
Outatime: Using Speculation to Enable Low-Latency
Continuous Interaction for Mobile Cloud Gaming

Kyungmin Lee† David Chu‡ Eduardo Cuervo‡ Johannes Kopf‡

Yury Degtyarev◦ Sergey Grizan⋄ Alec Wolman‡ Jason Flinn†

† of Michigan ‡Microsoft Research
◦St. Petersburg Polytechnic University ⋄Siberian Federal University

ABSTRACT

Gaming on phones, tablets and laptops is very popular.
Cloud gaming — where remote servers perform game execu-
tion and rendering on behalf of thin clients that simply send
input and display output frames — promises any device the
ability to play any game any time. Unfortunately, the reality
is that wide-area network latencies are often prohibitive; cel-
lular, Wi-Fi and even wired residential end host round trip
times (RTTs) can exceed 100ms, a threshold above which
many gamers tend to deem responsiveness unacceptable.

In this paper, we present Outatime, a speculative execu-
tion system for mobile cloud gaming that is able to mask up
to 120ms of network latency. Outatime renders speculative
frames of future possible outcomes, delivering them to the
client one entire RTT ahead of time, and recovers quickly
from mis-speculations when they occur. Clients perceive lit-
tle latency. To achieve this, Outatime combines: 1) future
state prediction; 2) state approximation with image-based
rendering and event time-shifting; 3) fast state checkpoint
and rollback; and 4) state compression for bandwidth sav-
ings.

To evaluate the Outatime speculation system, we use two
high quality, commercially-released games: a twitch-based
first person shooter, Doom 3, and an action role playing
game, Fable 3. Through user studies and performance bench-
marks, we find that players strongly prefer Outatime to
traditional thin-client gaming where the network RTT is
fully visible, and that Outatime successfully mimics play-
ing across a low-latency network.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; I.6.8 [Simulation and

Modeling]: Types of Simulation—Gaming

Keywords

Cloud gaming; Speculation; Network latency

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiSys’15, May 18–22, 2015, Florence, Italy.

Copyright c© 2015 ACM 978-1-4503-3494-5/15/05 ...$15.00.

http://dx.doi.org/10.1145/2742647.2742656.

1. INTRODUCTION
Gaming is the most popular mobile activity, accounting

for nearly a third of the time spent on mobile devices [18].
Recently, cloud gaming — where datacenter servers execute
the games on behalf of thin clients that merely transmit
UI input events and display output rendered by the servers
— has emerged as an interesting alternative to traditional
client-side execution. Cloud gaming offers several advan-
tages. First, every client can enjoy the high-end graphics
provided by powerful server GPUs. This is especially appeal-
ing for mobile devices such as basic laptops, phones, tablets,
TVs and other displays lacking high-end GPUs. Second,
cloud gaming eases developer pain. Platform compatibil-
ity headaches and vexing per-platform performance tuning
— sources of much developer frustration [32, 40, 44] — are
eliminated. Third, cloud gaming simplifies software deploy-
ment and management. Server management (e.g., for bug
fixes, software updates, hardware upgrades, content addi-
tions, etc.) is far easier than modifying clients. Finally,
players can select from a vast library of titles and instantly
play any of them. Sony, Nvidia, Amazon and OnLive are
among the providers that currently offer cloud gaming ser-
vices [1–3,10].

However, cloud gaming faces a key technical dilemma:
how can players attain real-time interactivity in the face of
wide-area latency? Real-time interactivity means client in-
put events should be quickly reflected on the client display.
User studies have shown that players are sensitive to as little
as 60 ms latency, and are aggravated at latencies in excess
of 100ms [6,12,33]. A further delay degradation from 150ms
to 250ms lowers user engagement by 75% [9].

One way to address latency is to move servers closer to
clients. Unfortunately, not only are decentralized edge servers
more expensive to build and maintain, local spikes in de-
mand cannot be routed to remote servers which further mag-
nifies costs. Most importantly, high latencies are often at-
tributed to the networks’s last mile. Recent studies have
found that the 95th percentile of network latencies for 3G,
Wi-Fi and LTE are over 600ms, 300ms and 400ms, respec-
tively [21, 22, 35]. In fact, even well-established residential
wired last mile links tend to suffer from latencies in excess of
100ms when under load [5,37]. Unlike non-interactive video
streaming, buffering is not possible for interactive gaming.

Instead, we propose to mitigate wide-area latency via spec-
ulative execution. Our system, Outatime,1 delivers real-time
gaming interactivity as fast as — and in some cases, even

1Outatime : License plates of a car capable of time travel.

151

University

faster than — traditional local client-side execution, despite
latencies up to 120ms.

Outatime’s basic approach is to employ speculative execu-
tion to render multiple possible frame outputs which could
occur RTT milliseconds in the future. While the funda-
mentals of speculative execution are well-understood, the
dynamism and sensitivity of graphically intensive twitch-
based interaction makes for stringent demands on specula-
tion. Dynamism leads to rapid state space explosion. Sen-
sitivity means users are able to (visually) identify incorrect
states. Outatime employs the following techniques to man-
age speculative state in the face of dynamism and sensitivity.

Future State Prediction: Given the user’s historical ten-
dencies and recent behavior, we show that some categories
of user actions are highly predictable. We develop a Markov-
based prediction model that examines recent user input to
forecast expected future input. We use two techniques to im-
prove prediction quality: supersampling of input events, and
Kalman filtering to improve users’ perception of smoothness.

State Approximation: For some types of mispredictions,
Outatime approximates the correct state by applying error
compensation on the (mis)predicted frame. The resulting
frame is very close to what the client ought to see. Our mis-
prediction compensation uses image-based rendering (IBR),
a technique that transforms pre-rendered images from one
viewpoint to a different viewpoint using only a small amount
of additional 3D metadata.

Certain user inputs (e.g., firing a gun) cannot be easily
predicted. For these, we use parallel speculative executions
to explore multiple outcomes. However, the set of all possi-
ble states over long RTTs can be very large. To address this,
we approximate the state space by subsampling it, and time
shifting actual event streams to match event streams that
are“close enough” i.e., below players’ sensitivity thresholds.
These techniques greatly reduces the state space with mini-
mal impact on the quality of interaction, thereby permitting
speculation within a reasonable deadline.

State Checkpoint and Rollback: Core to Outatime is
a real-time process checkpoint and rollback service. Check-
point and rollback prevents mispredictions from propagat-
ing forward. We develop a hybrid memory-page based and
object-based checkpoint mechanism that is fast and well-
suited for graphically-intensive real-time simulations like games.

State Compression for Saving Bandwidth: Specula-
tion’s latency reduction benefits come at the cost of higher
bandwidth utilization. To reduce this overhead, we develop
a video encoding scheme which provides a 40% bitrate re-
duction over standard encoding by taking advantage of the
visual coherence of speculated frames. The final bitrate
overhead of speculation depends on the RTT. It is 1.9× for
120ms.

To illustrate Outatime in the context of fast interaction,
we evaluate Outatime’s prediction techniques using two ac-
tion games where even small latencies are disadvantageous.
Doom 3 is a twitch-based first person shooter where re-
sponsiveness is paramount. Fable 3 is a role playing game
with frequent fast action combat. Both are high-quality,
commercially-released games, and are very similar to phone
and tablet games in the first person shooter and role playing
genres, respectively.

Through interactive gamer testing, we found that even ex-
perienced players perceived only minor differences in respon-

siveness on Outatime when operating at up to 120ms RTT
when compared head-to-head to a system with no latency.
Latencies up to 250ms RTT were even acceptable for less ex-
perienced players. Moreover, unlike in standard cloud gam-
ing systems, Outatime players’ in-game skills performance
did not drop off as RTT increased up to 120ms. Over-
all, player surveys scored Outatime gameplay highly. We
have also deployed Outatime to the general public on lim-
ited occasions and received positive reception [14,19,27,39].
While we have focused our evaluation on desktop and laptop
clients experiencing high network latency, our techniques are
broadly applicable to phone and tablet clients as well. Outa-
time’s only client prerequisites are video decode and modest
GPU capabilities which are standard in today’s devices.

The remainder of the paper is organized as follows. §2
reviews game architectures and the impact of latency. §3
presents an overview of the Outatime architecture. §4 and
§5 detail our two main methods of speculation. §6 and §7
discusses how we save, load and compress state. §8 intro-
duces application to multiplayer. §9 covers the implemen-
tation. §10 evaluates Outatime via user study and perfor-
mance benchmarks. §11 covers related work and §13 dis-
cusses implications of the work.

2. BACKGROUND & IMPACT OF LATENCY
The vast majority of game applications are structured

around the game loop, a repetitive execution of the follow-
ing stages: 1) read user input; 2) update game state; and
3) render and display frame. Each iteration of this loop is
a logical tick of the game clock and corresponds to 32ms
of wall-clock time for an effective frame rate of 30 frames
per second (fps).2 The time taken for one iteration of the
game loop is the frame time. Frame time is a key metric
for assessing interactivity since it corresponds to the delay
between a user’s input and observed output.

Network latency has an acute effect on interaction for
cloud gaming. In standard cloud gaming, the frame time
must include the additional overhead of the network RTT,
as illustrated in Figure 1a. Let time be discretized into 32ms
clock ticks, and let the RTT be 4 ticks (128ms). At t5, the
client reads user input i5 and transmits it to the server. At
t7, the server receives the input, updates the game state,
and renders the frame, f5. At t8, the server transmits the
output frame to the client, which receives it at t10. Note
that the frame time incurs the full RTT overhead. In this
example, an RTT of 128ms results in a frame time of 160
ms.

3. GOALS AND SYSTEM ARCHITECTURE
For Outatime, responsiveness is paramount; Outatime’s

goal is to consistently deliver low frame times (< 32ms) at
high frame rate (> 30fps) even in the face of long RTTs.
In exchange, we are willing to transmit a higher volume of
data and potentially even introduce (small and ephemeral)
visual artifacts, ideally sufficiently minor that most players
rarely notice.

The basic principle underlying Outatime is to specula-
tively generate possible output frames and transmit them to
the client a full RTT ahead of the client’s actual correspond-
ing input. As shown in Figure 1b, the client sends input as

2 1

30fps
≈ 32ms for mathematical convenience.

152

Client

t7 t8 t9

t0 t1 t2

…. ….

Server

t5 t6 t7 t10 t11 t12

i
5

=> f
5
: rendering for t5

f
5
: frame for t5

i
5
: input for t5

frame time

…. ….

(a) Standard cloud gaming: Frame time depends on net latency.

i
0

=> i’1, i’2, …, i’5 => f’
5
: prediction for t5

Client

f’
5
: frame for t5i

5

t2 t3 t4

t0 t1 t2

…. ….

Server

i
0
: input for t0

frame time

t5 t6 t7 t10 t11 t12

…. ….

(b) Outatime: Frame time is negligible.

Figure 1: Comparison of frame delivery time lines. RTT= 4 ticks, server processing time = 1 tick.

Navigation: Supersampled

Markov Prediction

Kalman Shake

Reduction*

Partial Cube Map +

Depth Map Rendering*

Impulse: Parallel

Timeline Speculation

Event Time Shifting

Joint Video Encoding

RTT < threshold?RTT < threshold?

Image-Based

Rendering

Decode

Bitstream

Decode

Bitstream

Display FrameDisplay Frame

Sample InputSample Input

Client Server

TX BitstreamTX BitstreamRX BitstreamRX Bitstream

YES NO

Checkpoint to

Updated State

Restore from

Mis-speculation*

Update

Simulation

Update

Simulation

* As needed

Figure 2: The Outatime Architecture. Bold boxes represent
the main areas of this paper’s technical focus.

before; at t0, the client sends the input i0 which happens to
be the input generated more than one RTT interval prior
to t5. The server receives i0 at t2, computes a sequence of
probable future input up to one RTT later as i′1, i

′
2, ..., i

′
5 (we

use ′ to denote speculation), renders its respective frame f ′
5,

and sends these to the client. Upon reception at the client
at time t5, the client verifies that its actual input sequence
recorded during the elapsed interval matches the server’s
predicted sequence: i1 = i′1, i2 = i′2, ..., i5 = i′5. If the input
sequences match, then the client can safely display f ′

5 with-
out modification because we ensure that the game output is
deterministic for a given input [11]. If the input sequence
differs, the client approximates the actual state by applying
error compensation to f ′

5 and displays a corrected frame.
We describe error compensation in detail in §4.5. Unlike
in standard cloud gaming where clients wait more than one
RTT for a response, Outatime immediately delivers response
frames to the client after the corresponding input.

Speculation performance in Outatime depends upon be-
ing able to accurately predict future input and generate its
corresponding output frames. Outatime does this by iden-
tifying two main classes of game input, and building specu-
lation mechanisms for each, as illustrated in Figure 2. The
first class, navigation, consists of input events that control
view (rotation) and movement (translation) and modify the
player’s field of view. Navigation inputs tend to exhibit
continuity over short time windows, and therefore Outatime
makes effective predictions for navigation. The second class,

impulse, consists of events that are inherently sporadic such
as firing a weapon or activating an object, yet are fundamen-
tal to the player’s perception of responsiveness. For exam-
ple, in first person shooters, instantaneous weapon firing is
core to gameplay. Unlike navigation inputs, the sporadic na-
ture of impulse events makes them less amenable to predic-
tion. Instead, Outatime generates parallel speculations for
multiple possible future impulse time lines. To tame state
space explosion, Outatime subsamples the state space and
time shifts impulse events to the closest speculated timeline.
This enables Outatime to provide the player the perception
that impulse is handled instantaneously. Besides navigation
and impulse, we classify other input that is slow relative to
RTT as delay tolerant. One typical example of delay toler-
ant input is activating the heads-up display. Delay tolerant
input is not subject to speculation, and we discuss how it is
handled in §5.

Figure 2 also shows how Outatime’s server and client are
equipped to deal with speculations that are occasionally
wrong. The server continually checkpoints valid state and
restores from (mis-)speculated state at 30 fps. The client ex-
ecutes IBR — a very basic graphics procedure — to compen-
sate for navigation mispredictions when they occur. Other-
wise, Outatime, like standard cloud gaming systems, makes
minimal assumptions about client capabilities. Namely, the
client should be able to perform standard operations such as
decode a bitstream, display frames and transmit standard
input such as button, mouse, keyboard and touch events. In
contrast, high-end games that run solely on a client device
can demand much more powerful CPU and GPU processing,
as we show in §10.

4. SPECULATION FOR NAVIGATION
Navigation speculation entails predicting a sequence of fu-

ture navigation input events at discrete time steps. Hence,
we use a discrete time Markov chain for navigation infer-
ence. We first describe how we applied the Markov model
to input prediction, and our use of supersampling to improve
the inference accuracy. Next, we refine our prediction in one
of two ways, depending on the severity of the expected er-
ror. We determine the expected error as a function of RTT
from offline training. When errors are sufficiently low (typi-
cally corresponding to RTT< 40ms), we apply an additional
Kalman filter to reduce video “shake”). Otherwise, we use
misprediction compensation on the client to post-process the
frame rendered by the server.

153

4.1 Basic Markov Prediction
We construct a Markov model for navigation. Time is

quantized, with each discrete interval representing a game
tick. Let the random variable navigation vector Nt represent
the change in 3-D translation and rotation at time t:

Nt = {δx,t, δy,t, δz,t, θx,t, θy,t, θz,t}

Each component above is quantized. Let nt represent an
actual empirical navigation vector received from the client.
Our state estimation problem is to find the maximum like-
lihood estimator N̂t+λ where λ is the RTT.

Using the Markov model, the probability distribution of
the navigation vector at the next time step is dependent
only upon the navigation vector from the current time step:
p(Nt+1|Nt). We predict the most likely navigation vector

N̂t+1 at the next time step as:

N̂t+1 = E[p(Nt+1|Nt = nt)]

= argmax
Nt+1

p(Nt+1|Nt = nt)

where Nt = nt indicates that the current time step has been
assigned a fixed value by sampling the actual user input
nt. In many cases, the RTT is longer than a single time
step (32ms). To handle this case, we predict the most likely
value after one RTT as:

N̂t+λ = argmax
Nt+λ

p(Nt+1|Nt = nt)
∏

i=1..λ−1

p(Nt+i+1|Nt+i)

where λ represents the RTT latency expressed in units of
clock ticks.

Our results indicate that the Markov assumption holds up
well in practice: namely, Nt+1 is memoryless (i.e., indepen-
dent of the past given Nt). In fact, additional history in
the form of longer Markov chains did not show a measur-
able benefit in terms of prediction accuracy. Rather than
constructing a single model for the entire navigation vector,
instead we treat each component of the vector N indepen-
dently, and construct six separate models. The benefit of
this approach is that less training is required when estimat-
ing N̂ , and we observed that this assumption of treating the
vector components independently does not hurt prediction
accuracy. Below in §4.3, we discuss the issue of training in
more detail.

4.2 Supersampling
We further refine our navigation predictions by supersam-

pling : sampling input at a rate that is faster than the game’s
usage of the input. Supersampling helps with prediction ac-
curacy because it lowers sampling noise. To construct a
supersampled Markov model, we first poll the input device
at the fastest rate possible. This rate is dependent on the
specific input device. It is at least 100Hz for touch digitizers
and at least 125Hz for standard mice. With a 32ms clock
tick, we can often capture at least four samples per tick.
We then build the Markov model as before. The inference is
similar to the equation above, with the main difference being

the production operator incrementing by i
+
= 0.25. A sum-

mary of navigation prediction accuracy from the user study
described in §10 is shown in Figure 3. Most dimensions of
rotational and translational displacement exhibit little per-
formance degradation with longer RTTs. Yaw (θx), player’s
horizontal view angle, exhibits the most error, and we show
its performance in detail in Figure 4 for user traces collected
from both Doom 3 and Fable 3 at various RTTs from 40ms
to 240ms. Doom 3 exhibits greater error than Fable 3 due to

its more frenetic gameplay. Based on subjective assessment,
prediction error below 4◦ is under the threshold at which
output frame differences are perceivable.

Based on these results, we make two observations. First,
for RTT ≤ 40ms (where 98% and 93% of errors are less than
4◦ for Doom 3 and Fable 3 respectively), errors are suffi-
ciently minor and infrequent. Note that the client can de-
tect the magnitude of the error (because it knows the ground
truth), and drop any frames with excessive error. A frame
rate drop from 30fps to 30× 0.95 = 28.5fps is unlikely to af-
fect most players’ perceptions. For RTT > 40ms, we require
additional misprediction compensation mechanisms. Before
discussing both of these cases in turn, we first address the
question of how much training is needed for successful ap-
plication of the predictive model.

4.3 Bootstrap Time
Construction of a reasonable Markov Model requires suf-

ficient training data collected during an observation period.
Figure 5 shows that prediction error improves as observation
time increases from 30 seconds to 300 seconds, after which
the prediction error distribution remains stable. Somewhat
surprisingly, having test players different from training play-
ers only marginally impacts prediction performance as long
as test and train players are of similar skill level. Therefore,
we chose to use a single model per coarse-grained skill level
(novice or experienced) which is agnostic of the player.

4.4 Shake Reduction with Kalman Filtering
While the Markov model yields high prediction accuracy

for RTT< 40ms, minor mispredictions can introduce a dis-
tracting visual effect that we describe as video shake. As a
simple example, consider a single dimension of input such
as yaw. The ground truth over three frames may be that
the yaw remains unchanged, but the prediction error might
be +2◦,−3◦,+3◦. Unfortunately, the user would perceive a
shaking effect because the frames would jump by 5◦ in one
direction, and then 6◦ in another. From our experience with
early prototypes, the manifested shakiness was sufficiently
noticeable so as to reduce playability.

We apply a Kalman filter [25] in order to compensate for
video shake. The filter’s advantage is that it weighs esti-
mates in proportion to sample noise and prediction error.
Conceptually, when errors in past predictions are low rela-
tive to sample noise, predictions are given greater weight for
state update. Conversely, when measurement noise is low,
samples make greater contribution to the new state. For
space, we omit technical development of the filter for our
problem. One interesting filter modification we make is that
we extend the filter to support error accumulation over vari-
able RTT time steps; samples are weighed against an RTT’s
worth of prediction error.

Using the Kalman formulation, we assume a linear model
with Gaussian noise, that is:

Nt+1 = ANt + ω (1)

nt = Nt + ν (2)

for some state transition matrix A and white Gaussian noise
ω. We assign A = {aij} as a matrix which encodes the
maximum likelihood Markov transitions where aij = 1 if

i = nt and j = N̂t+λ, and zero otherwise; ω = N (0, Qω) is a
normal distribution where Qω is the covariance matrix of the
dynamic noise; ν = N (0, Qν) is a normal distribution where

154

Figure 3: Doom 3 Navigation
Prediction Summary. Roll
(θz) is not an input in Doom 3
and need not be predicted.

0 20 40
0

0.2

0.4

0.6

0.8

1

Prediction Error (degree)

C
D

F
 (

%
)

RTT 40ms

RTT 80ms

RTT 160ms

RTT 240ms

(a) Doom 3

0 20 40
0

0.2

0.4

0.6

0.8

1

Prediction Error (degree)

C
D

F
 (

%
)

RTT 40ms

RTT 80ms

RTT 160ms

RTT 240ms

(b) Fable 3

Figure 4: Prediction for Yaw (θx), the navigation component
with the highest variance. Error under 4◦ is imperceptible.

0 50 100
0

0.2

0.4

0.6

0.8

1

Prediction Error (degree)

C
D

F
 (

%
)

30 seconds

60 seconds

90 seconds

150 seconds

300 seconds

450 seconds

Figure 5: Error Decreases
with More Observation Time.
Data is for Fable 3 at RTT=
160ms.

Qν is the covariance matrix of the sampling noise. We assign
covariances Qω and Qν based on a priori observations.

For the base case where the RTT is one clock tick, we
generate navigation predictions N̂t+1|t for time t + 1 given
observations up to and including t as follows:

N̂t+1|t = AN̂t|t (3)

Similarly, navigation error covariance predictions Pt+1|t are
computed as follows.

Pt+1|t = APt|tA
T +Qω (4)

When a new measurement nt arrives, we update the esti-
mate of both the navigation prediction and its error covari-
ance at the current time step as:

N̂t|t = N̂t|t−1 +Gt(nt − N̂t|t−1) (5)

Pt|t = Pt|t−1 −GtPt|t−1 (6)

where Gt is the Kalman gain, which is:

Gt = Pt|t−1[Pt|t−1 +Qv]
−1 (7)

Lastly, we initialize the Kalman filter based on the a priori
distribution: N̂1|0 = E[N1].

Note the feedback loop between the error covariance and
Kalman gain weighting favors the measurement nt when
the prediction error is high and favors the prediction N̂t|t−1

when error is low. Moreover, the weighting naturally smooths
shaking caused by inaccurate prediction by favoring the ex-
isting value of N̂ .

To extend λ timesteps for predictions of N̂t+λ|t, we com-
pute λ intermediate iterations of Equation (3),(4), (6) and
(7). When a new measurement nt+λ is received, the accu-
mulation of prediction error Pt+λ|t will have increased the
gain Gt+λ. The large gain then favors the observation when
adjusting the estimate in Equation (5).

4.5 Misprediction Compensation with Image-
based Rendering

When RTT > 40ms, a noticeable fraction of navigation
input is mispredicted, resulting in users perceiving lack of
motor control. Our goal in misprediction compensation is
for the server to generate auxiliary view data f∆ alongside
its predicted frame f ′ such that the client can reconstruct a
frame f ′′ that is a much better approximation of the desired
frame f than f ′.

Input Image Input Depth Output Image

,

Figure 6: Image-based Rendering Example w/ Fable 3. For-
ward translation and leftward rotation is applied. The dog
(indicated by green arrow) is closer and toward the center
after IBR.

4.5.1 Image-based Rendering

We compensate for mispredictions with image-based ren-
dering (IBR). IBR is a means to derive novel camera view-
points from fixed initial camera viewpoints. The specific
implementation of IBR that we use operates by having ini-
tial cameras capture depth information (f∆) in addition to
2D RGB color information (f ′). It then applies a warp to
create a new 2D image (f ′′) from f ′ and f∆ [38]. Figure 6
illustrates an example whereby an original image and its
depth information is used to generate a new image from a
novel viewpoint. Note that the new image is both trans-
lated and rotated with respect to the original, and contains
some visual artifacts in the form of blurred pixels and low
resolution areas when IBR is inaccurate.

To enable IBR, two requirements must be satisfied. First,
the depth information must accurately reflect the 3D scene.
Fortunately, the graphics pipeline’s z-buffer precisely con-
tains per-pixel depth information and is already a byproduct
of standard rendering. Second, the original 2D scene must
be sufficiently large so as to ensure that any new view is
bounded within the original. To handle this case, instead of
rendering a normal 2D image by default, we render a cube
map [17] centered at the player’s position. As shown in Fig-
ure 7, the cube map draws a panoramic 360◦ image on the
six sides of a cube. In this way, the cube map ensures that
any IBR image is within its bounds.

Unfortunately, näıve use of the depth map and cube map
can lead to significant overhead. The cube map’s six faces
are approximately3 six times the size of the original image.

3The original image is not square but rather 16:9 or 4:3.

155

LEFT

RIGHT

BOTTOM

TOP

CLIP

FRONT

(BACK

not shown)

Figure 7: Cube Map Example w/
Doom 3. Clip region shown.

0 100 200 300
0

50

100

150

200

250

300

RTT (ms)

9
9
%

 E
rr

o
r

C
o
v
e
ra

g
e
 (

d
e
g
re

e
)

Doom 3, yaw

Doom 3, pitch

Fable 3, yaw

Fable 3, pitch

Figure 8: Angular coverage of
99% of prediction errors is much
less than 360◦ even for high
RTT.

(a) Visible Smears

(b) Patched Smears

Figure 9: Misprediction’s visual artifacts ap-
pear as smears which we mitigate.

The z-buffer is the same resolution as the original image,
and depth information is needed for every cube face. Taken
together, the total overhead is nominally 12×. This cost is
incurred at multiple points in the system where data size is
the main determinant of resource utilization, such as server
rendering, encoding, bandwidth and decoding. We use the
following technique to reduce this overhead.

4.5.2 Clipped Cube Map

We observe that it is unlikely that the player’s true view
will diverge egregiously from the most likely predicted view;
transmitting a cube map that can compensate for errors in
360◦ is gratuitous. Therefore, we render a clipped cube map
rather than a full cube map. The percentage of clipping
depends on the expected variance of the prediction error. If
the variance is high, then we render more of the cube. On
the other hand, if the prediction variance is low, we render
less of the cube. The dotted line in Figure 7 marks the clip
region for an example rendering.

In order to size the clip, we define a cut plane c such that
the clipped cube bounds the output image with probability
1− ǫ. The cut plane then is a function of the variance of the
prediction, and hence the partial cube map approaches a full
cube when player movement exhibits high variance over the
subject RTT horizon. To calculate c, we choose not a single
predicted Markov state, but rather a set N of k states such
that the set covers 1− ǫ of the expected probability density:

N = {ni
t+1|

∑

i=1..k

p(Nt+1 = ni
t+1|Nt = nt) ≥ 1− ǫ}

The clipped cube map then only needs to cover the range
represented by the states in N . For a single dimension such
as yaw, the range is then simply the largest distance dif-
ference, and the cut plane along the yaw axis is defined as
follows:

cyaw = max
ni
t+1

∈N
yaw(ni

t+1)− min
n
j
t+1

∈N

yaw(nj
t+1)

This suffices to cover 1− ǫ of the probable yaw states.
In practice, error ranges are significantly less than 360◦

and therefore the size of the cube map can be substantially
reduced. Figure 8 shows the distribution of cyaw and cpitch
in Fable 3 and Doom 3 for ǫ = 0.01, meaning that 99%
of mispredictions are compensated. Doom 3’s pitch range,

player’s vertical view angle, is very narrow (because players
hardly look up or down), and both Fable 3’s yaw and pitch
ranges are modest at under 80◦ even for RTT ≥ 300ms.
Even for Doom 3’s pronounced yaw range, only 225◦ of cov-
erage is needed at 250 ms. The clip parameters are also
applied to the depth map in order to similarly reduce its
size.

In theory, compounding translation error on top of rota-
tion error can further expand the clip region. It turns out
that translation accuracy (see Figure 3) is sufficiently high
to obviate consideration of accumulated translation error for
the purposes of clipping.

4.5.3 Patching Visual Artifacts

Lastly, we add a technique to mitigate visual artifacts.
These occasionally appear when the navigation prediction
is wrong and there is significant depth disparity between
foreground and background objects. For example, in Fig-
ure 9a, the floating stones are much closer to the camera
than the lava in the background. As a result, IBR reveals
“blind spots” behind the stones as indicated by the green
arrows, which are manifest as visual “smears”.

Our blind spot patching technique mitigates this problem,
as seen in Figure 9b. As part of IBR, we extrude the object
borders in the depth map with lightweight image processing
which propagates depth values from foreground borders onto
the background. However, we keep the color buffer the same.
This way blind spots will exhibit less depth disparity and
will share adjacent colors with the background, appearing as
more reasonable extensions of the background. The results
are more pleasing scenes especially when near and far objects
are intermingled.

5. SPECULATION FOR IMPULSE EVENTS
The prototypical impulse events are fire for first person

shooters, and interact (with other characters or objects)
for role playing games. We define an impulse event as be-
ing registered when its corresponding user input is activated.
For example, a user’s button activation may register a fire

event.
The objective for impulse speculation is to respond quickly

to player’s impulse input while avoiding any visual inconsis-

156

t0 t1 t2 t3 t4 t5 t6 t7

Speculative Sequences

Impulse Timeline
RTT = 8 ticks

shift forward shift backward shift forward

f’,18

f’,28

f’,38

f’,48

Speculative

frames

t8

X: activation

~X: no activation

?,?

~X,?

X,?

~X,~X~X,~X

~X,X

X,~X

X,X

(a) Speculative timeline and state branches

(b) ∼X, ∼X (c) ∼X, X (d) X,∼X (e) X,X

Figure 10: Subsampling and time-shifting impulse events
allows the server to bound speculation to a maximum of
four sequences even for RTT= 256ms. Screenshots (b) –
(e) show speculative frames corresponding to four activation
sequences of weapon fire and no fire.

tencies. For example, in a first person shooter, weapons
should fire quickly when triggered, and enemies should not
reappear shortly after dying. The latter type of visual (and
semantic) inconsistency is disconcerting to players, yet may
occur when mispredictions occur in a prediction-based ap-
proach. Therefore, we employ a speculation technique for
impulse that differs substantially from navigation specula-
tion. Rather than attempt to predict impulse events, instead
we explore multiple outcomes in parallel.

An overview of Outatime’s impulse speculation is as fol-
lows. The server creates a speculative input sequence for all
possible event sequences that may occur within one RTT,
executes each sequence, renders the final frame of each se-
quence, and sends the set of speculative input sequences and
frame pairs to the client. Upon reception, the client chooses
the event sequence that matches the events that actually
transpired, and displays its corresponding frame.

As RTT increases, the number of possible sequences grows
exponentially. Consider an RTT of 256ms, which is 8 clock
ticks. An activation may lead to an event registration at
any of the 8 ticks, leading to an overwhelming 28 possible
sequences. In general, 2λ sequences are possible for an RTT
of λ ticks. We use two state approximations to tame state
space explosion: subsampling and time-shifting.

5.1 Subsampling
We reduce the number of possible sequences by only per-

mitting activations at the subsampling periodicity σ which
is a periodicity greater than one clock tick. The benefit is

that the state space is reduced to 2
λ
σ . The drawback is

that subsampling alone would cause activations not falling
on the sampling periodicity to be lost, which would appear
counter-intuitive to users.

5.2 Time-Shifting
To address the shortcomings of subsampling, time-shifting

causes activations to be registered either earlier or later in
time in order to align them with the nearest subsampled
tick. Time shifting to an earlier time is feasible using specu-
lation because the shift occurs on a speculative sequence at
the server — not an actual sequence that has already been
committed by the client. Put another way, as long as the
client has not yet displayed the output frame at a particular
tick, it is always safe to shift an event backwards to that
tick.

Specifically, for any integer k, an activation issued be-
tween tσ∗k−σ

2
and tσ∗k−1 is deferred until tσ∗k. An activa-

tion issued between tσ∗k+1 and tσ∗k+σ
2
−1 is treated as if it

had arrived earlier in time at tσ∗k. Figure 10a illustrates
combined subsampling and time-shifting, where the activa-
tions that occur at t1 through t2 are shifted later to t3 and
activations that occur at t4 are shifted earlier to t3. The
corresponding state tree in Figure 10a shows the possible
event sequences and four resulting speculative frames, f ′1

8 ,
f ′2
8 , f ′3

8 and f ′4
8 . Note that it is not necessary to handle ac-

tivations at t0 within the illustrated 8 tick window because
speculations that started at earlier clock ticks (e.g. at t−1)
would have covered them.

The ability to time-shift both forward and backward al-
lows us to further halve the subsampling rate to double σ
without impacting player perception. Using 60ms as the
threshold of player perception [6, 33], we note that time-
shifting forward alone permits a subsampling period of σ = 2
(64ms) with an average shift of 32ms. With the added abil-
ity to time-shift backward as well, we can support a subsam-
pling period of σ = 4 (128ms) yet still maintain an average
shift of only 32ms. For σ = 4 and RTT≤ 256ms, we gen-
erate a maximum of four speculative sequences as shown
in Figure 10a. When RTT > 256ms, we further lower the
subsampling frequency sufficiently to ensure that we bound
speculation to a maximum of four sequences. Specifically,
σ = λ

2
. While this can potentially result in users noticing

the lowered sample rate, it allows us to cap the overhead of
speculation.

5.3 Advanced Impulse Events
While binary impulse events are the most common, some

games provide more options. For example, a Fable 3 player
may cast a magic spell either directionally or unidirection-
ally which is a ternary impulse event due to mutual ex-
clusion. Some first person shooters support primary and
secondary fire modes (Doom 3 does not) which is also a
ternary impulse event. With a ternary (or quaternary) im-
pulse event, the state branching factor is three (or four)
rather than two at every subsampling tick. With four par-
allel speculative sequences and a subsampling interval of
σ = 128ms, Outatime is able to support RTT ≤ 128ms
for ternary and quaternary impulse events without lowering
the subsampling frequency.

5.4 Delay Tolerant Events
We classify any input event that is slow relative to RTT

as delay tolerant. We use a practical observation to simplify
handling of delay tolerant events. According to our mea-
surements on Fable 3 and Doom 3, delay tolerant events
exhibited very high cool down times that exceeded 256ms.
The cool down time is the period after an event is registered

157

during which no other impulse events can be registered. For
example, in Doom 3, weapon reloading takes anywhere from
1000ms to 2500ms during which time the weapon reload
animation is shown. Weapon switching takes even longer.
Fable 3 delay tolerant events have even higher cool down
times. We take the approach that whenever a delay toler-
ant input is activated at the client, it is permissible to miss
one full RTT of the event’s consequences, as long as we can
compress time after the RTT. The time compression pro-
cedure works as follows: for a delay tolerant event which
displays τ frames worth of animation during its cool down
(e.g. a weapon reload animation which takes τ frames), we
may miss λ frames due to the RTT. During the remaining
τ −λ frames, we choose to compress time by sampling τ −λ
frames uniformly from the original animation sequence τ .
The net effect is that delay tolerant event animations ap-
pear to play at fast speed. In return, we are assured that
all events are properly processed because the delay tolerant
event’s cool down is greater than the RTT. For example,
weapon switching or reloading immediately followed by fir-
ing is handled correctly.

6. FAST CHECKPOINT AND ROLLBACK
As with other systems that perform speculation [30, 42],

Outatime uses checkpoint and restore to play forward a spec-
ulative sequence, and roll back the sequence if it turns out
to be incorrect. In contrast to these previous systems, our
continuous 30fps interactivity performance constraints are
qualitatively much more demanding, and we highlight how
we have managed these requirements.

Unique among speculation systems, we use a hybrid of
page-level checkpointing and object-level checkpointing. This
is because we need very fast checkpointing and restore; whereas
page-level checkpointing is efficient when most objects need
checkpointing, object-level checkpointing is higher perfor-
mance when few objects need checkpointing. In general,
it is only necessary to checkpoint Simulation State Objects
(SSOs): those objects which reproduce the world state. Check-
pointing objects which have no bearing on the simulation,
such as buffer contents, only increase runtime overhead. There-
fore, we choose either object-level or page-level checkpoint-
ing based on the density of SSOs among co-located objects.
We currently make the choice between page-level or object-
level manually at the granularity of the binaries (executables
and libraries), though it is also conceivable to do so auto-
matically at the level of the compilation units.

For page-level checkpointing, we intercept calls to the de-
fault libc memory allocator with a version that implements
page-level copy-on-write. At the start of a speculation (at
every clock tick for navigation and at each σ clock ticks for
impulse), the allocator marks all pages read-only. When a
page fault occurs, the allocator makes a copy of the original
page and sets the protection level of the faulted page to read-
write. When new input arrives, the allocator invalidates and
discards some speculative sequences which do not match the
new input. For example in Figure 10a, if no event activa-
tion occurs at t3, then the sequences corresponding to f ′1

8

and f ′2
8 are invalid. State changes of the other speculative

sequences up until t3 are committed. In order to correctly
roll back a speculation, the allocator copies back the original
content of the dirty pages using the copies that it created.
The allocator also tracks any pages created as a result of
new object allocations since the last checkpoint. Any such

pages are discarded. During speculation, the allocator also
defers page deallocation resulting from object delete until
commit because deleted objects may need to be restored if
the speculation is later invalidated.

For object-level checkpointing, we track lifetimes of ob-
jects rather than pages for any object the developer has
marked for tracking. To rollback a speculation, we delete
any object that did not exist at the checkpoint, and restore
any objects that were deleted during speculation. More-
over, we take advantage of inverse functions when available
to quickly undo object state changes. Many SSOs in games
expose custom inverse functions that undo the actions of
previous state change. For example, for geometry objects
that speculatively execute a move(∆x) function, a suitable
inverse is move(−∆x). Identifying and tracking invertible
functions is a trade-off in developer effort; we found the sav-
ings in checkpoint and rollback time to be very significant
in certain cases (§10).

7. BANDWIDTH COMPRESSION
Navigation and impulse speculation generate additional

frames to transmit from server to client. As an example, con-
sider impulse speculation which for RTT of 256ms transmits
four speculative frames for four possible worlds. Nominally,
this bandwidth overhead is four times that of transmitting
a single frame.

We can achieve a large reduction in bandwidth by ob-
serving that frames from different speculations share sig-
nificant spatial and temporal coherence. Using Figure 10a
as an example, f ′1

8 and f ′2
8 are likely to look very simi-

lar, with the only difference being two frames’ worth of a
weapon discharge animation in f ′1

8 . Corresponding screen-
shots Figure 10b–10e show that the surrounding environ-
ment is largely unchanged, and therefore the spatial coher-
ence is often high. In addition, when Outatime speculates
for the next four frames, f ′1

9 -f ′1
9 , f ′1

9 is likely to look similar
not only to f ′1

8 , but also to f ′2
8 , and therefore the temporal

coherence is also often high. Similarly, navigation specula-
tion’s clipped cube map faces often exhibit both temporal
and spatial coherence.

Outatime takes advantage of temporal and spatial coher-
ence to reduce bandwidth by joint encoding of speculative
frames. Encoding is the server-side process of compressing
raw RGB frames into a compact bitstream which are then
transmitted to the client where they are decoded and dis-
played. A key step of standard codecs such as H.264 is to
divide each frame into macroblocks (e.g., 64 × 64 bit). A
search process then identifies macroblocks that are equiv-
alent (in some lossy domain) both intra-frame and inter-
frame. In Outatime, we perform joint encoding by extend-
ing the search process to be inter-speculation; macroblocks
across streams of different speculations are compared for
equivalence. When an equivalency is found, we need only
transmit the data for the first macroblock, and use pointers
to it for the other macroblocks.

The addition of inter-speculation search does not change
the client’s decoding complexity but does introduce more
encoding complexity on the server. Fortunately, modern
GPUs are equipped with very fast hardware accelerated en-
coders [23,31]. We have reprogrammed these otherwise idle
hardware accelerated capabilities for our speculation’s joint
encoding.

158

8. MULTIPLAYER
Thus far, we have described Outatime from the perspec-

tive of a single user. Outatime works in a straightforward
manner for multiplayer as well, though it is useful to clarify
some nuances. As a matter of background, we briefly review
distributed consistency in multiplayer systems. The stan-
dard architecture of a multiplayer gaming system is com-
posed of traditional thick clients at the end hosts and a game
state coordination server which reconciles distributed state
updates to produce an eventually consistent view of events.
For responsiveness, each client may perform local dead reck-
oning [8,16]. As an example, player one locally computes the
position of player two based off of last reported trajectory.
If player one should fire at player two who deviates from
the dead-reckoned path, whether a hit is actually scored
depends on the coordination server’s reconciliation choice.
Reconciliation can be crude and disconcerting when local
dead-reckoned results are overridden; users perceive glitches
such as: 1) an opponent’s avatar appears to teleport if the
opponent does not follow the dead-reckoned path, 2) a player
in a firefight fires first yet still suffers a fatality, 3)“sponging”
occurs — a phenomenon whereby a player sees an opponent
soak up lots of damage without getting hurt [4].

With multiplayer, Outatime applies the architecture of
Figure 2 to clients without altering the coordination server:
end hosts run thin clients and servers run end hosts’ cor-
responding Outatime server processes. The coordination
server — which need not be co-located with the Outatime
server processes — runs as in standard multiplayer. Ou-
tatime’s multiplayer consistency is equivalent to standard
multiplayer’s because dead-reckoning is still used for oppo-
nents’ positions; glitches can occur, but they are no more or
less frequent than in standard multiplayer. As future work,
we are interested in extending Outatime’s speculative ap-
proach in conjunction with AI-led state approximations [7]
to better remedy glitches that appear generally in any mul-
tiplayer game.

9. IMPLEMENTATION
To prototype Outatime, we modified Doom 3 (originally

366,000 lines of code) and Fable 3 (originally 959,000 lines
of code). Doom 3 was released in 2004 and open sourced
in 2011. Fable 3 was released in 2011. While both games
are several years old, we note that the core gameplay of first
person shooters and role playing games upon which Outa-
time relies has not fundamentally changed in newer games.
The following section’s discussion is with respect to Doom 3.
Our experience with Fable 3 was similar

We have made the following key modifications to Doom 3.
To enable deterministic speculation, we made changes ac-
cording to [11] such as de-randomizing the random number
generator, enforcing deterministic thread scheduling, and re-
placing timer interrupts with non-time-based function call-
backs. To support impulse speculation, we spawn up to four
Doom 3 slaves, each of which is a modified instance of the
original game. Each slave accepts the following commands:
advance consumes an input sequence and simulates game
logic accordingly; render produces a frame corresponding to
the current simulation state; undo discards any uncommitted
state; commit makes any input applied thus far permanent.
Each slave receives instructions from our master process re-
garding the speculation (i.e., input sequence) it should be

executing, and returns framebuffers as encoded bitstream
packets to the master using shared memory. To support nav-
igation speculation, we add an additional slave command:
rendercube, which produces the cubemap and depth maps
necessary for IBR. The number of slaves spawned depends
on the network latency. When RTT exceeds 128 ms, four
slaves can cover four speculative state branches. Otherwise,
three slaves suffice. The client is a simple thin client with
the ability to perform IBR.

We implemented bandwidth compression with hardware-
accelerated video encode and decode. The server-side joint
video encode pipeline and client-side decode pipeline used
the Nvidia NVENC hardware encoder and Nvidia Video
Processor decoder, respectively [31]. The encode pipeline
consists of raw frame capture, color space conversion and
H.264 bitstream encoding. The decode pipeline consists of
H.264 bitstream decoding and color space conversion to raw
frames. We implemented the client-side IBR function as an
OpenGL GLSL shader which consumes decoded raw frames
and produces a compensated final frame for display.

Lastly, we also examined the source code for Unreal En-
gine [16], one of several widely used commercial game en-
gines upon which many games are built, and verified that
the modifications described above are general and feasible
there as well. Specifically, support exists for rendering mul-
tiple views, the key primitive of rendercube [15]. Other
key operations such as checkpoint, rollback and determinism
can be implemented at the level of the C++ library linker.
Therefore, we suggest speculative execution is broadly ap-
plicable across commercial titles, and can be systematized
with additional work.

10. EVALUATION
We use both user studies and performance benchmark-

ing to characterize the cost and benefits of Outatime. User
studies are useful to assess perceived responsiveness and vi-
sual quality degradation, and to learn how macro-level sys-
tem behavior impacts gameplay. Our primary tests are on
Doom 3 because twitch-based gaming is very sensitive to la-
tency. We confirm the results with limited secondary tests
on Fable 3. A summary of our findings are as follows.

• Based on subjective assessment, players — including
seasoned gamers — rate Outatime playable with only
minor impairment noticeable up to 128ms.

• Users demonstrate very little drop off of in-game skills
with Outatime as compared to a standard cloud gam-
ing system.

• Our real-time checkpointing and rollback service is a
key enabler for speculation, taking less than 1ms for
checkpointing app state.

• Speculation imposes increased demands on resource.
At 128ms, bandwidth consumption is 1.97× higher
than standard cloud gaming. However, frame rates
are still satisfactorily fast at 52fps at 95th percentile.

10.1 Experimental Setup
We tested Outatime against the following baselines. Stan-

dard Thick Client consists of out-of-the-box Doom 3, which
is a traditional client-only application. Standard Thin Client
emulates the traditional cloud gaming architecture shown in

159

0 50 100 150 200 250 300 350 400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Network Latency RTT (ms)

M
e
a
n
 O

p
in

io
n
 S

c
o
re

Standard Thin Client

Outatime

Standard Thick Client

Figure 11: Impact of Latency on User
Experience

Figure 12: Remaining Health

0 100 200 300 400
0

20

40

60

80

100

120

RTT (ms)

T
a
s
k
 C

o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Outatime

Standard Thin Client

Standard Thick Client

Figure 13: Task Completion Time

Figure 1a, where Doom 3 is executed on a server without
speculation, and the player submits input and views output
frames on a client. The server consists of an HP z420 ma-
chine with quad core Intel i7, 16GB memory, and an Nvidia
GTX 680 GPU w/4GB memory. For Thin Client and Out-
atime, we emulated a network with a defined RTT. The em-
ulation consisted of delaying input processing and output
frames to and from the server and client by a fixed RTT.
The client process was hosted on the same machine as the
server in order to finely control network RTT. We also used
the same machine to run the Thick Client. User input was
issued via mouse and keyboard. We configured Doom 3 for
a 1024× 1024 output resolution. We conducted formal user
studies with sixty-four participants overall over three sepa-
rate study sessions. Two studies were for Doom 3 and con-
sisted of twenty-three participants (Study A) and eighteen
participants (Study B). The third was for Fable 3 (Study C)
and is described in more detail later in this section. Both
Study A and Study B consisted of coworkers and colleagues
who were recruited based on their voluntary response to a
call for participation in a gaming study. The self-reported
age range was 24–42 (39 male, 2 female). The main dif-
ference between the studies was that Study B’s participants
were drawn primarily from a local gaming interest group and
were compensated with a $5 gift card, whereas Study A’s
participants were not. Prior to engagement, all participants
were provided an overview of the study, and consented to
participate in accordance with institutional ethics and pri-
vacy policies. They also made a self-assessment regarding
their own video game skill at three granularities: 1) overall
video game experience, 2) experience with the first person
shooter genre, and 3) experience with Doom 3 specifically.
While all Study A’s participants reported either Beginner
(score=2) or No Experience (score=1) for Doom 3, Study
B’s participants self-reported as being “gamers” much more
frequently, with 72% having previously played Doom 3. For
both Study A and B, participants first played the unmod-
ified game to gain familiarity. They then played the same
map at various network latency settings with and without
Outatime enabled. Participants were blind as to the network
latency and whether Outatime was enabled.

10.2 User Perception of Gameplay
The user study centered around three criteria.

• Mean Opinion Score (MOS): Participants assign a sub-
jective 1–5 score on their experience where 5 indicates
no difference from reference, 4 indicates minor differ-
ences, 3 indicates acceptable differences, 2 indicates
annoying differences and 1 indicates unplayable. MOS
is a standard metric in the evaluation of video and
audio communication services.

• Skill Impact: We use the decrease in players’ in-game
health as a proxy for the skill degradation resulting
from higher latency.

• Task Completion Time: Participants are asked to fin-
ish an in-game task in the shortest possible time under
varying latency conditions.

Each participant first played a reference level on the Thick
Client system, during which time they had an opportunity
to familiarize themselves with game controls, as well as ex-
perience best-case responsiveness and visual quality. Next,
they re-played the level three to ten times with either Outa-
time or Thin Client and an RTT selected randomly from
{0ms, 64ms, 128ms, 256ms, 384ms}. Among the multiple
replays, they also played once on Thick Client as a control.
Participants and the experimenter were blind to the system
configuration during re-plays. Some of the participants re-
peated the entire process for a second level. We configured
the level so that participants only had access to the fastest
firing weapon so that any degradations in responsiveness
would be more readily apparent.

After each re-play, participants were asked to rank their
experience relative to the reference on an MOS scale ac-
cording to three questions: (1) How was your overall user
experience? (2) How was the responsiveness of the con-
trols? (3) How was the graphical visual quality? We also
solicited free-form comments and recorded in-game vocal ex-
clamations which turned out to be illuminating. Lastly, we
recorded general player statistics during play, such as re-
maining player health and time to finish the level.

160

10.2.1 Mean Opinion Score

Figure 11 summarizes overall MOS across participants
from Study A and Study B when playing on Outatime, Thin
Client and Thick Client at various RTTs. Thick client is not
MOS= 5 due to a placebo effect. Thin Client MOS follows a
sharp downward trend, indicating that the game becomes in-
creasingly frustrating to play as early as 128ms. Free form
participant comments from those self-identified as experts
strongly reinforced this assessment.

• Thin Client @ 64ms: “OK, can play. Not acceptable
for expert.”

• Thin Client @ 128ms: “Felt slow. Needed to guess ac-
tions to play.”

• Thin Client @ 128ms: “Controls were extremely de-
layed.”

For Outatime, the MOS stays relatively high with scores
between 4 to 4.5 up through 128ms. Comments from those
self-assessed as experts are shown below.

• Outatime @ 128ms: “Controls were fluid, animations
worked as expected, no rendering issues on movement
and no transition issues with textures.”

• Outatime @ 128ms: “Shooting was a bit glitchy, but
you don’t notice too much. Controls were about the
same, good responsiveness and all.”

• Outatime @ 128ms: “Frame rate comfortable; liked the
smoothness.”

Participants with high prior experience tended to assign
lower MOS scores to both Thin and Outatime, especially at
high latencies. This was evident with participants in Study
B who ranked latencies at 256ms merely acceptable or an-
noying. However, Study B participants still ranked Out-
atime well at 128ms with a score of 4.4. This compares
favorably to their corresponding Thin Client at 128ms score
of 3.3. On the other hand, even at 256ms, Study A users
ranked Outatime as still acceptable at 4.5. This is likely
the result of Study A users’ less frenetic gameplay, which
results in fewer mispredictions. Therefore, we suggest that
Outatime is appropriate for novice players up to 256ms, and
more advanced players up to 128ms.

Responsiveness MOS ratings were overall very high (above
4 for all RTTs) for Outatime indicating that Outatime does
well at masking latency. Visual quality MOS ratings for
Outatime followed the same trends as Overall MOS ratings.
The results are elided for space.

10.2.2 Skill Impact

We found that longer latencies also hurt performance on
in-game skills such as avoiding enemy attacks. For Study
A, we instructed participants to eliminate all enemies in
a level while preserving as much health as possible. Fig-
ure 12 shows the participants’ remaining health after finish-
ing the level. Interestingly, even though participants playing
on Thin Client reported only modest degradation in MOS
at 64ms, participant health dropped off sharply from over
70/100 to under 50/100, suggesting that in-game skills were
impaired. Outatime exhibited no significant drop off for
RTT≤ 256ms.

0 100 200
0

1

2

3

4

5

RTT (ms)

M
e
a
n
 O

p
in

io
n
 S

c
o
re

Standard Thin Client

Outatime

Standard Thick Client

(a) Impulse Speculation

0 50 100 150 200 250
0

1

2

3

4

5

RTT (ms)

M
e
a
n
 O

p
in

io
n
 S

c
o
re

Standard Thin Client

Outatime w/ IBR

Standard Thick Client

(b) Navigation Speculation

Figure 14: Fable 3 MOS

Checkpoint
Restore

App
Logic

Render Encode
Total
(ms)

Thin Client N/A 0.5± 0.1 1.6± 0.3 7.3± 0.6 9.4± 1.0

Outatime

Kalman@64ms 1.9± 0.6 4.6± 1.9 1.9± 0.3 6.9± 1.8 15.2± 4.6
IBR @128ms 2.2± 0.8 6.7± 4.0 2.9± 2.1 20.7± 7.4 32.4± 14.3
IBR @256ms 2.3± 1.1 8.8± 5.3 3.9± 3.2 32.5± 12.2 47.5± 21.9

Table 1: Server Processing Time Per-Frame ± StdDev. Note
that Outatime’s server processing time is masked by specu-
lation whereas Thin Client’s is not.

In the free form comments, several participants mentioned
that they consciously changed their style of play to cope with
higher Thin Client latencies. For example, they remained
in defensive positions more often, and did not explore as
aggressively as they would have otherwise. Outatime elicited
no such comments.

10.2.3 Task Completion Time

Lastly, we measured participants’ level completion time.
Participants were instructed to eliminate all enemies from
a level as quickly as possible. Figure 13 shows that RTT
≥ 256ms lowered Thin Client completion times, but had
little impact on Outatime completion times.

10.3 Fable 3 Verification
We setup Fable 3 for similar testing to Doom 3. We re-

cruited twenty-three additional subjects (age 20–34, 4 fe-
males, 19 males) who were unfamiliar with the Doom 3 ex-
periments. In this study, we separated the testing of Impule
and Navigation speculation in order to isolate their compo-
nent effects. Figure 14a and Figure 14b show that the MOS
impact of impulse speculation and navigation speculation
for Fable 3. Impulse speculation tends to hold up better
than Navigation speculation to longer RTTs. This supports
our anecdotal observation that visual artifacts from IBR can
be noticeable especially over longer time horizons, whereas
Outatime’s parallel timeline speculation works well to cover
all possible impulse events.

10.4 System Performance and Overhead
We report a variety of client, server and bandwidth met-

rics. During server testing, we use a trace-driven client.
Similarly, we use a trace-driven server during client tests.

10.4.1 Client Performance

Figure 15 shows that Outatime and Thick Client both
achieve the target frame time of 32ms, which is directly

161

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Frame Time (ms)

C
D

F
 (

%
)

Standard Thick Client

Very Thick Client

Outatime Kalman Client @64ms

Outatime IBR Client @128ms

Outatime IBR Client @256ms

Standard Thin Client @128ms

32ms Deadline

Figure 15: Client Frame Time

050100150200250300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Rate (FPS)

C
D

F
 (

%
)

Thin Client

Outatime Kalman @64ms

Outatime IBR @128ms

Outatime IBR @256ms

30FPS Deadline

Figure 16: Frame Throughput Measured
at Server

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Bitrate (Mbps)

C
D

F
 (

%
)

Standard Thin Client

Outatime w/ IBR+Indep. Encode @256ms

Outatime w/ IBR+Joint Encode @256ms

Outatime w/ IBR+Joint+Cube Clip @256ms

Outatime w/ Kalman+Joint @64ms

Outatime w/ IBR+Joint+Clip @ 128ms

Figure 17: Bandwidth Overhead

Method Time (ms)
Built-in Save Game 333000
Baseline Object-only 45.55
Outatime’s Hybrid 0.076

Table 2: Fast Hybrid Checkpoint vs. Alternatives

linked to players’ perceptions of low latency. The bulk of
Outatime’s time is spent on decoding, which is dependent
solely upon the system’s hardware decoder and is not the
focus of optimization in this paper. Non-decoding time, pri-
marily IBR, accounts for less than 2ms, even when run on
a 2010-year notebook’s Nvidia GT 320M, which is 21× less
powerful than the server’s GTX 680 according to PassMark
GPU benchmarks. In contrast, Thin Client’s frame time is
clearly vulnerable to RTT.

We also tested a configuration that is more representative
of a modern high-end game to assess whether it is possible
for Outatime to in fact run faster than a Thick Client imple-
mentation. Specifically, we modified Doom 3 to run the Per-
fected Doom mod, an enhancement to Doom 3 that increases
graphics quality significantly, and more closely matches a
modern game.4. As shown by Very Thick Client in Fig-
ure 15, this causes huge spikes in frame time up to 76ms
at the 95th percentile, which is unplayable. On the other
hand, cloud gaming client performance such as in Outatime
is not tied to the game’s complexity. Therefore, the Outa-
time client can actually outperform the Thick Client in the
case of graphically- or computationally-demanding modern
games.

10.4.2 Server Throughput and Processing Time

We next quantify the server load in two ways. The first is
frame rate where we target at least 30fps throughput. The
second is the server’s per frame processing time. This is the
time it takes for input received at the server to be converted
into an output frame. Importantly, processing time is not
the inverse of throughput because our server implementation
is highly parallelized.

4http://www.moddb.com/mods/perfected-doom-3-
version-500

Figure 16 shows the server’s frame rate. Outatime is able
to operate at above 30fps for every supported latency. In
the case of 128ms, the frame rate is 52fps or better 95th
percent of the time. Table 1 shows the server’s processing
time. Outatime with Kalman takes longer than Thin Client
due to impulse speculation, checkpoint, restore and rollback.
Outatime with IBR adds cube and depth map rendering and
frame transfer. Processing time is higher at 256ms than at
128ms due to the need to run extra slaves to service more
speculative branches. Note that for Outatime, processing
time has no bearing on the client’s frame time because of
Outatime’s use of speculation. However, for Thin Client,
server processing time (9ms in this case) further increases
overall frame time.

10.4.3 Checkpoint and Rollback

We perform a comparative benchmark of our fast check-
point/rollback implementation to two other possible imple-
mentations in Table 2. The setup is a standalone stress test
on Doom 3 where checkpoint speed is isolated from other
system effects. Our implementation using hybrid object-
and page-level checkpointing is approximately 7000× faster
than Doom’s built-in state-saving Load/Save game feature,
and 300× faster than an object-only checkpointing imple-
mentation. A similar advantage would exist against page-
only checkpointing as well. In absolute terms, tens of mil-
liseconds is simply too costly for continuous real-time check-
pointing, whereas sub-millisecond speed makes speculation
feasible.

10.4.4 Bitrate

While our prototype performs cube clipping directly on
rendered frames and uses a hardware accelerated codec pipeline
for efficiency, we conducted compression testing offline using
ffmpeg and libx264, two publicly available codec libraries,
for easier repeatability. Figure 17 shows the bitrate of Thin
Client and various Outatime configurations. The baseline
Thin Client median bitrate is 0.53Mbps. When running
Outatime with IBR Navigation Speculation and Impulse
Speculation with RTT= 256ms, transmission of all specu-
lative frames (cube map faces, depth map faces and specu-
lative impulse frames) with independent encoding consumes
a median of 4.01Mbps. After joint encoding, transmission
drops to 3.33Mbps. Outatime’s use of clipped cube map

162

with joint encoding consumes 2.41Mbps, which is 4.54× the
bitrate of Thin Client and a 40% reduction from indepen-
dent. Finally, when RTT≤ 128ms, joint encoding and clip-
ping consumes only 1.04Mbps, which is only 1.97× more
than Thin Client. The savings are due to lower prediction
error over a shorter time horizon (Figure 8) and transmit-
ting half as many speculative branch frames. When running
Outatime with Kalman-based Navigation Speculation and
Impulse, the bitrate is further lowered to 0.8Mbps, or 1.51×
Thin Client.

10.5 Public Deployment
We deployed Outatime publicly at MobiSys 2014’s demo

session [27]. Around fifty participants played the system.
The response was positive with best demo recognition re-
ceived.

11. RELATED WORK
Speculative execution is a general technique for reduc-

ing perceived latency. In the domain of distributed sys-
tems, Crom [29] allows Web browsers to speculatively ex-
ecute javascript event handlers (which can prefetch server
content, for example) in temporary shadow contexts of the
browser. Mosh provides a more responsive remote termi-
nal experience by permitting the client to speculate on the
terminal screen’s future content, by leveraging the obser-
vation that most keystrokes for a terminal application are
echoed verbatim to the screen [43]. The authors of [26] show
that by speculating on remote desktop and VNC server re-
sponses, clients can achieve lower perceived response latency,
albeit at the cost of occasional visual artifacts on mispredic-
tion. A common theme of this prior work is to build core
speculation (e.g. state prediction, state generation) into the
client. In contrast, Outatime performs speculation at the
server. This is because client vs. server graphical rendering
capabilities can differ by orders of magnitude, and clients
cannot be reliably counted on to render (regular or specula-
tive) frames. Time Warp [24] improved distributed simu-
lation performance by speculatively executing computation
on distributed nodes. However, to support speculation, it
made many assumptions that would be inappropriate for
game development, e.g., processes cannot use heap storage.
Outatime is a specific instance of application-specific spec-
ulation, defined by Wester et al. [42] and applied to the
Speculator system. According to the taxonomy of Wester et
al., Outatime implements novel application-specific policies
for creating speculations, speculative output, and rollback.

Alternatives to cloud streaming such as HTML5 are in-
triguing, though interactive games have had stronger per-
formance demands than what browsers tend to offer. Even
with native client execution [13, 20], the benefits of cloud-
hosting and Outatime (instant start, easier management,
etc.) still apply. For mitigating network latency stemming
in multiplayer gaming, see §8.

Outatime’s use of IBR to compensate for navigation events
is inspired by work in the graphics community. Early efforts
focused on reducing (non-network) latency of virtual reality
simulations using basic movement prediction and primitive
image warping [34]. The authors of [41] apply hardware-
supported IBR to reduce local scene rendering latency. The
authors of [28] investigated the use of IBR for network la-
tency compensation of thin clients. IBR alone is well-suited
for rendering novel views of static scenes (e.g., museums)

but fails to cope with dynamic scenes (e.g., moving en-
tities) with heavy user interaction (impulse events), as is
standard in games. In contrast, Outatime’s speculative ex-
ecution handles dynamic scenes and user interaction.

12. DISCUSSION
Outatime is currently unable to cope with some types of

game events. For example, teleportation via wormholes do
not map well to IBR’s inherent assumption of movement in
Euclidian space. One possibility is to extend impulse-like
parallel speculation even for navigation events in limited
cases. Another interesting avenue of investigation is har-
nessing additional in-game predictive signals to improve on
such speculation. Example signals include player status and
visible scene object e.g., presence of wormholes. In ad-
dition, applying more powerful predictive time-series mod-
els altogether might yield significant gains, especially over
longer RTTs. Also, large numbers of simultaneous impulse
events over short time horizons limit Outatime’s ability to
meet high frame rate performance targets. Certain genres
of games (e.g., fighting, real-time strategy) exhibit this vul-
nerability more so than others, so additional state space ap-
proximation mechanisms may be needed in such cases [36].
Lastly, support for audio is an area of future work.

Another interesting direction is to explore optimization
of parallel speculations. Currently, each speculative branch
incurs the full cost of a normal execution. Instead, it may
be possible to perform only the “diff” operations between
branches (such as rendering only differing objects and in-
expensively recompositing the scene at the client), thereby
saving significant compute, rendering and bandwidth costs.

We have not focused on client power consumption in this
work, but it is potentially a very ripe area for savings. This is
because Outatime’s thin client approach essentially converts
the client’s work from an arbitrary app-dependent render-
ing cost to a fixed IBR cost (see Figure 15) since IBR cost is
only dependent upon the client screen resolution. The po-
tential for implementing IBR as a highly optimized silicon
accelerator is very intriguing.

13. CONCLUSION
Games, by their very nature of being virtual environ-

ments, are well-suited for speculation, roll back and replay.
We demonstrated Outatime on Doom 3, a twitch-based first
person shooter, and Fable 3, an action role-playing game be-
cause they belong to popular game genres with demanding
response times. This leads us to be optimistic about Ou-
tatime’s applicability across genres, with potentially bigger
savings for slower-paced games. We found that players over-
whelmingly favor Outatime’s masking of high RTT times
over naked exposure to long latency. In turn, this enables
cloud gaming providers to reach much larger mobile com-
munity while maintaining a high level of user experience.

14. REFERENCES

[1] Amazon appstream.
http://aws.amazon.com/appstream.

[2] Nvidia grid cloud gaming.
http://shield.nvidia.com/grid.

[3] Sony playstation now streaming.
http://us.playstation.com/playstationnow.

163

[4] Sponging is no longer a myth.
http://youtu.be/Bt433RepDwM.

[5] M. Allman. Comments on bufferbloat. SIGCOMM
Comput. Commun. Rev., 43(1):30–37, Jan. 2012.

[6] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett,
E. Agu, and M. Claypool. The effects of loss and
latency on user performance in unreal tournament
2003. In NetGames’04, pages 144–151, New York, NY,
USA, 2004. ACM.

[7] A. Bharambe, J. R. Douceur, J. R. Lorch,
T. Moscibroda, J. Pang, S. Seshan, and X. Zhuang.
Donnybrook: Enabling large-scale, high-speed,
peer-to-peer games. In SIGCOMM’08, pages 389–400,
New York, NY, USA, 2008. ACM.

[8] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A
distributed architecture for online multiplayer games.
In NSDI’06, pages 12–12, Berkeley, CA, USA, 2006.
USENIX Association.

[9] K.-T. Chen, P. Huang, and C.-L. Lei. How sensitive
are online gamers to network quality? Commun.
ACM, 49(11):34–38, Nov. 2006.

[10] M. Claypool, D. Finkel, A. Grant, and M. Solano.
Thin to win?: network performance analysis of the
onlive thin client game system. In Proceedings of the
11th Annual Workshop on Network and Systems
Support for Games, NetGames ’12, pages 1:1–1:6,
Piscataway, NJ, USA, 2012. IEEE Press.

[11] E. Cuervo. Enhancing Mobile Devices through Code
Offload. PhD thesis, Duke University, 2012.

[12] M. Dick, O. Wellnitz, and L. Wolf. Analysis of factors
affecting players’ performance and perception in
multiplayer games. In NetGames’05, pages 1–7, New
York, NY, USA, 2005. ACM.

[13] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.
Leveraging legacy code to deploy desktop applications
on the web. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’08, pages 339–354, Berkeley,
CA, USA, 2008. USENIX Association.

[14] Engadget. Microsoft’s delorean is a cloud gaming
system that knows what you’ll do next. http://www.
engadget.com/2014/08/23/microsoft-delorean/.

[15] Epic Games. Unreal graphics programming.
https://docs.unrealengine.com/latest/INT/

Programming/Rendering/index.html.

[16] Epic Games. Unreal networking architecture.
http://udn.epicgames.com/Three/

NetworkingOverview.html.

[17] R. Fernando. GPU Gems: Programming Techniques,
Tips and Tricks for Real-Time Graphics.
Addison-Wesley Professional, 2007.

[18] Flurry. Apps solidify leadership six years into the
mobile revolution. http://www.flurry.com/bid/
109749/Apps-Solidify-Leadership-Six-Years-

into-the-Mobile-Revolution, 2014.

[19] Gamespot. Microsoft researching cloud gaming
solution that hides latency by predicting your actions.
http://www.gamespot.com/articles/microsoft-

researching-cloud-gaming-solution-that-h/1100-

6421896/, 8 2014.

[20] Google. Native client. http://youtu.be/Bt433RepDwM.

[21] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A close examination of performance
and power characteristics of 4g lte networks. In
MobiSys’12, pages 225–238, New York, NY, USA,
2012. ACM.

[22] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M.
Mao, S. Sen, and O. Spatscheck. An in-depth study of
lte: effect of network protocol and application
behavior on performance. In SIGCOMM’13, pages
363–374, New York, NY, USA, 2013. ACM.

[23] Intel. QuickSync Programmable Video Processor.
http://www.intel.com/content/www/us/en/

architecture-and-technology/quick-sync-video/

quick-sync-video-general.html.

[24] D. Jefferson, B. Beckman, F. Wieland, L. Blume,
M. DiLoreto, P.Hontalas, P. Laroche, K. Sturdevant,
J. Tupman, V. Warren, J. Weidel, H. Younger, and
S. Bellenot. Time Warp operating system. In
SOSP’87, pages 77–93, Austin, TX, November 1987.

[25] R. E. Kalman. A new approach to linear filtering and
prediction problems. Transactions of the
ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

[26] J. R. Lange, P. A. Dinda, and S. Rossoff. Experiences
with client-based speculative remote display. In
ATC’08, pages 419–432, Berkeley, CA, USA, 2008.
USENIX Association.

[27] K. Lee, D. Chu, E. Cuervo, J. Kopf, A. Wolman, and
J. Flinn. Demo: Delorean: Using speculation to enable
low-latency continuous interaction for mobile cloud
gaming. MobiSys ’14, 2014.

[28] W. R. Mark, L. McMillan, and G. Bishop.
Post-rendering 3d warping. In Proceedings of the 1997
Symposium on Interactive 3D Graphics, I3D ’97, pages
7–ff., New York, NY, USA, 1997. ACM.

[29] J. Mickens, J. Elson, J. Howell, and J. Lorch. Crom:
Faster web browsing using speculative execution. In
NSDI’10, pages 9–9, Berkeley, CA, USA, 2010.
USENIX Association.

[30] E. B. Nightingale, P. M. Chen, and J. Flinn.
Speculative execution in a distributed file system.
ACM Trans. Comput. Syst., 24(4):361–392, Nov. 2006.

[31] Nvidia. Video codec sdk. https:
//developer.nvidia.com/nvidia-video-codec-sdk.

[32] PCWorld. Popcap games ceo: Android still too
fragmented. http://bit.ly/1hQv8Mn, Mar 2012.

[33] P. Quax, P. Monsieurs, W. Lamotte, D. D.
Vleeschauwer, and N. Degrande. Objective and
subjective evaluation of the influence of small amounts
of delay and jitter on a recent first person shooter
game. In W. chang Feng, editor, NETGAMES, pages
152–156. ACM, 2004.

[34] R. H. So and M. J. Griffin. Compensating lags in
head-coupled displays using head position prediction
and image deflection. Journal of Aircraft,
29(6):1064–1068, 1992.

[35] J. Sommers and P. Barford. Cell vs. wifi: on the
performance of metro area mobile connections. In
IMC’12, pages 301–314, New York, NY, USA, 2012.
ACM.

[36] M. Stanton, B. Humberston, B. Kase, J. F. O’Brien,
K. Fatahalian, and A. Treuille. Self-refining games

164

using player analytics. ACM Trans. Graph.,
33(4):73:1–73:9, July 2014.

[37] S. Sundaresan, W. de Donato, N. Feamster,
R. Teixeira, S. Crawford, and A. Pescapè. Broadband
internet performance: A view from the gateway. In
Proceedings of the ACM SIGCOMM 2011 Conference,
SIGCOMM ’11, pages 134–145, New York, NY, USA,
2011. ACM.

[38] R. Szeliski. Computer Vision: Algorithms and
Applications. Springer, 2011.

[39] TechCrunch. Microsoft research shows off delorean, its
tech for building a lag-free cloud gaming service.
http://techcrunch.com/2014/08/22/microsoft-

research-shows-off-delorean-its-tech-for-

building-a-lag-free-cloud-gaming-service/.

[40] TechHive. Game developers still not sold on android.
http://www.techhive.com/article/2032740/game-

developers-still-not-sold-on-android.html, Apr
2013.

[41] J. Torborg and J. T. Kajiya. Talisman: Commodity
realtime 3d graphics for the pc. In Proceedings of the
23rd Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’96, pages
353–363, New York, NY, USA, 1996. ACM.

[42] B. Wester, P. M. Chen, and J. Flinn. Operating
system support for application-specific speculation. In
EuroSys’11, pages 229–242. ACM, April 2011.

[43] K. Winstein and H. Balakrishnan. Mosh: An
Interactive Remote Shell for Mobile Clients. In
USENIX Annual Technical Conference, Boston, MA,
June 2012.

[44] Wired. As android rises, app makers tumble into
google’s matrix of pain. http://www.wired.com/
business/2013/08/android-matrix-of-pain/, Aug
2013.

165

