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Outage Probability of
Multiple-Input Single-Output (MISO) Systems with Delayed Feedback

Venkata Sreekanth Annapureddy, Devdutt V. Marathe, T. R. Ramya, and Srikrishna Bhashyam

Abstract—We investigate the effect of feedback delay on the
outage probability of multiple-input single-output (MISO) fading
channels. Channel state information at the transmitter (CSIT)
is a delayed version of the channel state information available
at the receiver (CSIR). We consider two cases of CSIR: (a)
perfect CSIR and (b) CSI estimated at the receiver using training
symbols. With perfect CSIR, under a short-term power con-
straint, we determine: (a) the outage probability for beamforming
with imperfect CSIT (BF-IC) analytically, and (b) the optimal
spatial power allocation (OSPA) scheme that minimizes outage
numerically. Results show that, for delayed CSIT, BF-IC is close
to optimal for low SNR and uniform spatial power allocation
(USPA) is close to optimal at high SNR. Similarly, under a long-
term power constraint, we show that BF-IC is better for low
SNR and USPA is better at high SNR. With imperfect CSIR,
we obtain an upper bound on the outage probability with USPA
and BF-IC. Results show that the loss in performance due to
imperfection in CSIR is not significant, if the training power is
chosen appropriately.

Index Terms—Multiple antenna systems, beamforming, feed-
back delay, outage probability, power allocation.

I. INTRODUCTION

CHANNEL State Information is very crucial in deter-
mining the performance of any wireless system. The

minimum outage probability of multiple-input single-output
(MISO) channels with perfect channel state information at
the receiver (CSIR) and no channel state information at the
transmitter (CSIT) is derived in [1]. For reasonably low
outage probabilities, uniform spatial power allocation (USPA)
across the spatial dimension is the optimal strategy. Outage
probability of MISO systems with perfect CSIT and CSIR is
derived in [2]. It is shown that feeding back the CSI provides
significant gain in the performance, and that beamforming to
the direction of the channel is optimal and provides a constant
SNR gain over no CSIT under short-term power constraint
(i.e., transmit power is constant over each transmission inter-
val). In the case of long-term average power constraint, it is
also possible to adapt the transmission power level based on
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channel feedback (i.e., temporal power control). Outage can
be reduced significantly by saving power when the channel is
strong and using the saved power when the channel is worse.
The optimum power allocation strategy to minimize the outage
probability over fading channels and MISO fading channels is
determined in [3] and [2] respectively.

In practice, the feedback channel resources are seldom per-
fect enough to provide instantaneous and noiseless feedback.
Under the short term power constraint, and for two cases
of imperfect feedback namely mean feedback and covariance
feedback, spatial schemes that a) minimize the outage prob-
ability are studied in [4], [5], and b) maximize the mutual
information are studied in [6]. In [7], BER performance of
spatial schemes in the presence of delayed feedback has been
studied. Under a long-term power constraint, minimum outage
probability with temporal power control for quantized CSIT
has been studied in [8]. In practice, it is also not feasible
to have a perfect estimate of CSIR. Usually, channel state
information at the receiver is estimated using training symbols,
and the resources used during the training period have to be
accounted for. Outage probability with preamble based CSIR
and quantized CSIT has been studied in [8]. In [9], maximizing
mutual information in the presence of channel estimation error
and delayed feedback has been studied.

In this paper, we focus on the effect of the delay in
feedback on the performance from the point of view of
outage probability. Using the delayed feedback model in [10],
we solve the problem of minimum outage transmission over
MISO channels under both short-term and long-term power
constraints. Under a short-term power constraint, beamforming
is optimal if the transmitter has perfect CSI. We analyze
the loss in performance of beamforming due to the delay
in the feedback and derive an analytical expression for the
outage probability of beamforming with imperfect CSIT (BF-
IC). Results show that BF-IC, which allocates total power in
the direction of CSIT, is better at low SNR while USPA [1],
which allocates equal power in all the directions and does not
require any feedback, is better at high SNR. However, none
of the above two strategies is optimal. The minimum outage
transmission strategy for a given delay, optimal spatial power
allocation (OSPA) is determined. OSPA involves beamforming
along the spatial modes and optimal power allocation across
the spatial modes. Numerical results show that BF-IC is very
close to OSPA for low SNR while USPA is close to OSPA
for high SNR. Since OSPA does not provide significant gain
at any SNR, compared to the best of BF-IC and USPA, the
cross-over SNR at which USPA becomes better than BF-IC
is important and can be used to switch between BF-IC and
USPA. We present the equation to determine this cross-over
SNR and solve it numerically.
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Under a long-term power constraint, with perfect CSIT, the
optimal beamforming (to the channel direction) and temporal
power control strategy is obtained in [2]. We numerically
evaluate the outage probabilities for BF-IC and USPA with
temporal power control. Again, BF-IC is better at low SNR
while USPA is better at high SNR. Finally, we extend the
analysis with delayed feedback and perfect CSIR to the case
of delayed feedback and imperfect CSIR. An upper bound
on the outage probability of USPA and BF-IC with imperfect
CSIR is obtained. The loss in performance due to the error in
estimation of CSIR is shown to be negligible if the training
power is chosen optimally.

The rest of the paper is organized as follows. In Section II,
our system model is introduced. In Section III, under the short
power constraint, outage probability with BF-IC and OSPA
are determined and compared with USPA. In Sections IV and
V, the long term power constraint and imperfect CSIR are
considered. Finally, Sections VI and VII present the results
and conclusions.

II. SYSTEM MODEL

The MISO system with M transmit antennas and 1 receive
antenna is, as usual, modeled as

y = hHx + z, (1)

where h ∼ CN (0, I) is a M × 1 independent, identically
distributed (i.i.d) and zero-mean circularly symmetric complex
Gaussian channel vector, x is a M×1 channel input vector and
z is zero-mean unit-variance additive white Gaussian noise
(AWGN). We use a block fading model, where the channel
coefficients are assumed to be fixed within a given duration,
known as coherence interval. We assume high correlation be-
tween successive time durations. Using the Gaussian channel
vector model, the delay in the feedback is captured by the
correlation coefficient ρ between CSIT and CSIR. The old
channel and the actual channel can be related as follows [10]:

h = ρhold +
√

1 − ρ2w, (2)

where hold is the delayed CSIT, ρ is a correlation coefficient,
and w ∼ CN (0, I) is independent of hold. The gap between
no CSIT (ρ = 0) and perfect CSIT (ρ = 1) is bridged using
ρ. Lower the delay in the feedback, higher the value of ρ.

III. SHORT-TERM POWER CONSTRAINT

Assuming a short-term power constraint [3], such that
the transmit power is not a function of time, the mutual
information is given by

I(x; y/h,hold) = log(1 + PhHQh), (3)

where Q is the input covariance matrix such that Tr(Q) = 1
and P is the transmit power.

Consider the two extreme cases: zero feedback (ρ = 0)
and instantaneous feedback (ρ = 1). For ρ = 0, where the
transmitter does not have any knowledge of the channel state
information, the diversity strategy with the power distributed

equally among the M orthogonal independent transmit direc-

tions, i.e., USPA is optimal [1], i.e., we have Q =
I

M
, and

PoutUSPA(M, R, P ) = ΓM

(
eR − 1
P/M

)
, (4)

where PoutUSPA(M, R, P ) is the outage probability (as defined
in [1]) for a M × 1 system using USPA corresponding to a
transmit power constraint P and rate R (in nats/transmission),
and ΓM (·) is the incomplete Gamma function defined as

ΓM (x) =
1

(M − 1)!

∫ x

0

tM−1e−tdt.

For ρ = 1, where the transmitter has perfect CSI, beam-

forming is optimal [2], i.e., x =
h√
hHh

s, where s is a scalar

i.i.d. Gaussian input, Q =
hhH

hHh
, and

PoutBF(M, R, P, ρ = 1) = ΓM

(
eR − 1

P

)
. (5)

Outage performance for ρ = 1 is 10log10M dB better than
the performance for ρ = 0. For 0 < ρ < 1, where we do
not have perfect CSIT, we evaluate the outage performance of
beamforming using the imperfect CSIT in Section III-A. We
also determine the optimal spatial power allocation strategy
that minimizes the outage probability in Section III-B and
compare it with beamforming using the imperfect CSIT.

A. Beamforming using imperfect CSIT (BF-IC)

In this section, the loss in performance due to the presence
of the delay in the feedback is analyzed and an expression
for the outage probability (equation (12)) is derived. This is
a simple extension of beamforming from perfect CSIT to the
imperfect CSIT case, where beamforming is performed using
the imperfect CSIT assuming that it is the actual channel.

Therefore, we have x =
hold√

hH
oldhold

s, where s is a scalar i.i.d.

Gaussian input, and

Q =
holdhH

old

hH
oldhold

. (6)

Substituting (6) in (3) and denoting the feedback SNR hH
oldhold

by γ, we get

I(x; y/h,hold) = log

(
1 + P

hHholdhH
oldh

γ

)
. (7)

Now, we derive the outage probability for the specific model
described in equation (2). Note that γ is Gamma distributed
with the pdf given by

fΓ(γ) =
γM−1e−γ

(M − 1)!
. (8)

The expression for the mutual information for a given hold

can be simplified as follows.

hHholdhH
oldh

γ
=

|hHhold|2
γ

=
|(ρhold +

√
1 − ρ2w)Hhold|2
γ

=
(1 − ρ2)

2

∣∣∣∣∣
√

2ρ2

(1 − ρ2)
γ +

√
2
wHhold√

γ

∣∣∣∣∣
2

.

(9)
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Hence, the mutual information given hold can be simplified as

I(x; y/h,hold) = log

(
1 + P

(1 − ρ2)
2

A

)
, (10)

where A =
∣∣∣√δ +

√
2wHhold√

γ

∣∣∣2, δ = 2μγ and μ = ρ2

1−ρ2 .

Note that wHhold√
γ given hold is a zero mean complex Gaussian

random variable with variance || hH
old√
γ ||2 = 1. Thus, A given

γ is a non-central chi-square (nc-χ2) random variable with
two degrees of freedom and parameter δ. Observe that the
distribution of mutual information given hold depends on only
γ = |hold|2. Therefore we have the following expression for
the outage probability for a given γ.

Pr(outage/γ) =Pr

(
log

(
1 + P

(1 − ρ2)
2

A

)
< R

)
=F(nc-χ2,2,δ)(2β),

(11)

where β = eR−1
P (μ + 1), and F(nc-χ2,2,δ)(·) is the CDF of a

non-central chi-square random variable with two degrees of
freedom and parameter δ. The overall probability of outage
can be simplified as

PoutBF-IC(M, R, P, ρ) =
∫ ∞

0

fΓ(γ)Pr(outage/γ)dγ

=
1

(1 + μ)M−1

M−1∑
i=0

(
M − 1

i

)
μiΓ(i+1)

(
eR − 1

P

)
.

(12)

The derivation of equation (12) is shown in the appendix
A. Note that (1 + μ)M−1 =

∑M−1
i=0

(
M−1

i

)
μi. Therefore,

the result (12) can be interpreted as the weighted average
of ΓK

(
eR−1

P

)
, which is the outage probability of a K × 1

MISO system with perfect CSIT, where K varies from 1 to
M . Therefore, at high SNR, we expect the outage probability
with BF-IC to be dominated by the first term (K = 1), which
decays as 1

SNR .
The asymptotic diversity gain at infinite SNR, defined as

d = − lim
SNR→∞

logPout

logSNR
, (13)

can be quantified. From (12), using the approximation
ΓM (x) � xM

M ! for very small x, we can show that the asymp-
totic diversity gain of the BF-IC scheme is 1 for imperfect
CSIT, i.e.,

Diversity Gain d =
{

1 for 0 ≤ ρ < 1
M for ρ = 1 . (14)

This result can be explained intuitively as follows. At very
high SNR, the outage probability is dominated by the error
in the CSIT rather than channel being in deep fade. However,
for USPA, the asymptotic diversity gain is M independent of
ρ. Therefore, USPA is always better than BF-IC at high SNR.
The cross-over SNR SNRcross(ρ, R, M ) can be obtained by
equating the outage probabilities of the two schemes: (4) and
(12). Although there is no closed form expression for cross-
over SNR, it can be computed numerically. By comparing
the operating SNR with the cross-over SNR, one can switch
between BF-IC and USPA.

B. Optimal Spatial Power Allocation (OSPA)

We have seen that neither beamforming nor uniform spatial
power allocation is the optimal strategy for any given ρ (0 <
ρ < 1). We find the optimal spatial power allocation strategy
that minimizes the outage probability. Our results show that
OSPA allocates a fraction λ of the power along the spatial
mode corresponding to the imperfect CSIT with the remaining
power being equally distributed among the other orthogonal
spatial modes.

The overall outage probability is minimized by minimizing
Pout(hold), outage probability given hold, for each realization
of hold. The outage probability for a given hold is given by

Pout(hold) = Pr

(
hHQh <

eR − 1
P

)
. (15)

Using (2), Pout(hold) can be simplified as

Pr
(
(
√

μhold + w)Q((
√

μhold + w)H < β
)
, (16)

where β = eR−1
P (μ+1) and μ = ρ2

1−ρ2 . The outage probability
given by (16) is equivalent to the outage probability of a MISO
channel with a mean feedback of

√
μhold, which is minimized

without any loss of generality by minimizing over the fraction
of the power spent in the direction of the mean feedback [4],
[5]. Rest of the power is spent equally in the M-1 orthogonal
beams.

Since Q is positive semi-definite, we have the eigen-
value decomposition (EVD) Q = VQ̃VH , where Q̃ =
diag{λ1, λ2, . . . , λM} is a diagonal matrix with λi ≥ 0
representing the power allocated to the direction indicated
by the corresponding column vector of the unitary matrix
V. It has been shown in [4] that the unitary matrix V that
minimizes the outage probability (16) is of the form V =
[ hold√

γ , v2, v3, . . . , vM ], where {vi}, 2 ≤ i ≤ M is an arbitrary
set of (M − 1) orthonormal vectors that are orthogonal to
hold. Hence, we have d = VHhold = [

√
γ, 0, 0, . . . , 0]T and

g = VHw ∼ CN (0, I). Thus (16) is simplified as

Pout(hold) = Pr
(
(g +

√
μd)HQ̃(g +

√
μd) < β

)
. (17)

Let
ξ

2
= (g +

√
μd)HQ̃(g +

√
μd)

= gHQ̃g + gHQ̃
√

μd +
√

μdHQ̃g +
√

μdHQ̃
√

μd

=
M∑
i=1

λi | gi | 2 + 2λ1
√

μγRe(g1)) + λ1μγ

= λ1{[Re(g1) +
√

μγ]2 + [Im(g1)]2} +
M∑
i=2

λi | gi | 2.

(18)

Observe that ξ is symmetric over λi, i = 2 to M. Hence,
there is no reason to prefer any one λi over others. Therefore,
λi’s should be equal for i = 2 to M. This observation
allows the random variable ξ to be expressed in terms of
λ1 alone, using which the outage probability is determined
easily in terms of the CDF of a single random variable. This
is not explicitly used in the expressions for outage probability
in [4] (see equation (10) in [4]). Further simplification of
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the outage expression based on this observation is presented
below. Denote λ1 by λ for convenience.

Tr(Q̃) = 1 ⇒ λi =
1 − λ

M − 1
, for i = 2 to M (19)

⇒ ξ = λA +
1 − λ

M − 1
B, (20)

where A = {[√2Re(g1) +
√

2μγ]2 + [
√

2Im(g1)]2} is Non-
Central Chi-Square distributed with 2 degrees of freedom and
non-centrality parameter δ = 2μγ and B = 2

∑M
i=2 | gi | 2

is Central Chi-Square distributed with 2(M-1) degrees of
freedom. Observe that ξ depends only on γ = hH

oldhold.
Therefore, we denote the outage probability for a given γ and
λ as Pout(γ, λ), given by

Pout(γ, λ) = Pr(ξ < 2β) = Fξ(2β), (21)

where Fξ(.) represents the CDF of ξ. To complete the solution,
it remains only to find the optimal value of λ for each γ.
Consider the two extreme cases: ρ = 0 and ρ = 1.

For ρ = 0, μ = 0 and ξ = 2
∑M

i=1 λi | gi | 2 is symmetric
over λi, i = 1 to M, i.e., All the directions are identical,
and hence, equal power is spent in each direction. Therefore,
λopt(γ) = 1

M , for ρ = 0. As ρ tends to 1, μ tends to ∞.
Therefore, the co-efficient of λ1 becomes large compared to
the coefficients of the other λi’s, and hence, it is optimal to
spend all the power in that direction. Therefore, λopt(γ) = 1
for ρ = 1.

Consider the case of 0 < ρ < 1. When γ = 0, δ = 2μγ = 0.
In this case, we get

λopt(γ = 0) =
1
M

for any ρ. (22)

As γ → ∞, δ = 2μγ → ∞. In this case, we get
λopt(γ → ∞) = 1 for any ρ. Therefore, for 0 < ρ < 1,
we expect λopt(γ) to start from 1

M at γ = 0 and approach 1
as γ increases.

The minimum outage probability for a given γ is given
by Pout(γ, λopt(γ)) = minλ Pout(γ, λ), where λopt(γ) is the
solution of

∂Pout(γ, λ)
∂λ

= 0 in the range from
1
M

to 1. (23)

Expressing Pout(γ, λ) as

Pout(γ, λ) = Pr

(
λA +

1 − λ

M − 1
B < 2β

)
=
∫ 2β

λ

0

fA(a)FB

(
(2β − λa)(M − 1)

1 − λ

)
da,

(24)

equation (23) can be simplified as∫ 2β
λ

0

fA(a)exp

(
(M − 1)λa

2(1 − λ)

)
(2β − λa)(M−2)(2β − a)da = 0.

(25)

Although a closed form expression for λopt(γ) does not
appear to be available, it can be determined numerically
by a one-dimensional numerical search over the range. The
overall outage probability can then be determined by averaging
Pout(γ, λopt(γ)) over γ.

IV. LONG-TERM POWER CONSTRAINT

Achieving minimum outage probability under a long-term
power constraint involves power allocation in both spatial
and temporal domains. For a given feedback SNR γ, and a
corresponding fixed power allocation policy, the problem of
minimizing the outage probability can be formulated as

min
Q

Pr

(
hHQh <

eR − 1
Pp(γ)

)
. (26)

This is equivalent to minimizing Pout(γ, p(γ), λ), given by

Pout(γ, p(γ), λ)

= Pr

(
λA +

1 − λ

M − 1
B <

2β

p(γ)

)
= Fξ

(
2β

p(γ)

)
(27)

over λ, fraction of the power spent in the direction of
the imperfect feedback. λopt(γ, p(γ)) is the solution of
∂Pout(γ, p(γ), λ)

∂λ
= 0 and will range from 1

M to 1. The

optimal temporal power control policy p(γ) minimizes

Eγ [Pout(γ, p(γ), λopt(γ, p(γ)))] =∫ ∞

0

fΓ(γ)Pout(γ, p(γ), λopt(γ, p(γ)))dγ,

subject to the power constraint:∫ ∞

0

fΓ(γ)p(γ)dγ = 1. (28)

However, finding optimal p(γ) and the corresponding
λopt(γ, p(γ)) is difficult, since we do not have closed form
expression for λopt(γ, p(γ)). Therefore, based on the intuition
from the results for the short-term power constraint, the subop-
timal schemes BF-IC with temporal power control and USPA
with temporal power control are considered and analyzed.

In USPA, the power is distributed equally among the
orthogonal independent transmit directions, i.e, λ = 1

M or
Q = I

M . Therefore, the outage probability for a given γ and
the corresponding p(γ) in equation (27) is simplified as

Pout(γ, p(γ)) = Pr

(
A + B <

2Mβ

p(γ)

)
= F(nc−χ2,2M,δ)

(
2Mβ

p(γ)

)
.

(29)

From calculus of variations [11] (using Theorem 4.2.1 in
[11]), the temporal power control function that minimizes the
outage probability with USPA can be shown to satisfy:

k1 =
(

2Mβ

p2(γ)

)
f(nc-χ2,2M,δ)

(
2Mβ

p(γ)

)
, (30)

where k1 is a constant chosen such that p(γ) satisfies the
power constraint (28) and is non-negative. Finally, p(γ) is
determined numerically from equations (28) and (30).

In BF-IC, the spatial power allocation scheme is fixed such
that the power is spent in only one direction corresponding to
the imperfect CSIT, i.e., λ = 1. Therefore, we have

Pout(γ, p(γ)) = Pr

(
A <

2β

p(γ)

)
= F(nc-χ2,2,δ)

(
2β

p(γ)

)
.

(31)
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Again, using calculus of variations, the temporal power control
function that minimizes the outage probability with BF-IC can
be shown to satisfy

k2 =
(

2β

p2(γ)

)
f(nc-χ2,2,δ)

(
2β

p(γ)

)
, (32)

where k2 is a constant, chosen such that p(γ) satisfies the
power constraint (28) and is non-negative. p(γ) can be ob-
tained numerically as before using equations (28) and (32).

V. EFFECT OF IMPERFECT CSIR

We assume the training and MMSE channel estimation
model as in [8]. M training symbols are transmitted at the start
of each T symbol block with the ith training symbol being
transmitted only from the ith antenna. The MMSE estimate
of CSI (ĥ) is:

ĥ =

√
Pt/M

Pt/M + 1

(√
Pt

M
h + n

)
, (33)

where Pt is the total power used for training, and n is the
additive white Gaussian noise vector corresponding to the
M training symbols. Let Pd be the power used during data
transmission period per symbol. Pt and Pd are related by the
equation: Pt+Pd(T−M) = PT . Let σ2

E denote the estimation
error variance, i.e., Cov(e) = σ2

EIM×M , where e = h − ĥ. It
can be shown that σ2

E = M
Pt+M . The CSIR is ĥ. The CSIT,

which is a delayed version of the CSIR is ĥold, which is the
MMSE estimate of hold. Using (2) and (33), the correlation
coefficient ρe between the CSIT (ĥold) and CSIR (ĥ) can be
obtained as ρe = Pt

Pt+M ρ. Observe that ρe can at most be ρ
(for very large training power) and is less than ρ for moderate
values of training power.

Given the MMSE estimate of the CSI (ĥ) at the receiver,
the mutual information of the BF-IC scheme after accounting
for the training period can be lower bounded using the result
in [12]. A similar mutual information lower bound can be
obtained for the USPA scheme using the results in [9], [8].
This lower bound on the mutual information is given by:

I(x; y|ĥ, ĥold) ≥ T − M

T
log

(
1 +

Pd

1 + σ2
EPd

ĥ
H

Qĥ
)

. (34)

Defining ĥsc = 1√
(1−σ2

E)
ĥ such that Cov(ĥsc) = IM×M ,

the lower bound on the mutual information (34) can be written
as

I(x; y|ĥ, ĥold) ≥T − M

T
log
(
1 + P ′ĥ

H

scQĥsc

)
,

where P ′ =Pd
1 − σ2

E

1 + σ2
EPd

.
(35)

Substituting the value of σ2
E obtained for the training model,

we get P ′ = PdPt

Pt+MPd+M .

For USPA, Q = IM×M

M . Clearly, the lower bound on mutual
information above becomes equivalent to a system with perfect
CSIR, but with different values of average SNR (P ′) and rate
(R′). Therefore, the outage probability is upper bounded as

follows:

PoutUSPA(M, R, P ′) ≤

Pr

(
log

(
1 + P ′ ĥ

H

scĥsc

M

)
< R

T

T − M

)
= ΓM

(
eR′ − 1
P ′/M

)
,

(36)

where P ′ =
PdPt

Pt + MPd + M
, R′ = R

T

T − M
(37)

The asymptotic diversity gain of USPA with imperfect CSIR
remains M . Furthermore, the SNR gap between the perfect
and imperfect CSIR cases can be significantly reduced by
choosing value of Pt or Pd that maximizes P ′ under the
constraint Pt + Pd(T − M) = PT [8].

In BF-IC, the transmit covariance matrix is

Q =
ĥoldĥ

H

old

ĥ
H

oldĥold

=
ĥold,scĥ

H

old,sc

ĥ
H

old,scĥold,sc

, where ĥold,sc is a scaled

version of ĥold with identity covariance matrix. Again, the
lower bound on the system with imperfect CSIR is equivalent
to the system with perfect CSIR with the parameters: average
SNR (P ′) and rate (R′) given by (37) and ρe. Following the
simplifications as in Section III-A and the appendix, we get

PoutBF-IC(M, R′, P ′, ρ)

≤ 1
(1 + μ′)M−1

M−1∑
i=0

(
M − 1

i

)
(μ′)iΓ(i+1)

(
eR′ − 1

P ′

)
,

(38)

where μ′ = ρ2
e

1−ρ2
e
, and P ′, R′ are given by equation (37).

VI. RESULTS & OBSERVATIONS

The rate of transmission (R) is chosen to be 2 nats/s/Hz
throughout this section. Fig. 1 shows the performance of USPA
(4) and BF-IC (12) for different values of feedback delay
captured by ρ. BF-IC is better at lower SNRs and worse at
high SNRs when compared to USPA for any ρ < 1. Fig.
2 shows the diversity gain of USPA and BF-IC for different
number of transmit antennas (M) for ρ = 0.999. USPA does
not require feedback and has a diversity gain of M , where as
at high SNR, the outage probability with BF-IC is dominated
by the error in CSIT. Thus, the diversity gain of BF-IC scheme
is equal to 1, for any non zero delay in the feedback and any
number of transmit antennas. Hence, USPA outperforms BF-
IC at high SNR for all values of ρ < 1. Cross-over SNR
is defined as the SNR after which USPA outperforms BF-
IC. It can be seen from Fig. 1 that the cross-over SNR is a
monotonically increasing function of ρ.

Fig. 3 shows λopt(γ), the fraction of power spent in the
direction of imperfect CSIT, as a function γ for the OSPA
scheme. Observe that λopt(γ) is larger for higher values of
ρ implying that when the quality of feedback is higher, more
power is spent in the direction of feedback. Fig. 4 compares
the outage probability of BF-IC and USPA with OSPA for
ρ = 0.9. We observe that (a) OSPA provides negligible gain
in performance, (b) OSPA is computationally complex as it
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Fig. 1. Outage probabilities for Beamforming using imperfect CSIT (BF-
IC) for various values of ρ, and uniform spatial power allocation (USPA) for
M = 2 and R = 2 nats/s/Hz. Cross-over SNR is the SNR at which USPA
and BF-IC have the same outage probability.
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Fig. 2. Outage probability with BF-IC for various values of M for ρ = 0.999
and beamforming for ρ = 1 and R = 2 nats/s/Hz

requires the transmitter to compute the optimal value of λ
for each value of feedback SNR and adapt the power in
the spatial modes correspondingly, and (c) OSPA requires
an estimate of ρ to determine λopt(γ) and any mismatch
between the estimated value and the actual value will hurt
the performance. On the other hand, USPA and BF-IC do not
require any estimate of ρ and are very simple. Therefore, we
suggest switching between BF-IC and USPA by comparing
the operating average SNR with the cross-over SNR. For a
given average SNR, it is also possible to choose between
USPA and BF-IC based on the instantaneous feedback SNR γ
(instead of switching based on the average SNR irrespective
of γ). Equations (4) and (11) are the outage probabilties of
USPA and BF-IC for a given γ. However, we know that
switching based on average SNR is already very close to the
performance of OSPA. Therefore, the possible improvement
due to switching based on instantaneous SNR (instead of
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Fig. 3. Fraction of the power in the direction of imperfect CSIT λopt(γ)
for different values of ρ and P ; M = 2 and R = 2 nats/s/Hz.
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Fig. 4. Outage Probabilities for uniform spatial power allocation (USPA)
and beamforming using imperfect CSIT (BF-IC) with and without temporal
power control, and optimal spatial power allocation (OSPA) for ρ = 0.9;
M = 2 and R = 2 nats/s/Hz.

average SNR) is very small.
Fig. 4 also shows the performance of BF-IC and USPA

with the corresponding optimal temporal power control. As in
the case of the short-term power constraint, temporal power
control with BF-IC is better for low SNR and temporal power
control with USPA is better at high SNR. The cross-over SNR
is slightly lower with temporal power control.

Fig. 5 compares the outage probability of BF-IC and USPA
for perfect CSIR with BF-IC and USPA for imperfect CSIR
for ρ = 0.9. Both M = 2 and M = 4 are considered.
T is chosen to be 100. Outage probability for two cases:
(a) Preamble power same as data power (Pd = Pt) and (b)
optimized preamble power is considered. Note that optimal
power chosen for USPA is used as it is for BF-IC. The results
suggest that the loss in performance due to imperfect CSIR
is not significant for both USPA and BF-IC, if the power is
chosen appropriately.
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Fig. 5. Outage probabilities for Beamforming using imperfect CSIT (BF-IC)
for ρ = 0.9, and uniform spatial power allocation (USPA) for M = 2, 4 and
R = 2 nats/s/Hz. Outage for M = 4 with imperfect CSIR is plotted only for
the optimized trianing power case.

VII. SUMMARY

The problem of minimum outage transmission for a MISO
system with M transmit antennas with delayed feedback is
considered. The delay in the feedback is captured by ρ,
the correlation coefficient between delayed CSIT and perfect
CSIR. For a short-term power constraint, we derive an an-
alytic expression for the outage probability of beamforming
using imperfect CSIT, where the power is spent in only one
direction corresponding to the imperfect CSI available with
the transmitter and compare it with that of USPA, where
the power is distributed equally among the M orthogonal
and independent transmit directions. We also determine the
optimal transmit strategy, i.e., OSPA, that minimizes the
outage probability numerically. OSPA involves allocating a
fraction of the power in the direction of the imperfect CSIT
and the rest of the power is equally distributed among the
M−1 orthogonal and independent transmit directions. Results
show that, for any ρ < 1, BF-IC is better at low SNR and
worse at high SNR when compared to USPA. Furthermore,
the asymptotic diversity gain for BF-IC is equal to 1 for any
ρ < 1, independent of the number of transmit antennas. BF-
IC is close to optimal at low SNR, while USPA is close to
optimal at high SNR, i.e., OSPA does not improve the outage
probability significantly compared to switching between BF-
IC and USPA depending on the average SNR. The cross-over
SNR can be determined numerically by equating the outage
probabilities of BF-IC and USPA schemes. For the long-term
power constraint, where the transmit power is varied with
time based on the feedback SNR, we numerically evaluate the
outage probabilities and show again that BF-IC is better at low
SNR, while USPA is better at high SNR. Finally, we show that
the performance loss due to imperfect CSIR is minimal if the
training power is chosen appropriately.

APPENDIX

DERIVATION OF EQUATION (12)

F(nc-χ2,2M,δ)(y) =
∞∑

k=0

(
δ
2

)k
e−

δ
2

k!
Fχ2,2M+2k(y), (39)

where Fχ2,2M+2k(.) is the cdf of a central χ2 random variable
with 2M + 2k degrees of freedom. Using (39), (11) and
substituting δ = 2μγ, PoutBF-IC(M, R, P, ρ) is simplified as

PoutBF-IC(M, R, P, ρ)

=
∫ ∞

0

fΓ(γ)
∞∑

k=0

(μγ)ke−μγ

k!
Fχ2,2+2k(2β)dγ

=
∞∑

k=0

μk

k!
Fχ2,2+2k(2β)

∫ ∞

0

fΓ(γ)γke−μγdγ

=
∞∑

k=0

μk

k!

∫ β

0

xke−x

k!
dx

(M + k − 1)!
(M − 1)!(1 + μ)(M+k)

=
1

(1 + μ)M

∫ β

0

e−xg(x)dx,

(40)

where g(x) =
∞∑

k=0

(
M+k−1

k

)
k!

(
μx

1 + μ

)k

. (41)

LEMMA. For any m, n > 0,(
m + n

m

)
=
(

m + n

n

)
=

min(m,n)∑
i=0

(
m

i

)(
n

i

)
. (42)

Proof: Using symmetry in m and n, we assume m < n without
any loss of generality. Observe that the L.H.S is the number
of ways to chose m objects out of m + n. This can also be
calculated by separating the m + n objects in to 2 sets with
sizes m and n and choosing i objects from the first set and
choosing n− i objects from the second set and varying i from
0 to m. Therefore,(

m + n

m

)
=

m∑
i=0

(
m

i

)(
n

n − i

)
=

min(m,n)∑
i=0

(
m

i

)(
n

i

)
.�

Using the above lemma, g(x) can be simplified as

g(x) =
∞∑

k=0

min(k,M−1)∑
i=0

(
M − 1

i

)(
k

i

)
1
k!

(
μx

1 + μ

)k

=
M−1∑
i=0

∞∑
(k−i)=0

(
M − 1

i

)
1

i!(k − i)!

(
μx

1 + μ

)k

=
M−1∑
i=0

(
M−1

i

)
i!

(
μx

1 + μ

)i ∞∑
(k−i)=0

1
(k − i)!

(
μx

1 + μ

)k−i

= e(
μx
1+μ )

M−1∑
i=0

(
M−1

i

)
i!

(
μx

1 + μ

)i

.
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After substituting for g(x) in (40), we get

PoutBF-IC(M, R, P, ρ)

=
1

(1 + μ)M

M−1∑
i=0

(
M−1

i

)
i!

μi

∫ β

0

e−( x
1+μ )

(
x

1 + μ

)i

dx

=
1

(1 + μ)M−1

M−1∑
i=0

(
(M − 1)

i

)
μiΓ(i+1)

(
eR − 1

P

)
.

(43)
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