m1L1 + r) Γ (m2L2 + n)

{

ln

(
γ√
λ1λ2

)

− ψk

}

+Γ (m1L1 + r) G1,3
3,2




λ1αI,2

λ1 + γαI,2

∣
∣
∣
∣
∣
∣

1−m2L2 − n, 1, 1

1, 0





+Γ (m2L2 + n) G1,3
3,2




λ2αI,1

λ2 + γαI,1

∣
∣
∣
∣
∣
∣

1−m1L1 − r, 1, 1

1, 0











 (17)
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where αI,i = λI,i/mi, i ∈ {1, 2}. λI,1 and λI,2 are the average INR at the relay and the destination

respectively; similarly, m1 and m2 are i.i.d. Nakagami-m parameter at the relay and destination

respectively. The average SNR of the 1st and 2nd hop are λ1 and λ2 respectively.

Proof: See Appendix D.

V. OUTAGE PROBABILITY

In this section the derived analytical results are used to the investigate wireless network

outage probability performance. We define outage probability as the probability that the in-

stantaneous receiver SINR falls below a predefined threshold value of SINR γth. We consider

γth = ρ
(
2MR − 1

)
, where ρ varies from 1 to 6.4 depending on the degree of coding, M be

the number of hops and R the data rate in bits/s/Hz [?]. The CDF equations (9), (14) and (17)

may be used to evaluate the outage probabilities in SM 1 and SM 2 with an arbitrary number

of interferers and interfering powers.

VI. NUMERICAL ANALYSIS

In this section, numerical results on the derived equations are presented and compared with

Monte-Carlo simulations. Due to lack of transmitter CSI we assume the source and the relay

evenly share the total system power Ptot. Furthermore, for fair comparison with relevant studies

the average channel gain of all hops in this network are set to unity and the noise variance at

the relay and destination nodes are set to σ2. We consider γth = 3 which achieve a data rate

R = 1 in a dual hop network unless otherwise specified. The maximum value of k = 100 for

sum terms in (9) and (14) is used, which is sufficient to match the analytical result with the

simulation data. The number of interferers at the relay and destination are assumed to be same

(L1 = L2) in SM 2 networks, and all the interferers have equal transmit power. Throughout this

section we will use total average transmit SNR, λtot , Ptot/σ
2 as a function in performance of

SINR plots.

Fig. 2 shows the outage probability (OP) as a function of total transmit SNR for a total of

{4, 8, 16} interferers in SM 1 and SM 2 with INR fixed at 3 dB. All wireless channels (main
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channels and the interfering channels) are assumed to be Rayleigh faded. As expected, outage

probability increases with an increase in the number of interferers. However, when SM 1 has

the same number of interferers as the total number of interferers for SM 2, SM1 shows slightly

better performance compared to SM2 at a moderately low SINR region only. To study the OP

performance with different interfering powers Fig. 3 shows outage probability as a function of

λtot for a system with 4 interferers at the relay and 4 interferers at the destination. The INR

values {3, 6, 9, 12} dB are considered. Interestingly, the figure suggests that every 3 dB increase

in average INR values requires a subsequent increase of 3 dB total SNR on average to ensure

an OP of around 10−3. In contrast, Fig. 4 shows OP in a fixed 3 dB INR system in SM 2 with

a total of {4, 8, 12, 16} number of interferers at the relay and destination respectively. To see

how the interference system behaves if one of the nodes experiences most of the interference,

Fig. 4 shows OP with a large L2 and L1 = 4. For very high interference levels e.g. L2 = 10000

interferers at the destination node, a λtot = 77 dB is required to achieve an outage probability

of 10−3 compared to 50dB when L2 = 4.

Fig. 5 shows outage probability with number of interferers L in relay and destinations where

L1 = L2 = L and each interferer has an INR of 3dB. The figure shows how the outage

probability increases exponentially as the number of interferers increases. The plot includes

graphs for transmit SNRs of 20, 30, 40, 50 and 60 dB. A very interesting phenomenon observed

is that at 60dB of total transmit SNR the system can support up to 40 interferers at the relay

and destination, ensuring an outage probability of 10−3, however, with a reduction of only 10dB

in total transmit SNR the performance reduces drastically and it can support only 4 interferers

at the relay and destination for the same outage probability.

Fig. 6 shows the outage probability as a function of interference power when the relay

and destination are both subject to 4 interferers. The figure compares the outage probability

of an interference limited system (dashed line) studied in [?] to a system where both noise

and interference are present. To express total transmit power and interference power in dB we

normalize the terms considering noise power equal to 1 unit. Total transmission power of 20,
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30 and 40 dB are considered in the figure and the power of each interferer is rated from -30dB

to +30dB. Figure shows that the outage probability the noise plus interference network will be

similar to an interference limited network when the transmission power of each interferer is more

than 10 dB. However, performance will vary if the number of interferers in the network changes.

The figure also illustrates how noise dominates outage probability metric when interference power

is low.

The PDF of γSINR2 is presented in Fig. 7 for two different λtot, 20 dB and 25 dB, when the

individual interferer INRs are {3, 6, 9} dB. The figure implies that a lower INR per interferer

increases the probability of higher output SINR at the receiver and similarly when the INR is

constant, an increase in average total signal power results in a higher output SINR. In addition,

Fig. 8 shows the CDF of γSINR2 as a function of γth in dB for two λtot groups, 20 dB and 30

dB. Each group contains plots for 3 INRs 3, 6 and 9 dB. It reveals that higher average total

SNR and lower INR per interferer decreases the probability of outage.

Finally, Fig. 9 presents a plot over Nakagami-m faded interfering channels. The outage

probability is plotted as a function of λtot for different number of interferers and different

Nakagami channel parameter m in SM 2. Surprisingly, varying the Nakagami m parameter does

not result in any significant effects on outage performance if the number of interferers and INR

remain constant in the network.

VII. CONCLUSION

In this work, we derive the cumulative distribution function and the probability density function

of a dual hop interference relay network with arbitrary number of interferers, where the main

channels and the interfering channels are i.n.i.d. Rayleigh faded. Later the analysis is extended

for i.i.d. Nakagami-m faded interfering channels. This analysis has been performed for two

system models; in SM 1 interference is only at the relay node while in SM 2, interference

is at both the relay and destination nodes. The derived CDF and PDF expressions for SM 1

can also be used for analyzing an interference network where interference occurs only at the

destination node. Numerical results for outage probability performance for different network
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parameter configurations are presented. The Monte-Carlo simulations show an exact match with

the analytical expressions. Results indicate that in a total INR constrained interference network,

the number of interferers do not affect the performance of the system in a large scale. Similarly,

if the interfering channels are Nakagami-m distributed, changing in Nakagami-parameter m does

not affect the performance of the system if the number of interferers and the INR per interferer

remain constant.

APPENDIX

A. Proof of Theorem 1

According to the PDF of X , Y and U as defined in Definition 1, the random variables X , Y

and U are nonnegative, thus FW (w) = 0 for w < 0. For w ≥ 0 we have

FW (w) = P

{
XY

X + Y U
≤ w

}

= P {X (Y − w) ≤ wY U}

= 1− e−w/λy +

∫ ∞

1

∫ ∞

w

∫ wyu
y−w

0

fX (x) fY (y) fU (u) dxdydu (18)

The two inner integrals in (18) can easily be solved by using [?, eq. 3.351.3] and [?,

eq. 3.471.9] and after some manipulation the CDF of W is obtained,

FW (w) = 1−
ζ(Λ)
∑

i=1

τi(Λ)∑

j=1

2wXi,j (Λ) e
−w/λy

Γ (j)λju〈i〉
√
λxλy

∫ ∞

1

√
u(u− 1)j−1e−(u−1)/λu〈i〉

× e−wu/λxK1

(

2w

√
u

λxλy

)

du (19)

where Kν (x) is the νth order modified Bessel function of the second kind. Using [?, eq. 8.446]

we expand the first order modified Bessel function of second kind, then [?, eq. 8.4.6.5], [?,

eq. 3.40.1.1] and [?, eq. 3.351.3] are applied to solve the related integrals. After some manipu-

lation we arrive at the desired result (9). The PDF of W follows directly from the differentiation
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of the CDF of W in eq. (9) w.r.t. w by using [?, eq. 8.2.2.30],

d

dx



xσGm,n
p,q



x

∣
∣
∣
∣
∣
∣

ap

bq







 = −xσ−1Gm+1,n
p+1,q+1



x

∣
∣
∣
∣
∣
∣

ap,−σ

1− σ, bq



 (20)

B. Proof of Theorem 2

Following a similar argument as used in the proof of Theorem 1, the random variables X , Y ,

U and V are nonnegative, and thus FZ (z) = 0 for z < 0. For z ≥ 0,

FZ (z) = P

{
XY

XU + Y V
≤ z

}

= P {X (Y − zU) ≤ zY V } (21)

=

∫ ∞

1

∫ uz

0

fY (y) fU (u) dydu

︸ ︷︷ ︸

, Iuy

+

∫ ∞

1

∫ ∞

1

∫ ∞

uz

∫ zyv
y−zu

0

fX (x) fY (y) fV (v) fU (u) dxdydvdu

︸ ︷︷ ︸

, Iuvyx

The first part of this expression, integral Iuy can be solved by using [?, eq. 3.351.3], resulting

in

Iuy = 1−
ζ(Λ1)∑

i=1

τi(Λ1)∑

j=1

Xi,j (Λ1) e
−z/λy

(
λy

λy + zλu〈i〉

)j

(22)

In Iuvyx, the first two integrals for variables x and y can be solved using a similar approach, via

[?, eq. 3.351.3], [?, eq. 3.471.9], [?, eq. 8.446], [?, eq. 8.4.6.5] and [?, eq. 3.40.1.1]. Substituting

(22) in (21) and after some manipulation we have the CDF of Z

FZ (z) = 1−
ζ(Λ1)∑

i=1

τi(Λ1)∑

j=1

ζ(Λ2)∑

p=1

τp(Λ2)∑

q=1

Xi,j (Λ1)Xp,q (Λ2)

Γ (j) Γ (q)λju〈i〉λ
q
v〈p〉

[

e−z/λxΓ (q)

(
λxλv〈p〉

λx + zλv〈p〉

)q

×
∫ ∞

1

(u− 1)j−1 e
− u−1

λu〈i〉 e−uz/λydu+

∞∑

k=0

k+1∑

n=0

(
k + 1

n

)
z2k+2e−z/λx

k! (k + 1)! (λxλy)
k+1

(
λxλv〈p〉

λx + zλv〈p〉

)q+n

×G1,3
3,2




λxλv〈p〉

λx + zλv〈p〉

∣
∣
∣
∣
∣
∣

1− q − n, 1, 1

1, 0





∫ ∞

1

uk+1 (u− 1)j−1 e
− u−1

λu〈i〉 e−uz/λydu

+
∞∑

k=0

k+1∑

n=0

(
k + 1

n

)
2z2k+2e−z/λxΓ (q + n)

k! (k + 1)! (λxλy)
k+1

(
λxλv〈p〉

λx + zλv〈p〉

)q+n

×
∫ ∞

1

uk+1 (u− 1)j−1 e
− u−1

λu〈i〉 e−uz/λy

{

ln

√
u

λxλy
z − ψk

}

du

]

(23)
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where ψk , 1
2
ψ (k + 1) + 1

2
ψ (k + 2). Now using [?, eq. 3.351.3], [?, eq. 8.4.6.5] and [?,

eq. 3.40.1.1] it is possible to solve (23), which then results in the desired eq. (14). Eq (15)

directly follows the differentiation of eq.(14) utilizing the property [?, eq. 8.2.2.30].

C. Proof of Proposition 1

When the interfering signals are from L equal power sources with i.i.d. interfering channels,

λu〈i〉 = λu = λI , λv〈p〉 = λv = λI and the characteristic coefficient Xi,j (Λ) of Λ becomes [?],

Xi,j (Λ) =







0 j = 1, 2, 3..

1 j = L
(24)

Using the above facts the proof of the Proposition 1 immediately follows from Theorem 2. Due

to equal power allocation, average 1st and 2nd hop SNR λ1 = λ2 = λ.

D. Proof of Proposition 2

If the interfering channels are i.i.d. Nakagami-m faded, in Definition 2, the PDF of r.v. U and

V can be modified to,

fU (u) =
(u− 1)L1m1−1

Γ (L1m1)α
L1m1
u

e−
(u−1)
αu , u ≥ 1 (25)

and

fV (v) =
(v − 1)L2m2−1

Γ (L2m2)α
L2m2
v

e−
(v−1)
αv , v ≥ 1 (26)

respectively, where αu = λu/mu and αv = λv/mv respectively, and m is the corresponding

Nakagami-m channel parameter. The r.v.s X and Y are exponentially distributed with hazard rate

1/λx and 1/λy respectively. The CDF of FγSINR2
(γ) for i.i.d. Nakagami-m interfering channels

can be obtained by replacing λu = αu, λv = αv, j = L1m1 and q = L2m2 in (14).
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Fig. 1. Interference relay network.
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Fig. 2. Outage probability vs total SNR in system model 1 and 2.
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Fig. 4. Outage probability vs total SNR in system model 2 with different number of interferers when INR=3 dB.
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Fig. 5. Outage probability as a function of total interferers at the relay and destination when the INR of each interferer is 3

dB and total transmit SNR varies from 20 to 60 dB.
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Fig. 6. Outage probability as a function of interference power when the relay and the destination have 4 interferers and λtot

is 20, 30 and 40 dB’s.
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Fig. 7. Probability density function of SINR of system model 2.
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Fig. 8. Cumulative distribution function of SINR of system model 2.
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Fig. 9. Outage probability vs total SNR over Nakagami-m faded interfering channels in system model 2 with different number

of interferers.
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