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Abstract

Gaming is very popular. Cloud gaming – where re-

mote servers perform game execution and rendering on

behalf of thin clients that simply send input and display

output frames – promises any device the ability to play

any game any time. Unfortunately, the reality is that

wide-area network latencies are often prohibitive; cel-

lular, Wi-Fi and even wired residential end host round

trip times (RTTs) can exceed 100ms, a threshold above

which many gamers tend to deem responsiveness unac-

ceptable.

In this paper, we present Outatime, a speculative ex-

ecution system for mobile cloud gaming that is able to

mask up to 250ms of network latency. Outatime pro-

duces speculative rendered frames of future possible out-

comes, delivering them to the client one entire RTT

ahead of time; clients perceive no latency. To achieve

this, Outatime combines: 1) future input prediction; 2)

state space subsampling and time shifting; 3) mispredic-

tion compensation; and 4) bandwidth compression.

To evaluate the prediction and speculation techniques

in Outatime, we use two high quality, commercially-

released games: a twitch-based first person shooter,

Doom 3, and an action role playing game, Fable 3.

Through user studies and performance benchmarks, we

find that players overwhelmingly prefer Outatime to tra-

ditional thin-client gaming where the network RTT is

fully visible, and that Outatime successfully mimics

playing across a low-latency network.

1 Introduction
Gaming is a popular activity. Recently, cloud gam-

ing – where datacenter servers execute the games on be-

half of thin clients that merely transmit UI input events

and display output rendered by the servers – has emerged

as an interesting alternative to traditional client-side exe-

cution. Cloud gaming offers several advantages. First,

every client can enjoy the high-end graphics provided

by powerful server GPUs. This is especially appealing

for devices such as down- and mid-market phones, basic

tablets, TVs and other displays lacking high-end GPUs.

Second, with cloud gaming, developers avoid two long-

standing challenges that arise with the vexing diversity

of devices: platform compatibility headaches and per-

platform performance tuning [35, 30, 24]. Third, server

management (e.g., for bug fixes, software updates, hard-

ware upgrades, content additions, etc.) is far easier than

modifying clients. Finally, players can select from a vast

library of titles and instantly play any of them. Sony,

Nvidia and Amazon are among the providers that have

released or announced cloud gaming services [1, 2, 3].

However, cloud gaming faces a key technical

dilemma: how can players attain real-time interactivity

in the face of wide-area latency? Real-time interactivity

means client input events should be quickly reflected on

the client display. User studies have shown that players

are sensitive to as little as 60 ms latency, and are aggra-

vated at latencies in excess of 100 ms [10, 25, 6]. A

further delay degradation from 150 ms to 250 ms lowers

user engagement by 75% [9].

One way to address latency is to move servers closer

to clients. Not only are decentralized edge servers more

expensive to build and maintain, local spikes in demand

cannot be routed to remote servers which further magni-

fies costs. Most importantly, high latencies are often at-

tributed to the networks’s last mile. Recent studies have

found that the 95th percentile of network latencies for

3G, Wi-Fi and LTE are over 600 ms, 300 ms and 400 ms,

respectively [16, 15, 27]. In fact, even well-established

residential wired last mile links tend to suffer from laten-

cies in excess of 100ms when under load [28, 5]. Unlike

non-interactive video streaming, buffering is not possible

for interactive gaming.

Instead, we propose to mitigate wide-area latency via

speculative execution. We present Outatime,1 a system

that delivers real-time gaming interactivity as fast as tra-

ditional local client-side execution, despite latencies up

to 250 ms. Outatime’s basic approach combines input

prediction with speculative execution to render mulitple

possible frame outputs which could occur RTT millisec-

onds in the future. Outatime employs the following tech-

niques to accomplish this.

Future Input Prediction: Given the user’s historical

tendencies and recent behavior, we show that some cate-

gories of user actions are highly predictable. We develop

1Outatime : a car so fast that it can time travel, enabling one to take

action in the past based on possible futures.
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a Markov-based prediction model that examines recent

user input to forecast expected future input. We use two

techniques to improve prediction quality: supersampling

of input events, and constructing a Kalman filter to im-

prove users’ perception of smoothness.

State Space Subsampling and Time Shifting: Certain

user inputs (e.g., firing a gun) cannot be easily predicted.

For these, we use parallel speculative executions to ex-

plore multiple outcomes. However, the set of all possible

frames over long RTTs can be very large due to state

space explosion. To address this, we use two techniques:

state space subsampling, and event stream time shifting.

These greatly reduce possible outcomes with minimal

impact on the quality of interaction, thereby permitting

speculation within a reasonable budget.

Misprediction Compensation: When mispredictions

occur, Outatime enables the client to execute error com-

pensation on the (mis)predicted frame. The resulting

frame is very close to what the client ought to see. Our

misprediction compensation uses view interpolation, a

graphics technique that transforms pre-rendered images

from one viewpoint to a different viewpoint using only

a small amount of additional 3D metadata. Furthermore,

to prevent past prediction errors from propagating for-

ward, Outatime uses checkpoint/restore to recover from

speculative state.

Bandwidth Compression: The transmission of pos-

sible outcome frames from server to client consumes

added bandwidth. To reduce this overhead, we develop a

video encoding scheme which provides better compres-

sion than standard encoding by taking advantage of the

visual similarity of speculated frames.

To punctuate our emphasis on fast interaction, we

evaluate Outatime’s prediction techniques using two fast

action games where even small latencies are disadvan-

tageous. Doom 3 is a twitch-based first person shooter

where responsiveness is paramount. Fable 3 is a role

playing game with frequent fast action combat. Both are

high-quality, commercially-released games, and are very

similar to mobile games in the first person shooter and

role playing genres, respectively.

Through interactive gamer testing, we found that

players perceived only minor differences in responsive-

ness on Outatime when operating at up to 250 ms RTT

when compared head-to-head to a system with no la-

tency. Moreover, unlike in standard cloud gaming sys-

tems, Outatime players’ in-game skills performance and

task completion times did not drop off as RTT increased

up to 250 ms. Overall, player surveys indicated posi-

tive reception of gameplay on Outatime. Speculation’s

latency reduction benefits do come with a cost. We show

that while several of our compression techniques are able

to dampen increased bandwidth costs, Outatime exhibits

a bitrate that is a factor of 1.5− 4.5× higher than stan-

dard cloud gaming systems. On the whole, we believe

this is a reasonable trade-off for service providers who

are otherwise unable to offer users low-latency interac-

tivity.

The remainder of the paper is organized as follows.

§2 provides background on game architectures and the

impact of latency. §3 presents an overview of the Outa-

time architecture. §4 and §5 detail our two main methods

of speculation. §7 discusses how we reduce bandwidth

overhead. §8 covers the implementation. §9 evaluates

Outatime via user study and performance benchmarks.

§10 covers related work and §11 discusses implications

of the work.

2 Background & Impact of Latency
The vast majority of game applications are structured

around the game loop, a repetitive execution of the fol-

lowing stages: 1) read user input; 2) update game state;

and 3) render and display frame. Each iteration of this

loop is a logical tick of the game clock and corresponds

to 32ms of wall-clock time for an effective frame rate of

30 frames per second (fps).2 The time taken for one iter-

ation of the game loop is the frame time. Frame time is a

key metric for assessing interactivity since it corresponds

to the delay between a user’s input and observed output.

Network latency has an acute effect on interaction

for cloud gaming. In standard cloud gaming, the frame

time must include the additional overhead of the network

RTT, as illustrated in Figure 1a. Let time be discretized

into 32ms clock ticks, and let the RTT be 4 ticks (128ms).

At t5, the client reads user input i5 and transmits it to the

server. At t7, the server receives the input, updates the

game state, and renders the frame, f5. At t8, the server

transmits the output frame to the client, which receives

it at t10. Note that the frame time incurs the full RTT

overhead. In this example, an RTT of 128ms results in a

frame time of 160 ms.

3 Goals and System Architecture
For Outatime, responsiveness is paramount; Outa-

time’s goal is to consistently deliver low frame times

(< 32ms) at high frame rate (> 30fps) even in the face of

long RTTs and large jitter. In exchange, we are willing to

transmit a higher volume of data and potentially even in-

troduce (very small and very ephemeral) visual artifacts,

ideally sufficiently minor that most players rarely notice.

The basic principle underlying Outatime is to spec-

ulatively generate possible output frames and transmit

them to the client a full RTT ahead of the client’s ac-

tual corresponding input. As shown in Figure 1b, the

client sends input as before; at t0, the client sends the in-

put i0 which happens to be the input generated more than

one RTT interval prior to t5. The server receives i0 at t2,

2 1
30 f ps

≈ 32ms for mathematical convenience.
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Fig. 1: Comparison of frame delivery time lines. RTT= 4 ticks, server processing time = 1 tick.
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Fig. 2: The Outatime Architecture. Bold boxes represent the

main areas of this paper’s technical focus.

computes a sequence of probable future input up to one

RTT later as i′1, i
′
2, ..., i

′
5 (we use ′ to denote speculation),

renders its respective frame f ′5, and sends these to the

client. Upon reception at the client at time t5, the client

verifies that its actual input sequence recorded during the

elapsed interval matches the server’s predicted sequence:

i1 = i′1, i2 = i′2, ..., i5 = i′5. If the input sequences match,

then the client can safely display f ′5 without modification

because we ensure that the game output is deterministic

for a given input [33]. If the input sequence differs, the

client applies error compensation to f ′5 and displays a

corrected frame. We describe error compensation in de-

tail in §4. Unlike in standard cloud gaming where clients

wait more than one RTT for a response, Outatime im-

mediately delivers response frames to the client after the

corresponding input.

Speculation performance in Outatime depends upon

being able to accurately predict future input and generate

its corresponding output frames. Outatime does this by

identifying two main classes of game input, and building

speculation mechanisms for each, as illustrated in Fig-

ure 2. The first class, navigation, consists of input events

that control view (rotation) and movement (translation)

and modify the player’s field of view. Navigation inputs

tend to exhibit continuity over short time windows, and

therefore Outatime makes effective predictions for navi-

gation. The second class, impulse, consists of events that

are inherently sporadic such as firing a weapon or acti-

vating an object, yet are fundamental to the player’s per-

ception of responsiveness. For example, in first person

shooters, instantaneous weapon firing is core to game-

play. Unlike navigation inputs, the sporadic nature of im-

pulse events makes them less amenable to prediction. In-

stead, Outatime generates parallel speculations for mul-

tiple possible future impulse time lines. To tame state

space explosion, Outatime subsamples the state space

and time shifts impulse events to the closest speculated

timeline. This enables Outatime to provide the player the

perception that impulse is handled instantaneously. Be-

sides navigation and impulse, we classify other input that

is slow relative to RTT as delay tolerant. One example of

delay tolerant input in Doom is the command that shows

the heads-up display. Delay tolerant input is not subject

to speculation, and we discuss how it is handled in §5.

Figure 2 also shows that Outatime, like standard cloud

gaming systems, makes minimal assumptions about

client capabilities. Namely, the client must perform

standard operations such as decode a bitstream, dis-

play frames and transmit standard input such as button,

mouse, keyboard and touch events. An additional re-

quirement for Outatime is that the client should be able

to execute view interpolation, a misprediction compen-

sation procedure which consists of basic graphics oper-

ations that can be performed efficiently on any device

with a GPU. In contrast, high-end games that run solely

on a client device demand much more powerful CPU and

GPU processing.

4 Speculation for Navigation

Navigation speculation entails predicting a sequence

of future navigation input events at discrete time steps.

Hence, we use a discrete time Markov chain for naviga-

tion inference. We experimented with more sophisticated

time series models [26], including neural network time-

series prediction as well as linear and polynomial re-

gression models, yet we observed that the Markov chain

performed comparably to these others for our task. We

first describe how we applied the Markov model to in-

put prediction, and our use of supersampling to improve

the inference accuracy. Next, we refine our prediction

in one of two ways, depending on the severity of the

expected error. We determine the expected error as a
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function of RTT using an offline per-user training step.

When errors are sufficiently low (typically correspond-

ing to RTT< 40ms), we apply an additional Kalman filter

to reduce video “shake”). Otherwise, we use mispredic-

tion compensation on the client to post-process the frame

rendered by the server.

Basic Markov Prediction. We construct a Markov

model for navigation. Time is quantized, with each dis-

crete interval representing a game tick. Let the random

variable navigation vector Nt represent the change in 3-D

translation and rotation at time t:

Nt = {δx,t ,δy,t ,δz,t ,θx,t ,θy,t ,θz,t}

Each component above is quantized. Let nt represent

an actual empirical navigation vector received from the

client. Our state estimation problem is to find the maxi-

mum likelihood estimator N̂t+λ where λ is the RTT.

Using the Markov model, the probability distribution

of the navigation vector at the next time step is dependent

only upon the navigation vector from the current time

step: p(Nt+1|Nt). We predict the most likely navigation

vector N̂t+1 at the next time step as:

N̂t+1 = E[p(Nt+1|Nt = nt)]

= argmax
Nt+1

p(Nt+1|Nt = nt)

where Nt = nt indicates that the current time step has

been assigned a fixed value by sampling the actual user

input nt . In many cases, the RTT is longer than a sin-

gle time step (32ms). To handle this case, we predict the

most likely value after one RTT as:

N̂t+λ = argmax
Nt+λ

p(Nt+1|Nt = nt) ∏
i=1..λ−1

p(Nt+i+1|Nt+i)

where λ represents the RTT latency expressed in units of

clock ticks.

Our results indicate that the Markov assumption holds

up well in practice: namely, Nt+1 is memoryless (i.e., in-

dependent of the past given Nt ). In fact, additional his-

tory in the form of longer Markov chains did not show

a measurable benefit in terms of prediction accuracy.

Rather than constructing a single model for the entire

navigation vector, instead we treat each component of

the vector N independently, and construct six separate

models. The benefit of this approach is that less training

is required when estimating N̂, and we observed that this

assumption of treating the vector components indepen-

dently does not hurt prediction accuracy. Below in §4,

we discuss the issue of training in more detail.

Supersampling. We further refine our navigation pre-

dictions by supersampling: sampling input at a rate that

is faster than the game’s usage of the input. We dis-

covered that supersampling helps with prediction accu-

racy empirically. Our hypothesis is that supersampling

provides a benefit because prediction accuracy degrades

non-linearly over time. To construct a supersampled

Markov model, we first poll the input device at the fastest

rate possible. This rate is dependent on the specific in-

put device. It is at least 100Hz for touch digitizers and at

least 125Hz for standard mice. With a 32ms clock tick,

we can often capture at least four samples per tick. We

then build the Markov model as before. The inference is

similar to the equation above, with the main difference

being the production operator incrementing by i
+
= 0.25.

A summary of navigation prediction accuracy from the

user study described in §9 is shown in Figure 3. Most

dimensions of rotational and translational displacement

exhibit little performance degradation with longer RTTs.

Yaw (θx) exhibits the most error, and we show its perfor-

mance in detail in Figure 4 for user traces collected from

both Doom 3 and Fable 3 at various RTTs from 40ms to

240ms. Doom 3 exhibits greater error than Fable 3 due to

its more frenetic gameplay. Based on subjective assess-

ment, prediction error below 4◦ is under the threshold at

which output frame differences are perceivable.

Based on these results, we make two observations.

First, for RTT ≤ 40ms (where 98% and 93% of errors

are less than 4◦ for Doom 3 and Fable 3 respectively),

per frame errors are sufficiently minor and infrequent.

Note that the client can always detect the magnitude of

the error (because it knows the ground truth), and drop

any frames with excessive error. A frame rate drop from

30fps to 30× 0.95 = 28.5fps is unlikely to affect most

players’ perceptions. For RTT > 40ms, we require addi-

tional misprediction compensation mechanisms. Before

discussing both of these cases in turn, we first address the

question of how much training is needed for successful

application of the predictive model.

Bootstrap Time. Construction of a reasonable Markov

Model requires sufficient training data collected during

an observation period. It is important that the observation

period is of sufficient duration to accurately reflect the

distribution of transition probabilities during extended

gameplay. Otherwise, mispredictions due to inaccurate

transition probabilities are severe. Figure 5 shows that

prediction error improves as observation time increases

from 30 seconds to 300 seconds, after which the pre-

diction error distribution remains stable. Compared to

the average player session length (which varies by game

genre; for an RPG similar to Fable 3 the authors of [9]

report four hours), 300 seconds is a modest bootstrap pe-

riod. Currently, training is performed once per user and

is independent of the game level or map.

Shake Reduction with Kalman Filtering. While the

Markov model yields high prediction accuracy for RTT<
40ms, minor mispredictions can introduce a distracting

visual effect that we describe as video shake. As a sim-

ple example, consider a single dimension of input such as

yaw. The ground truth over three frames may be that the
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Fig. 3: Doom 3 Navigation

Prediction Summary. Roll (θz)

is not an input in Doom 3 and

need not be predicted.
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(b) Fable 3

Fig. 4: Prediction for Yaw (θx), the navigation component with

the highest variance. Error under 4◦ is imperceptible.
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Fig. 5: Error Decreases with

More Observation Time. Data

is for Fable 3 at RTT= 160ms.

yaw remains unchanged, but the prediction error might

be +2◦,−3◦,+3◦. Unfortunately, the user would per-

ceive a shaking effect because the frames would jump by

5◦ in one direction, and then 6◦ in another. From our ex-

perience with early prototypes, the manifested shakiness

was sufficiently noticeable so as to reduce playability.

We apply a Kalman filter [19] in order to compensate

for video shake. The filter’s advantage is that it weighs

estimates in proportion to sample noise and prediction

error. Conceptually, when errors in past predictions are

low relative to sample noise, predictions are given greater

weight for state update. Conversely, when measurement

noise is low, samples make greater contribution to the

new state. For space, we omit technical development of

the filter for our problem. One interesting filter modifica-

tion we make is that we extend the filter to support error

accumulation over variable RTT time steps; samples are

weighed against an RTT’s worth of prediction error. Be-

fore and after video clips at http://1drv.ms/1koGZ1p

show that shake is largely eliminated by Kalman filter.

Misprediction Compensation with View Interpola-

tion. When RTT > 40ms, a noticeable fraction of navi-

gation input is mispredicted, resulting in users perceiving

lack of motor control. Our goal in misprediction com-

pensation is for the server to generate auxiliary view data

f ∆ alongside its predicted frame f ′ such that the client

can reconstruct a frame f ′′ that is a much better approxi-

mation of the desired frame f than f ′.

View Interpolation. We compensate for mispredictions

with view interpolation. View interpolation was origi-

nally developed as a means to derive novel camera view-

points from a fixed number of initial cameras. It operates

by having initial cameras capture depth information ( f ∆)
in addition to 2D RGB color information ( f ′). It then

interpolates to create a new 2D image ( f ′′) from f ′ and

f ∆ [29]. Figure 6 illustrates an example whereby an orig-

inal image and its depth information is used to generate

a new image from a novel viewpoint. Note that the new

image is both translated and rotated with respect to the

original, and contains some visual artifacts in the form

Input Image Input Depth Output Image

,

Fig. 6: View Interpolation Example w/ Fable 3. Forward trans-

lation and leftward rotation is applied. The dog (indicated by

green arrow) is closer and toward the center after interpolation.
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Fig. 7: Cube Map Exam-
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Fig. 8: Angular coverage of 99%

of prediction errors is much less

than 360◦ even for high RTT.

of blurred pixels when interpolation is inaccurate.

For effective interpolation, two requirements must be

satisfied. First, the depth information must accurately re-

flect the 3D scene. Fortunately, the graphics pipeline’s

z-buffer precisely contains per-pixel depth information

and is already a byproduct of standard rendering. Sec-

ond, the original 2D scene must be sufficiently large

so as to ensure that any interpolated view is bounded

within the original. To handle this case, instead of ren-

dering a normal 2D image by default, we render a cube

map [13] centered at the player’s position. As shown

in Figure 7, the cube map draws a panoramic 360◦ im-

age on the six sides of a cube. In this way, the cube

map ensures that any interpolated image is within its

bounds. A video clip demonstrating view interpolation

is at http://1drv.ms/1kpb5lp.

Unfortunately, naı̈ve use of the depth map and cube

map can lead to significant overhead. The cube map’s

5
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six faces are approximately3 six times the size of the

original image. The z-buffer is the same resolution as

the original image, and depth information is needed for

every cube face. Taken together, the total overhead is

nominally 12×. This cost is incurred at multiple points

in the system where data size is the main determinant

of resource utilization, such as server rendering, encod-

ing, bandwidth and decoding. We use the following tech-

nique to reduce this overhead.

Clipped Cube Map. For the cube map, we observe that it

is unlikely that the player’s true view will diverge egre-

giously from the most likely predicted view; transmitting

a cube map that can compensate for errors in 360◦ is gra-

tuitous. Therefore, we render a clipped cube map rather

than a full cube map. The percentage of clipping de-

pends on the expected variance of the prediction error. If

the variance is high, then we render more of the cube.

On the other hand, if the prediction variance is low, we

render less of the cube. The dotted line in Figure 7 marks

the clip region for an example rendering.

In order to size the clip, we define a cut plane c such

that the clipped cube bounds the output image with prob-

ability 1− ε. The cut plane then is a function of the vari-

ance of the prediction, and hence the partial cube map

approaches a full cube when player movement exhibits

high variance over the subject RTT horizon. To calculate

c, we choose not a single predicted Markov state, but

rather a set N of k states such that the set covers 1−ε of

the expected probability density:

N = {ni
t+1| ∑

i=1..k

p(Nt+1 = ni
t+1|Nt = nt)≥ 1− ε}

The clipped cube map then only needs to cover the range

represented by the states in N . For a single dimension

such as yaw, the range is then simply the largest distance

difference, and the cut plane along the yaw axis is defined

as follows:

cyaw = max
ni

t+1∈N
yaw(ni

t+1)− min
n

j
t+1∈N

yaw(n
j
t+1)

This suffices to cover 1− ε of the probable yaw states.

In practice, error ranges are significantly less than

360◦ and therefore the size of the cube map can be sub-

stantially reduced. Figure 8 shows the distribution of

cyaw and cpitch in Fable 3 and Doom 3 for ε = 0.01,

meaning that 99% of mispredictions are compensated.

Doom 3’s pitch range is very narrow (because play-

ers hardly look up or down), and both Fable 3’s yaw

and pitch ranges are modest at under 80◦ even for RTT

≥ 300ms. Even for Doom 3’s pronounced yaw range,

only 225◦ of coverage is needed at 250 ms. The clip pa-

rameters are also applied to the depth map in order to

similarly reduce its size.

In theory, compounding translation error on top of ro-

3The original image is not square but rather 16:9 or 4:3.

tation error can further expand the clip region. It turns

out that translation accuracy (see Figure 3) is sufficiently

high to obviate consideration of accumulated translation

error for the purposes of clipping.

5 Speculation for Impulse Events

The prototypical impulse events are FIRE for first per-

son shooters, and INTERACT (with other characters or

objects) for role playing games. We define an impulse

event as being registered when its corresponding user in-

put is activated. For example, a user’s button activation

may register a FIRE event.

The objective for impulse speculation is to respond

quickly to player’s impulse input while avoiding any

visual inconsistencies. For example, in a first person

shooter, weapons should fire quickly when triggered, and

enemies should not reappear shortly after dying. The lat-

ter type of visual (and semantic) inconsistency is discon-

certing to players, yet may occur when mispredictions

occur in a prediction-based approach. Therefore, we em-

ploy a speculation technique for impulse that differs sub-

stantially from navigation speculation – rather than at-

tempt to predict impulse events, instead we explore mul-

tiple outcomes in parallel.

An overview of Outatime’s impulse speculation is as

follows. The server creates a speculative input sequence

for all possible event sequences that may occur within

one RTT, executes each sequence, renders the final frame

of each sequence, and sends the set of speculative in-

put sequences and frame pairs to the client. Upon recep-

tion, the client chooses the event sequence that matches

the events that actually transpired, and displays its corre-

sponding frame.

As RTT increases, the number of possible sequences

grows exponentially. Consider an RTT of 256ms, which

is 8 clock ticks. An activation may lead to an event reg-

istration at any of the 8 ticks, leading to an overwhelm-

ing 28 possible sequences. In general, 2λ sequences are

possible for an RTT of λ ticks. We introduce two con-

cepts to tame state space explosion: subsampling and

time-shifting.

Subsampling. We reduce the number of possible se-

quences by only permitting activations at the subsam-

pling periodicity σ which is a periodicity greater than one

clock tick. The benefit is that the state space is reduced

to 2
λ
σ . The drawback is that subsampling alone would

cause activations not falling on the sampling periodicity

to be lost, which would be counter-intuitive to users.

Time-Shifting. To address the shortcomings of subsam-

pling, time-shifting causes activations to be registered ei-

ther earlier or later in time in order to align them with the

nearest subsampled tick. Time shifting to an earlier time

is feasible using speculation because the shift occurs on

a speculative sequence at the server – not an actual se-
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Fig. 9: Subsampling and time-shifting impulse events allows

the server to bound speculation to a maximum of four se-

quences even for RTT= 256ms. Screenshots (b) – (e) show

speculative frames corresponding to four activation sequences

of weapon fire and no fire.

quence that has already been committed by the client.

Put another way, as long as the client has not yet dis-

played the output frame at a particular tick, it is always

safe to shift an event backwards to that tick.

Specifically, for any integer k, an activation issued be-

tween tσ∗k− σ
2

and tσ∗k−1 is deferred until tσ∗k. An activa-

tion issued between tσ∗k+1 and tσ∗k+ σ
2 −1 is treated as if

it had arrived earlier in time at tσ∗k. Figure 9a illustrates

combined subsampling and time-shifting, where the ac-

tivations that occur at t1 through t2 are shifted later to

t3 and activations that occur at t4 are shifted earlier to

t3. The corresponding state tree in Figure 9a shows the

possible event sequences and four resulting speculative

frames, f ′18 , f ′28 , f ′38 and f ′48 . Note that it is not neces-

sary to handle activations at t0 within the illustrated 8

tick window because speculations that started at earlier

clock ticks (e.g. at t−1) would have covered them.

The ability to time-shift both forward and backward

allows us to further halve the subsampling rate to dou-

ble σ without impacting player perception. Using 60ms

as the threshold of player perception [25, 6], we note

that time-shifting forward alone permits a subsampling

period of σ = 2 (64ms) with an average shift of 32ms.

With the added ability to time-shift backward as well, we

can support a subsampling period of σ = 4 (128ms) yet

still maintain an average shift of only 32ms. For σ = 4

and RTT≤ 256ms, we generate a maximum of four spec-

ulative sequences as shown in Figure 9a. When RTT

> 256ms, we further lower the subsampling frequency

sufficiently to ensure that we bound speculation to a max-

imum of four sequences. Specifically, σ = λ
2

. While this

can potentially result in users noticing the lowered sam-

ple rate, it allows us to cap the overhead of speculation.

Ternary and Quaternary Impulse Events. While bi-

nary impulse events are the most common, some games

provide more options. For example, a Fable 3 player may

cast a magic spell either directionally or unidirectionally

which is a ternary impulse event due to mutual exclu-

sion. Some first person shooters support primary and

secondary fire modes (Doom 3 does not) which is also

a ternary impulse event. With a ternary (or quaternary)

impulse event, the state branching factor is three (or four)

rather than two at every subsampling tick. With four par-

allel speculative sequences and a subsampling interval of

σ = 128ms, Outatime is able to support RTT ≤ 128ms

for ternary and quaternary impulse events without lower-

ing the subsampling frequency.

Delay Tolerant Events. We classify any input event that

is slow relative to likely RTTs as delay tolerant. We

use a practical observation to simplify handling of delay

tolerant events. According to our measurements on Fa-

ble 3 and Doom 3, delay tolerant events exhibited very

high cool down times that exceeded 256ms. The cool

down time is the period after an event is registered dur-

ing which no other impulse events can be registered. For

example, in Doom 3, weapon reloading takes anywhere

from 1000ms to 2500ms during which time the weapon

reload animation is shown. Weapon switching takes even

longer. Fable 3 delay tolerant events have even higher

cool down times. We take the approach that whenever a

delay tolerant input is activated at the client, it is permis-

sible to miss one full RTT of the event’s consequences,

as long as we can compress time after the RTT. The time

compression procedure works as follows: for a delay tol-

erant event which displays τ frames worth of animation

during its cool down (e.g. a weapon reload animation

which takes τ frames), we may miss λ frames due to

the RTT. During the remaining τ−λ frames, we choose

to compress time by sampling τ − λ frames uniformly

from the original animation sequence τ. The net effect

is that delay tolerant event animations appear to play at

fast speed. In return, we are assured that any subsequent

events are properly processed because the delay tolerant

event’s cool down is greater than the RTT. For example,

weapon switching or reloading immediately followed by

firing is handled correctly.

6 Multiplayer

Thus far, we have described Outatime from the per-

spective of a single user. Outatime works in a straight-

forward manner for multiplayer as well, though it is use-

ful to clarify some nuances. As a matter of background,

we briefly review distributed consistency in multiplayer

systems. The standard architecture of a multiplayer gam-
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ing system is composed of traditional thick clients at the

end hosts and a state coordination game server which

reconciles distributed state updates to produce an eventu-

ally consistent view of events. For responsiveness, each

client may perform local dead reckoning [12, 8]. As

an example, player one locally computes the position of

player two based off of last reported trajectory. If player

one should fire at player two who deviates from the

dead-reckoned path, whether a hit is actually scored de-

pends on the coordination server’s reconciliation choice.

Reconciliation can be crude and disconcerting when lo-

cal dead-reckoned results are overridden; users perceive

glitches such as: 1) an opponent’s avatar appears to tele-

port if the opponent does not follow the dead-reckoned

path, 2) a player in a firefight fires first yet still suffers a

fatality, 3) “sponging” occurs – a phenomenon whereby

a player sees an opponent soak up lots of damage without

getting hurt [4].

With multiplayer, Outatime applies the architecture

of Figure 2 to clients without altering the coordination

server: end hosts run thin clients and servers run end

hosts’ corresponding Outatime server processes. The co-

ordination server – which need not be co-located with

the Outatime server processes – runs as in standard mul-

tiplayer. Outatime’s multiplayer consistency is equiva-

lent to standard multiplayer’s because dead-reckoning is

still used for opponents’ positions; glitches can occur,

but they are no more or less frequent than in standard

multiplayer. As future work, we are interested in extend-

ing Outatime to remedy glitches. Techniques that selec-

tively process other players as AI-controlled (and thereby

deterministic) opponents may be insightful in mitigating

state space explosion [7].

7 Bandwidth and Encoding
Navigation and impulse speculation generate addi-

tional frames to transmit from server to client. As an

example, consider impulse speculation which for RTT of

256ms transmits four speculative frames for four possi-

ble worlds. Nominally, this bandwidth overhead is four

times that of transmitting a single frame.

We can achieve a large reduction in bandwidth by ob-

serving that frames from different speculations share sig-

nificant spatial and temporal similarity. Using Figure 9a

as an example, f ′18 and f ′28 are likely to look very sim-

ilar, with the only difference being two frames’ worth

of a weapon discharge animation in f ′18 . Corresponding

screenshots Figure 9b–9e show that the surrounding en-

vironment is largely unchanged, and therefore the spatial

similarity is often high. In addition, when Outatime spec-

ulates for the next four frames, f ′19 - f ′19 , f ′19 is likely to

look similar not only to f ′18 , but also to f ′28 , and therefore

the temporal similarity is also often high. Similarly, navi-

gation speculation’s clipped cube map faces often exhibit

both temporal and spatial similarity.

Outatime takes advantage of temporal and spatial sim-

ilarity to reduce bandwidth by joint encoding of spec-

ulative frames. Encoding is the server-side process of

compressing raw RGB frames into a compact bitstream

which are then transmitted to the client where they are

decoded and displayed. A key step of standard codecs

such as H.264 is to divide each frame into macroblocks

(e.g., 64×64 bit). A search process then identifies mac-

roblocks that are equivalent (in some lossy domain) both

intra-frame and inter-frame. In Outatime, we perform

joint encoding by extending the search process to be

inter-speculation; macroblocks across streams of differ-

ent speculations are compared for equivalence. When an

equivalency is found, we need only transmit the data for

the first macroblock, and use pointers to it for the other

macroblocks.

The addition of inter-speculation search does not

change the client’s decoding complexity but does intro-

duce more encoding complexity on the server. Fortu-

nately, modern GPUs are equipped with very fast hard-

ware accelerated encoders [23, 17]. These hardware ac-

celerated capabilities, which otherwise sit idle, are repro-

grammable for our speculation’s joint encoding.

8 Implementation

To prototype Outatime, we modified Doom 3 (orig-

inally 366,000 lines of code) and Fable 3 (originally

959,000 lines of code). Doom 3 was released in 2004

and open sourced in 2011. Fable 3 was released in 2011.

While both games are several years old, we note that the

core gameplay of first person shooters and role playing

games upon which Outatime relies has not fundamen-

tally changed in newer games. The following section’s

discussion is with respect to Doom 3. Our experience

with Fable 3 was similar and suggests that the essential

developer modifications needed to support efficient spec-

ulation are similar across commercial titles. We also ex-

amined UDK [12], one of several widely used commer-

cial game engines upon which many games are built, and

verified that the modifications described below are gen-

eral and feasible in UDK as well.4 Therefore, we suggest

that the techniques proposed below are broadly applica-

ble and can be systematized.

Doom 3 is structured as a frontend executable, known

as the game engine, and a content library. The Doom 3

engine (also known as idTech4), doom3.exe, performs

generic game routines such as capturing user input and

rendering graphical content. The Doom 3 content library,

gamex86.dll, involves everything specific for the game

running on top of the engine, in this case Doom 3. The

content library is responsible for performing game spe-

cific logic and handling the simulation of the game state.

As a preliminary step to permit deterministic replay, we

4UDK source was only publicly released recently in April 2014.
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made changes according to [33] such as de-randomizing

the random number generator.

We have made the following key modifications to

Doom 3. To support impulse speculation, we spawn

up to four Doom 3 slaves, each of which is a modi-

fied instance of the original game (i.e., doom3.exe and

gamex86.dll). Each slave accepts the following com-

mands: advance consumes an input sequence and simu-

lates game logic accordingly; render produces a frame

corresponding to the current simulation state; undo dis-

cards any uncommitted state; commit makes any input

applied thus far permanent. Each slave receives instruc-

tions from our master process regarding the speculation

(i.e., input sequence) it should be executing, and returns

framebuffers as encoded bitstream packets to the master

using shared memory. To support navigation speculation,

we add an additional slave command: rendervi, which

produces the cubemap and depth maps necessary for in-

terpolation. The number of slaves spawned depends on

the network latency. When RTT> 128ms, four slaves can

cover four speculative state branches. Otherwise, three

slaves suffice. The client is a simple thin client with the

ability to perform view interpolation [29].

As with other systems that perform speculation [22,

32], Outatime uses checkpoint and restore to play for-

ward a speculative sequence, and roll back the sequence

if it turns out to be incorrect. In contrast to these pre-

vious systems, our continuous 30fps interactivity per-

formance constraints are qualitatively much more de-

manding, and we highlight how we have managed these

requirements. As a point of comparison, the built-in

save/load game “checkpoint” feature takes 20 seconds,

which would yield 0.05fps.

Unique among speculation systems, we use a com-

bination of page-level checkpointing and object-level

checkpointing. This is because whereas page-level

checkpointing is application agnostic and efficient when

most objects need checkpointing, object-level check-

pointing is higher performance when few objects need

checkpointing. In general, it is only necessary to check-

point Game State Objects (GSOs): those non-constant

objects which reproduce the world state. Checkpoint-

ing objects which have no bearing on the game state or

are constant, such as already converted raw user input

data or stateless rendering handlers, only cause runtime

overhead. gamex86.dll consists almost exclusively of

GSOs whereas doom3.exe has a mix of GSOs and other

objects for handling user input and output. Therefore, we

use object-level checkpointing for doom3.exe and page-

level checkpointing for gamex86.dll.

To implement page-level checkpointing for

gamex86.dll, we intercept calls to the default

libc memory allocator with a version that implements

page-level copy-on-write. At the start of a speculation

(at every clock tick for navigation and at each σ clock

ticks for impulse), the allocator marks all pages read-

only. When a page fault occurs, the allocator makes a

copy of the original page and sets the protection level of

the faulted page to read-write. When new input arrives,

the allocator invalidates and discards some speculative

sequences which do not match the new input. For

example in Figure 9a, if no event activation occurs at

t3, then the sequences corresponding to f ′18 and f ′28 are

invalid. State changes of the other speculative sequences

up until t3 are committed. In order to correctly roll

back a speculation, the allocator copies back the original

content of the dirty pages using the copies that it created.

The allocaltor also tracks any pages created as a result

of new object allocations since the last checkpoint.

Any such pages are discarded. During speculation, the

allocator also defers page deallocation resulting from

object delete until commit because deleted objects may

need to be restored if the speculation is later invalidated.

To implement object-level checkpointing for

doom3.exe, we track lifetimes of object rather than

pages. Conveniently, doom3.exe objects are stateless,

and therefore checkpoint bypasses saving state with

copy-on-write. To discard a speculation, we delete any

object that did not exist at the checkpoint, and restore

any objects that were deleted during speculation.

We implemented the server-side joint video encode

pipeline and client-side decode pipeline as Nvidia CUDA

kernel functions executing on the GPU with support from

dedicated codec accelerators [23]. The encode pipeline

consists of raw frame capture, color space conversion

and H.264 bitstream encoding. The decode pipeline con-

sists of H.264 bitstream decoding and color space con-

version to raw frames. We implemented the client’s

view interpolation as an OpenGL GLSL shader which

consumes decoded raw frames and produces a compen-

sated final frame for display. For any reasonable inter-

active performance target, CPU processing of any of the

above steps is infeasible since the PCI-E bus is easily

saturated during high frequency data transfer of uncom-

pressed video frames between GPU and CPU. Moreover,

codec processing and view interpolation are inherently

parallel and therefore well-suited for the GPU.

9 Evaluation
We use both user studies and performance bench-

marking to characterize the cost and benefits of Outa-

time. User studies are useful to assess perceived respon-

siveness and visual quality degradation, and how macro-

level system behavior impacts gameplay. Our primary

tests are on Doom 3 because twitch-based gaming is very

sensitive to latency. We confirm the results with limited

secondary tests on Fable 3. A summary of our findings

are as follows.

• Based on subjective assessment, users rate Outatime’s
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impulse speculation playable with minor responsive-

ness impairment up to 256ms.

• Users rate Outatime’s navigation speculation playable

with minor visual quality impairment up to 256ms.

• Users experience very little in-game performance

degradation with Outatime as compared to a standard

cloud gaming system.

• Speculation imposes increased demands on resource.

Bandwidth consumption is 1.5 − 4.5× higher than

standard cloud gaming depending on the RTT.

Experimental Setup. We tested Outatime against the

following baselines. Standard Fat Client consists of out-

of-the-box Doom 3 which is a traditional client-only ap-

plication. Standard Thin Client emulates the traditional

cloud gaming architecture shown in Figure 1a, where

Doom 3 is executed on a server without speculation, and

the player submits input and views output frames on a

client. The server consists of an HP z420 server with

quad core Intel i7, 16GB memory, and an Nvidia GTX

680 GPU w/ 4GB memory. For Thin Client and Outa-

time, we emulated a network with a defined RTT. The

emulation consisted of delaying input processing and

output frames to and from server and client by a fixed

RTT. The client process was hosted on the same machine

as the server in order to finely control network RTT. We

also used the same machine to run the Fat Client. User

input was issued via mouse and keyboard. We configured

Doom 3 for a 1024×768 output resolution.

We divided the user study evaluation into an assess-

ment of impulse and navigation speculation in order to

precisely assess the impact of each. Twenty three partic-

ipants consisting of coworkers and colleagues were re-

cruited based on their interest in a call for participation

in a gaming study. No compensation was offered. All

participants except one were males. The age range was

24 – 42. Prior to engagement, they were provided an

overview of the study, and consented to participate in ac-

cordance with institutional ethics and privacy policies.

They also made a self-assessment regarding their own

video game skill at three granularities: 1) overall video

game experience, 2) experience with the first person

shooter genre, and 3) experience with Doom 3 specif-

ically. While all participants reported either Beginner

(score=2) or No Experience (score=1) for Doom 3, par-

ticipants exhibited a range of overall and genre-specific

skill levels from Expert (score=5) to Beginner, with an

average self-assessment of Experienced (score=4).

Impulse Speculation Performance. We evaluated Im-

pulse Speculation according to three criteria.

• Mean Opinion Score (MOS): Participants assign a sub-

jective 1–5 score on their experience where 5 indi-

cates no difference from reference, 4 indicates minor

differences, 3 indicates acceptable differences, 2 indi-

cates annoying differences and 1 indicates unplayable.

MOS is a standard metric in the evaluation of video

and audio communication services.

• Skill Impact: We use the decrease in players’ in-game

health as a proxy for the skill degradation resulting

from higher latency.

• Task Completion Time: Participants are asked to fin-

ish an in-game task in the shortest possible time under

varying latency conditions.

Each participant first played a reference level on the

fat client system, during which time they had an opportu-

nity to familiarize themselves with game controls, as well

as experience best-case responsiveness and visual qual-

ity. Next, they re-played the level eight to ten times with

either Outatime or Thin Client and an RTT selected ran-

domly from {0ms,64ms,128ms,256ms,384ms}. Among

the multiple replays, they also played once on fat client as

a control. Participants were blind to the system configu-

ration during re-plays. Some of the participants repeated

the entire process for a second level. We configured the

level so that participants only had access to the fastest

firing weapon so that any degradations in responsiveness

would be more readily apparent.

After each re-play, participants were asked to rank

their experience relative to the reference on an MOS

scale according to three questions: (1) How was your

overall user experience? (2) How was the responsiveness

of the controls? (3) How was the graphical visual qual-

ity? We also solicited free-form comments and recorded

in-game vocal exclamations which turned out to be illu-

minating. Lastly, we recorded general player statistics

during play, such as player health, enemies eliminated

and time to finish the level.

Mean Opinion Score. Figure 10 summarizes overall

MOS when playing on Outatime, Thin Client and Fat

Client at various RTTs. Fat client is not MOS= 5 due

to a placebo effect. Thin Client MOS follows a sharp

downward trajectory, indicating that the game becomes

increasingly frustrating to play as early as 128ms. Free

form participant comments strongly reinforced this as-

sessment.

• Thin Client @ 64ms: “OK, can play. Not acceptable

for expert.”

• Thin Client @ 128ms: “Felt slow. Needed to guess

actions to play.”

• Thin Client @ 256ms: “I hated it. Too difficult to play.

It overreacts.”

For Outatime, the MOS stays relatively high with

scores between 4 to 4.5 up through 256ms, with a slight

drop off at 384ms. Comments are shown below.

• Outatime @ 256ms: “I think I was playing the origi-

nal. If it was not the reference, that was a good one.”

• Outatime @ 384ms: “A little delay. Not annoying.”
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Overall, players with high prior experience (“expert”

or “experienced”) tended to assign lower MOS ranks

though it was not statistically significant. Responsive-

ness MOS ratings were very similar to overall MOS rat-

ings. Ratings for visual quality were similar, which was

expected since impulse speculation does not introduce

visual artifacts. The results are elided for space.

Skill Impact. We found that longer latencies also hurt

performance on in-game skills such as avoiding enemy

attacks. We instructed participants to eliminate all ene-

mies in a level while preserving as much health as possi-

ble. Figure 11 shows the participants’ remaining health

after finishing the level. Interestingly, even though par-

ticipants playing on Thin Client reported only modest

degradation in MOS at 64ms, participant health dropped

off sharply from over 70/100 to under 50/100, suggest-

ing that in-game skills were impaired. Outatime exhib-

ited no significant drop off for RTT≤ 256ms.

In the free form comments, several participants men-

tioned that they consciously changed their style of play

to cope with higher Thin Client latencies. For example,

they remained in defensive positions more often, and did

not explore as aggressively as they would have other-

wise. Outatime elicited no such comments.

Task Completion Time. Lastly, we measured participants’

level completion time. Participants were instructed to

eliminate all enemies from a level as quickly as possi-

ble. Figure 12 shows that RTT ≥ 256ms lowered Thin

Client completion times, but had little impact on Outa-

time completion times.

Navigation Speculation Performance. To evaluate the

speculation performance for navigation, we again used

MOS. Because the visual differences were often sub-

tle, we had participants watch recorded traces of either

their own or other participants’ gameplay. Each par-

ticipant was presented videos for each latency setting

{0ms, 64ms, 128ms, 256ms, 384ms}. At each latency,

we tested: 1) navigation speculation with view interpo-

lation, 2) with Kalman shake correction, and 3) with nei-

ther view interpolation nor Kalman correction. Videos

were shown side-by-side with the Reference so that it

was easier for participants to spot differences. Lastly,

we also included a control of Standard Fat Client. Over-

Fig. 16: Server Processing
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all, participants assessed videos of two different settings:

exploration mode without enemies present, and com-

bat mode with enemies. Figure 14 shows participants’

MOS scores. For Outatime w/ view interpolation in ex-

ploration mode, user experience is above 4.5 up until

RTT= 256ms. In combat mode, MOS decreases sharply

past 256ms. This is due to the visual artifacts appearing

near enemies. In comparison, Outatime w/ Kalman per-

forms somewhat reasonably at low RTT= 64ms across

both settings, and therefore is useful when saving band-

width is important (as we show in the following sec-

tion), but is noticeably worse for many high RTT set-

tings, ranking just above non-annoying most of the time.

Lastly, Outatime w/o Kalman does not perform well due

to excessive video shake.

Fable 3 Verification. We setup Fable 3 for similar test-

ing to Doom 3. We recruited twenty three additional

subjects (age 20–34, 4 females, 19 males) who were un-

familiar with the Doom 3 experiments. Figure 15a and

Figure 15b show that the MOS impact of impulse specu-

lation and navigation speculation are similar in Fable 3.

System Performance and Overhead. We measure

client, server and bandwidth utilization. During server

testing, we use a trace-driven client for repeatability.

Similarly, we use a trace-driven server during client tests.

Client Performance. In Figure 13, Outatime and Fat

Client both achieve the target frame time of 32ms, which

directly leads to players’ perceptions of low latency. The

bulk of the time is spent on decoding, which we have not

optimized. View interpolation accounts for < 2ms, even

when run on a 2010 notebook’s Nvidia GT 320M, which

is 21× less powerful than the GTX 680. In contrast, thin
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Fig. 14: Navigation Speculation
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Fig. 15: Fable 3 MOS

Client’s frame time is clearly vulnerable to RTT.

Server Utilization. We quantify the server load in Fig-

ure 16. Outatime with Kalman incurs overhead on top

of Thin Client due to impulse speculation, checkpoint,

restore and rollback. Outatime with View Interpolation

brings further overhead due to cube and depth map ren-

dering and frame transfer. Overhead is higher at 256ms

than at 128ms due to the need to run extra slaves to ser-

vice more speculative branches. At 256ms, server pro-

cessing time is sufficient on average to keep up with a

32ms frame time.

Bitrate. While our prototype uses hardware acceler-

ated codec pipeline for efficiency, we conducted com-

pression testing using ffmpeg and libx264, two pub-

licly available codec libraries, for easier repeatability.

Figure 17 shows the bitrate of Thin Client and vari-

ous Outatime configurations. The baseline Thin Client

median bitrate is 0.53Mbps. When running Outatime

with View Interpolation-based Navigation Speculation

and Impulse Speculation with RTT= 256ms, transmis-

sion of all speculative frames (cube map faces, depth

map faces and speculative impulse frames) with indepen-

dent encoding consumes a median of 4.01Mbps. After

joint encoding, transmission drops to 3.33Mbps. Ou-

tatime’s use of clipped cube map with joint encoding

consumes 2.41Mbps, which is 4.54× the bitrate of Thin

Client. Finally, when RTT≤ 128ms, joint encoding and

clipping consumes only 1.04Mbps, which is only 1.97×
more than Thin Client. The savings are due to lower

prediction error over a shorter time horizon (Figure 8)

and transmitting half as many speculative branch frames.

When running Outatime with Kalman-based Navigation

Speculation and Impulse, the bitrate is further lowered to

0.8Mbps, or 1.51× Thin Client.

10 Related Work

Speculative execution is a general technique for re-

ducing perceived latency. In the domain of distributed

systems, Crom [21] allows Web browsers to specu-

latively execute javascript event handlers (which can

prefetch server content, for example) in temporary

shadow contexts of the browser. Mosh provides a more

responsive remote terminal experience by permitting the

client to speculate on the terminal screen’s future con-

tent, by leveraging the observation that most keystrokes

for a terminal application are echoed verbatim to the

screen [34]. The authors of [20] show that by speculating

on remote desktop and VNC server responses, clients can

achieve lower perceived response latency, albeit at the

cost of occasional visual artifacts on misprediction. A

common theme of this prior work is to build core spec-

ulation (e.g. state prediction, state generation) into the

client. In contrast, Outatime performs speculation at the

server. This is because client vs. server graphical render-

ing capabilities can differ by orders of magnitude, and

clients cannot be reliably counted on to render (regular

or speculative) frames. Time Warp [18] improved dis-

tributed simulation performance by speculatively execut-

ing computation on distributed nodes. However, to sup-

port speculation, it made many assumptions that would

be inappropriate for game development, e.g., processes

cannot use heap storage. Outatime is a specific instance

of application-specific speculation, defined by Wester et

al. [32] and applied to the Speculator system. According

to the taxonomy of Wester et al., Outatime implements

novel application-specific policies for creating specula-

tions, speculative output, and rollback.

We share a similar goal with the authors of [31] in

aiming to reduce latency for cloud-hosted gaming. Their

complementary approach looks at adapting bitrate to

available bandwidth. Additional efforts to mitigate net-

work latency for multiplayer games are discussed in §6.

Alternative app distribution avenues such as HTML5 are

intriguing, though interactive games have had stronger

performance demands than what current browsers offer.

Even with native client execution [11, 14], the benefits of

cloud-hosting and Outatime still apply.

11 Conclusion

Games, by their very nature of being virtual environ-

ments, are well-suited for speculation, roll back and re-

play. We demonstrated Outatime on Doom 3, a twitch-

based first person shooter, and Fable 3, an action role-

playing game because they belong to popular game gen-

res with demanding response times. This leads us to be

12



optimistic about the work of applying Outatime to other

genres. We found that players overwhelmingly favor Ou-

tatime’s masking of high RTT times over naked expo-

sure to long latency. In turn, this enables cloud gaming

providers to reach a much larger community while main-

taining a high level of user experience.

References
[1] Amazon appstream. http://aws.amazon.com/

appstream.

[2] Nvidia grid cloud gaming. http://shield.

nvidia.com/grid.

[3] Sony playstation now streaming. http://us.

playstation.com/playstationnow.

[4] Sponging is no longer a myth. http://youtu.be/

Bt433RepDwM.

[5] M. Allman. Comments on bufferbloat. SIGCOMM

Comput. Commun. Rev., 43(1):30–37, Jan. 2012.

[6] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett,

E. Agu, and M. Claypool. The effects of loss and

latency on user performance in unreal tournament

2003. In NetGames’04, pages 144–151, New York,

NY, USA, 2004. ACM.

[7] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Mosci-

broda, J. Pang, S. Seshan, and X. Zhuang. Don-

nybrook: Enabling large-scale, high-speed, peer-

to-peer games. In SIGCOMM’08, pages 389–400,

New York, NY, USA, 2008. ACM.

[8] A. Bharambe, J. Pang, and S. Seshan. Colyseus:

A distributed architecture for online multiplayer

games. In NSDI’06, pages 12–12, Berkeley, CA,

USA, 2006. USENIX Association.

[9] K.-T. Chen, P. Huang, and C.-L. Lei. How sensitive

are online gamers to network quality? Commun.

ACM, 49(11):34–38, Nov. 2006.

[10] M. Dick, O. Wellnitz, and L. Wolf. Analysis of fac-

tors affecting players’ performance and perception

in multiplayer games. In NetGames’05, pages 1–7,

New York, NY, USA, 2005. ACM.

[11] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.

Leveraging legacy code to deploy desktop applica-

tions on the web. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Im-

plementation, OSDI’08, pages 339–354, Berkeley,

CA, USA, 2008. USENIX Association.

[12] Epic Games. Unreal networking architec-

ture. http://udn.epicgames.com/Three/

NetworkingOverview.html.

[13] R. Fernando. GPU Gems: Programming Tech-

niques, Tips and Tricks for Real-Time Graphics.

Addison-Wesley Professional, 2007.

[14] Google. Native client. http://youtu.be/

Bt433RepDwM.

[15] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen,

and O. Spatscheck. A close examination of per-

formance and power characteristics of 4g lte net-

works. In MobiSys’12, pages 225–238, New York,

NY, USA, 2012. ACM.

[16] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M.

Mao, S. Sen, and O. Spatscheck. An in-depth study

of lte: effect of network protocol and application

behavior on performance. In SIGCOMM’13, pages

363–374, New York, NY, USA, 2013. ACM.

[17] Intel. QuickSync Programmable Video Proces-

sor. http://www.intel.com/content/www/

us/en/architecture-and-technology/

quick-sync-video/

quick-sync-video-general.html.

[18] D. Jefferson, B. Beckman, F. Wieland, L. Blume,

M. DiLoreto, P.Hontalas, P. Laroche, K. Sturde-

vant, J. Tupman, V. Warren, J. Weidel, H. Younger,

and S. Bellenot. Time Warp operating system.

In SOSP’87, pages 77–93, Austin, TX, November

1987.

[19] R. E. Kalman. A new approach to linear fil-

tering and prediction problems. Transactions of

the ASME–Journal of Basic Engineering, 82(Series

D):35–45, 1960.

[20] J. R. Lange, P. A. Dinda, and S. Rossoff. Experi-

ences with client-based speculative remote display.

In ATC’08, pages 419–432, Berkeley, CA, USA,

2008. USENIX Association.

[21] J. Mickens, J. Elson, J. Howell, and J. Lorch. Crom:

Faster web browsing using speculative execution.

In NSDI’10, pages 9–9, Berkeley, CA, USA, 2010.

USENIX Association.

[22] E. B. Nightingale, P. M. Chen, and J. Flinn. Spec-

ulative execution in a distributed file system. ACM

Trans. Comput. Syst., 24(4):361–392, Nov. 2006.

[23] Nvidia. Video codec sdk. https://developer.

nvidia.com/nvidia-video-codec-sdk.

[24] PCWorld. Popcap games ceo: Android still

too fragmented. http://bit.ly/1hQv8Mn, Mar

2012.

13

http://aws.amazon.com/appstream
http://aws.amazon.com/appstream
http://shield.nvidia.com/grid
http://shield.nvidia.com/grid
http://us.playstation.com/playstationnow
http://us.playstation.com/playstationnow
http://youtu.be/Bt433RepDwM
http://youtu.be/Bt433RepDwM
http://udn.epicgames.com/Three/NetworkingOverview.html
http://udn.epicgames.com/Three/NetworkingOverview.html
http://youtu.be/Bt433RepDwM
http://youtu.be/Bt433RepDwM
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
http://bit.ly/1hQv8Mn


[25] P. Quax, P. Monsieurs, W. Lamotte, D. D.

Vleeschauwer, and N. Degrande. Objective and

subjective evaluation of the influence of small

amounts of delay and jitter on a recent first per-

son shooter game. In W. chang Feng, editor,

NETGAMES, pages 152–156. ACM, 2004.
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