Title Page-revised

57 58

64 65

1	Outbreak caused by Escherichia coli O18:K1:H7 sequence type 95 in a neonatal
2	intensive care unit in Barcelona, Spain
3	Emma Sáez-López, BS ^{1,2} ; Jordi Bosch, MD ^{1,2} ; Maria Dolors Salvia, MD ³ ; Dietmar
4	Fernández-Orth, PhD ^{1,2} ; Virginio Cepas, BS ^{1,2} ; Mario Ferrer-Navarro, PhD ^{1,2} ; Josep
5	Figueras-Aloy, MD ³ ; Jordi Vila, Prof. ^{1,2} ; Sara M. Soto, PhD ^{1,2}
6	¹ Department of Microbiology, Hospital Clínic - Universitat de Barcelona, Barcelona,
7	Spain ² ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic -
8	Universitat de Barcelona, Barcelona, Spain. ³ Department of Neonatology, Center of
9	Medicine Maternofetal and Neonatology (BCNatal) Hospital Clínic (ICGON) and
10	Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain.
11	
12	Abbreviated title: Outbreak caused by E. coli in a NICU in Barcelona, Spain
13	Running head: Neonatal outbreak by E. coli K1
14	[#] Corresponding author:
15	Sara M. Soto
16	ISGlobal
17	Edificio CEK-1ª planta; C/ Roselló 149-153
18	08036-Barcelona, Spain
19	Phone: +34-932275707; Fax: +34-932279327
20	e-mail: <u>sara.soto@isglobal.org</u>
21	
22	Keywords: Outbreak; E. coli; septicemia; O18:K1:H7; neonates.
	1

Abbreviated title: Outbreak caused by *E. coli* O18:K1:H7 in neonates.

Disclosure of Funding

26 This work was supported by the "Institute of Health Carlos III (ISCIII) Subdirección

27 General de Evaluación" and the "Fondo Europeo de Desarollo Regional (FEDER)"

28 [Grant numbers PI10/01579 and PI13/00127]. Sara M. Soto has a fellowship from the I3

29 program of the ISCIII.

Conflict of Interests

32 The authors declare that they have no conflict of interests.

ABSTRACT

Background

Escherichia coli is one of the most frequent causes of late-onset neonatal sepsis. The aim of this study was to characterize an outbreak of neonatal sepsis occurring in the neonatal intensive care unit (NICU) of the Hospital Clinic of Barcelona from April to August 2013.

Methods

After presentation of the index case, all *E. coli* isolates from previously hospitalized neonates, health care workers, and neonates admitted to the NICU from April to October 2013 were tested for K1 antigen positivity and epidemiologically compared by pulse-field gel electrophoresis. Furthermore, the *E. coli* K1 strains collected from neonates during this period were analyzed by different methods (serotyping, phylotyping, PCR of virulence factors, antimicrobial resistance, and "in vitro" assays in HMBEC).

Results

An *E. coli* O18:K1:H7 sequence type 95 and phylogenetical group B2 strain was the cause of the outbreak involving 6 preterm neonates: one with late septicemia due to a urinary focus and 5 with late-onset septicemia and meningitis, 3 of whom died. All showed the same pulsotype, full resistance to ampicillin and intermediate resistance to gentamicin. The outbreak strain carried the PAI II_{J96}-like domain that could explain the high-grade bacteremia necessary to develop meningitis.

Conclusions

All the *E. coli* isolates responsible for this outbreak belonged to a single clone suggesting a common source of infection, and it was categorized as O18:K1:H7. Despite the bacteria's pathogenicity has an important role in the severity of infection, the host-associated factors were crucial for the fatal outcomes.

INTRODUCTION

Late-onset neonatal sepsis (LONS) is acquired after the first 72 hours of life and often
leads to meningitis. *Escherichia coli* frequently causes septicemia and meningitis¹.
However, at present, the pathogenesis of meningitis caused by *E. coli* is only partially
understood for two reasons: i) this infectious disease is a complex process formed by
multiple bacterial-host interactions, and ii) the high genetic diversity of the pathotypes
among neonatal meningitis *E. coli* (NMEC) strains.

It is known that there are a few features that distinguish these strains. NMEC strains are part of the extraintestinal pathogenic E. coli (ExPEC) subgroup, most of which belong to phylogroup $B2^2$ and the sequence type (ST) 95 complex³. One of the most common serotypes is O18:K1:H7⁴ to which two of the representative NMEC strains belong, C5 and RS218. The K1 capsular antigen has frequently been detected among isolates causing septicemia and is also presented by approximately 80% of E. coli strains causing neonatal meningitis⁵. Type 1 fimbriae, S fimbriae, outer membrane protein A, cytotoxic necrotizing factor 1, invasion brain endothelial cell proteins, arylsulfatase-like, and TraJ have been described as traditional virulence-associated factors involved in different stages of meningitis^{6–9}. Some of these genes are usually located in clusters classified as "ectochromosomal DNA" (ECDNA)¹⁰, which can be horizontally transferred and hence, may be easily spread.

The equilibrium between host defenses and the pathogenicity of the bacteria in terms of virulence and resistance determine the extent of bacterial infection and the outcome of the disease¹. Prematurity, and consequently, low birth weight are risk factors for the development of septicemia and meningitis in neonates¹¹, allowing these infections to be caused by "low-virulent" bacteria¹. Neonatal intensive care units (NICUs) are sites in

which infants are more prone to acquire nosocomial infections and are a focus of outbreaks, including diarrhea¹² or meningitis^{13,14}. For all these reasons, the identification of these pathogens is a challenge, especially if they present multi-drug resistance leading to a therapeutic failure.

The aim of this study was to characterize an outbreak of neonatal sepsis occurring in the
NICU at the Hospital Clinic of Barcelona from April to August 2013.

31 MATERIALS AND METHODS

32 Microbiologic examination

Cerebrospinal fluid, urine and blood samples from the neonates involved in the outbreak were taken for microbiologic examination. In addition, 8 stool samples from health care workers (HCWs) and 29 from neonates admitted from April to October 2013 were included to evaluate the dissemination in the NICU and to find the possible cause of the outbreak. Stool samples were inoculated on MacConkey agar and incubated at 37°C overnight. Suspected colonies were confirmed by MALDI-TOF. All E. coli isolates were tested for K1 antigen by the agglutination assay using a latex KIT (PASTOREX Meningitis Kit, Bio-Rad). The isolates that were positive were confirmed using specific primers for neu-PCR, which amplify the neuraminidase locus identified as a specific K1 target¹⁵. Furthermore, the same PCR was performed in 42 *E. coli* isolates from pharynx and otic smears, blood cultures and one urine culture positive from neonates hospitalized from January 2011 to April 2013.

45 Analysis of chromosomal DNA by Pulse-Field Gel Electrophoresis (PFGE)

Bacterial suspensions were prepared and embedded in agarose following a previous
protocol with slight modifications¹⁶. PFGE of the strains was performed using *XbaI* as

the restriction enzyme. One % agarose gel was run on a CHEF-Mapper contourclamped homogenous electric field apparatus for 20 h at 200 V (initial switch time 5 s, final switch time 35 s). The cluster analysis was performed with InfoQuest-FP software using the Dice similarity coefficient and dendrogram type UPGMA (unweighted-pair group method with arithmetic mean using average linkages) (optimization 0.50%, position tolerance 1.50%). A value of more than 95% of band similarity was considered as the same clone.

55 Strains

The strains selected to perform the different assays were the strain N38 belonging to the outbreak and other four K1-positive *E. coli* strains collected during the same period: N36 and N39, which were collected from healthy colonized neonates; N40, which caused an infection in a mother leading a fetal death; and N49, which was collected from a neonate suffering late-onset sepsis.

61 Multilocus sequence typing (MLST)

This study used the MLST scheme for *E. coli* developed by Wirth et al.¹⁷. Allele
sequences were analyzed with a database available online
(*http://mlst.warwick.ac.uk/mlst/dbs/Ecoli*).

Phylogenetic analysis

The new phylo-typing method by Clermont at al.¹⁸ with several modifications¹⁹ was used to assign the *E. coli* isolates to the eight phylogroups (B2, D, B1, A, E, Nontypeable, F, C, and E clade 1).

69 "In vivo" killing assay with *Caenorhabditis elegans*

Killing assays were performed in *C. elegans* according to a previously described
model²⁰ but using Luria Broth (LB) instead of brain heart infusion medium. Each strain
was repeated more than 5 times using *E. coli* OP50 as the internal control. Lethal Time
50% (LT50) is the number of days required to kill 50% of the nematode population.

74 Mass spectrometric sequencing of protein silver-stained polyacrylamide gels

The total proteome of N36 and N38 was analyzed using 2D gel electrophoresis followed
by mass spectrometric identification as previously described by Párraga et al.²¹.

77 RNA sequencing

RNA extraction was performed as described elsewhere²². rRNA depletion was done with the Ribo-ZeroTM Magnetic Kit for Gram-negative bacteria. The TruSeq Stranded mRNA Sample Prep Kit protocol was followed according manufacturer's instructions. Libraries were validated by qPCR with Kapa Paired end and 75 nt read length libraries were sequenced on an Illumina Miseq resulting in a total output of 38 million reads. An average Phred quality score of 37 was obtained for the average of 3.1 million reads per sample. Reads were mapped onto the reference genome (E. coli O7:K1 str. CE10, complete genome (NC_017646) and its associated plasmids, E.coli O7:K1 str. CE10 plasmid pCE10A (NC_017647), pCE10B (NC_017648), pCE10C (NC_017649) and pCE10D(NC 017650)) using the EDGEpro software²³. Resulting count datasets were exported to $DESeq2^{24}$, where they were normalized and pair-wise differential expression was carried out. Genes below p 0.05 were considered significant and used for Gene Ontology and Pathway analysis conducted by David²⁵.

Real-Time PCR experiments

RNA extraction was performed as mentioned above in RNA sequencing, and the Real-time PCR reactions were carried out following the same protocol²². For the RT-PCR, 500 ng of each RNA sample was used to make the reverse transcription, and the cDNA template was diluted 1/5. On one hand, the genes selected were those overexpressed in N38 compared to N36 by RNA-seq. These genes included: rfal, rfaL, rfaP, rfaY, waaT, waaV, waaW (all involved in lipopolysaccharide biosynthesis of E. coli), papI1 (encoding the pyelonephritis adhesin pili operon regulatory protein PapI) and, *fliD* and fliC (involved in flagellar assembly). On the other hand, other genes were considered relevant because of the functions of their products. These genes were: neuC (encoding the polysialic acid biosynthesis of the K1 capsule), kpsC and kpsD (encoding capsule polysaccharide transport proteins), fimD (encoding a type-1 fimbria), ompA (encoding an outer membrane protein), and *aslB*, *ibeB*, *ibeC* (encoding virulence factors associated with meningitis). 16S rRNA was used as the endogenous control. Primers to amplify these genes were the same as those used in previous studies or designed by Primer Express® software (see Table, Supplemental Digital Content 1). The optimal concentration of the primers was from 2 to 9 µM after several assays. Amplification was performed using a StepOne[™] Real-Time PCR System using the Sybr Premix Ex Taq "Tli RNaseH Plus" kit and the Universal Thermal Cycling conditions: 2 min at 50°C, 10 min at 95°C followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Data were analyzed with StepOne software v2.0, and the relative expression level for each sample $(2^{-\Delta\Delta CT})$ was obtained.

113 Detection of virulence factor genes (VFGs)

114 The virulence profile was analyzed by PCR using gene-specific primers (see Table, 115 Supplemental Digital Content 2) as described elsewhere²⁶. Twenty-three genes were 116 studied: hemolysin (*hlyA*), cytotoxic necrotizing factor (*cnf1*), autotransporter toxin (*sat1*), P-fimbriae (*papA*, -*EF*, -*C*), type-1 fimbriae (*fimH*), type 1-C fimbria (*focG*), Sfimbriae (*sfa/foc* and *sfaS*), yersiniabactin (*fyuA*), siderophores (*iutA* and *iroN*),
aerobactin (*iucC*), invasion of brain endothelium factors (*ibeA* and *ibeC*), two genes
involved in meningitis (*aslA* and *traJ*) and heat-resistant agglutinin (*hra*). Additionally,
a PCR was performed to detect the PAI II_{J96}-like domain.

Adherence and invasion assays in human brain microvascular endothelial cells(HBMEC)

A HMBEC line was grown in endothelial cell medium, supplemented with 5% of fetal bovine serum (FBS), 1% of endothelial cell growth factors and 1/100 dilution of penicillin/streptomycin solution (10000 units-10 mg/mL). HMBEC were seeded onto 24-well tissue culture plates at a density of 2.5 $\times 10^5$ cells. Bacterial cultures incubated overnight in LB at 37° without shaking were used to infect each plate at a multiplicity of infection of approximately 100. Adherence and invasion assays were performed following a previously described protocol²⁷. The only modification was the use of gentamicin (100 mg/mL) or kanamycin (50 mg/ml) for the invasion assay depending on the strain's antimicrobial susceptibility. All experiments were run in duplicate on at least three different days.

134 Serotyping

Serotyping was performed in the Federal Institute for Risk Assessment (BfR) at the National Reference Laboratory for *E. coli* in Berlin, Germany. The Orksov²⁸ [28] and Ewing²⁹ protocols were used.

138 Antibiotic susceptibility testing

Minimal inhibitory concentrations were determined using E-test strips on MüellerHinton agar plates inoculated with 0.5 MacFarland densities. Susceptibility was tested

for the following antimicrobial agents: ampicillin (AMP), amoxicillin-clavulanic acid
(AMC), piperacillin-tazobactam (TZP), cefotaxime (CTX), meropenem (MEM),
tetracycline (TET), trimethoprim-sulfamethoxazole (SXT), gentamicin (GEN),
amikacin (AK), kanamycin (KAN), nalidixic acid (NA), ciprofloxacin (CIP), and
fosfomycin (FOF). The ATCC 25922 strain was used as a standard control and results
were analyzed according to the 2014 CLSI guidelines³⁰.

Biofilm assay

Biofilm formation was detected using a previous protocol described by Merrit et al.³¹.
The result was considered positive when absorbance was greater than 4-fold the value
of the absorbance of the negative control.

RESULTS

Outbreak description

The index case was a 7-day-old female neonate with a gestational age and birth weight of 29.2 weeks and 1,000 g, respectively. The neonate presented LONS the 13th of April 2013, in addition to meningitis and intraventricular hemorrhage (IVH)-Grade II (Table 1). Five more cases were detected thereafter. All were preterm neonates: one had late septicemia from a urinary focus, and 4 presented late onset septicemia and meningitis with severe neurological sequelae leading to death in three. The gestational age and birth weight of the neonates ranged from 25.2 to 29.2 weeks and from 750 to 1,000 g, respectively. The neonates also had other pathologies such as different grades of hyaline membrane disease, necrotizing enterocolitis and central nervous system hemorrhage. Due to AMP and GEN resistance, the treatment was CTX, CTX + AK, MEM + CIP or

MEM + AK according to the case. The length of the outbreak was 5 months, from Aprilto August 2013 (Table 2).

165 Characterization of the strain causing the outbreak

An *E. coli* O18:K1:H7 strain was the cause of the outbreak. In epidemiological terms, the sequence type of the outbreak strain was ST95 (ST95 complex) and it belonged to phylogroup B2. In addition, this strain carried the PAI II_{J96}-like (containing the *hly*A, *cnf*1 and *hra* genes) and the PAI III₅₃₆-like (containing the *sfa/foc* and *iroN* genes) domains. As for antimicrobial resistance, this strain showed full resistance to ampicillin, amoxicillin-clavulanic acid, tetracycline, and fosfomycin, and intermediate resistance to gentamicin.

173 Comparative study with other K1-positive *E. coli* counterparts

One (12.5%) and 5 (17.2%) isolates were found to be K1 antigen positive among 8 and 29 E. coli isolates from the HCWs and neonates hospitalized during the study period, respectively. The prevalence of this antigen was 23.8% (10/42) among the neonates hospitalized from January 2011 to October 2013. PFGE was performed in all K1-positive E. coli isolates resulting in 2 well differentiated clusters and 7 E. coli isolates were considered to be from the same clone due to 98.58% of band profile similarity. Six isolates were recovered from the symptomatic neonates belonging to the outbreak, while one was from an asymptomatic neonate who was hospitalized in the NICU at the time of the outbreak (Figure 1). All the E. coli isolates causing the outbreak belonged to phylogroup B2 as did most of the other strains analyzed. Only 2 strains belonged to the F phylogenetic group.

Besides the strain recovered from the outbreak case (N38), another K1-positive strain isolated from a healthy colonized neonate during the same period (N36) was tested in the C. elegans infection assay (see Figure, Supplemental Digital Content 3). Both clinical isolates showed a significant difference (p-value<0.0001) in virulence regarding the mean of survival compared with the avirulent E. coli OP50 control strain. The LT50 was five versus eight days. However, no significant differences were found between N36 and N38. Neither was any significant differences found in the sequencing of proteins.

RNA-seq analysis was performed in order to investigate the differences in gene expression profiles between strains N36 and N38. One hundred eight genes were differentially expressed between the strains (see Table, Supplemental Digital Content 4 for a complete list of these genes), with the expression levels of 68 genes being more than three-fold higher in strain N38 than its counterpart N36, specifically, in relevant genes related to lipopolysaccharide biosynthesis, virulence and flagellar assembly (Table 3). In addition to the previous strains (N36 and N38), 3 more K1-positive strains (N39, N40 and N49) collected during the same period (April to October 2013) were selected to confirm the expression of several genes (Table 4). In this case, only 3 genes were overexpressed in the outbreak strain compared to the others: 2 genes associated with lipopolysaccharide biosynthesis (rfaI and rfaL) and the papI1 gene which encodes for a regulator protein of the pap operon, showing significant overexpression.

Regarding the VFGs, the outbreak strain carried S-fimbriae (*sfa/foc* and *sfa*S) and the PAI II_{J96}-like domain that were not present in the other K1 strains (Table 5).

Strains N38 and 40 showed a higher capacity of adhesion than the other strains (Figure 2A) whereas strain N39 was the most invasive of the HBMECs (Figure 2B).

All the isolates belonging to the outbreak showed multi-drug resistance having identical susceptibility patterns as those mentioned above (see Table, Supplemental Digital Content 5). Other strains also showed resistance to other antimicrobial agents. All the strains studied, including that causing the outbreak, had the ability to form "in vitro" biofilm.

E. coli O18:H7 strains were recovered from the outbreak cases, whereas the other four
strains (N36, N39, N40 and N49) were Or:H4 (Or means "rough" lipopolysaccharide),
O2:H6, O75:[H5] ([Hxx] refers to H antigens listed by E&E in brackets), and O2:[H4],
respectively.

218 DISCUSSION

This was the first outbreak of neonatal sepsis and meningitis at the NICU of the Hospital Clinic in Barcelona. An *E. coli* O18:K1:H7 sequence type 95 and phylogenetic group B2 strain was the cause of the outbreak involving six preterm neonates, one with late septicemia from a urinary focus and five with late septicemia and meningitis leading to death in three of them. All *E. coli* isolates from the outbreak were shown to belong to a single clone, suggesting a common source of infection.

The prevalence of K1 antigen positivity among the *E. coli* isolates collected from the HCWs and neonates hospitalized at the Maternity was lower than that found among previously hospitalized neonates, a similar finding to what Sarff et al.³² described in a study carried out among healthy individuals but very low compared with another study performed in France³³.

The reason why the K1 capsule and only a few *O*-lipopolysaccharide antigens are
associated with *E. coli* meningitis is still unclear, but their resistance properties allow
these microorganisms to produce high-grade bacteraemia⁹. The outbreak strain belonged

to the serotype O18:K1:H7, which is one of the strains most frequently found among
NMEC strains^{4,34}. In addition, none of the serogroups from the other strains analyzed
has been previously reported among *E. coli* causing neonatal meningitis. All the isolates
belonged to phylogroups B2 and F, considered the most virulent among ExPEC isolates.
Indeed, phylogroup B2 is commonly the most representative among NMEC
isolates^{2,35,36}. Likewise, ST95 is also frequent among ExPEC isolates and in particular
those that cause neonatal meningitis^{37,38}.

Regarding the prevalence of VFGs by Real-Time PCR, the papI1 gene was overexpressed in the outbreak strain compared to the other genes. This is a transcriptional regulatory factor of the pap operon required in the P-fimbriae phase variation, a switch between the expression (Phase-ON) and the loss of expression (Phase-OFF) of these fimbriae. This is a regulatory complex that allows the cells to phenotypically change in response to environmental factors or other signals and represents an advantage for survival in hostile environments³⁹. All the isolates including those belonging to the outbreak showed the genes encoding iron acquisition systems (fyuA, iutA, iroN, and iucC) which are necessary in iron-limited environments and relevant in septicemia and other extraintestinal infections^{11,40,41}. In particular, the fyuA gene was present in all 11 representative NMEC strains used in a study performed by Yao et al.³⁶. In contrast to the other strains, *E. coli* strains belonging to the outbreak carried the PAI II_{J96}-like (*hlyA*, *cnf*1 and *hra* genes positive)⁴² and the PAI III₅₃₆-like (sfa/foc and iroN genes positive) domains⁴³. These ECDNA-like domains, along with the possession of the *ibeA* gene, are very frequent among O18:K1 strains⁴ and are involved in the virulence of NMEC isolates but do not explain the whole pathogenesis of meningitis³⁵. The PAI I_{C5}, which is similar to the PAI II_{J96}, and is harboured by strain C5, has been directly associated with bacterial survival in blood inducing high

bacteraemia but not with the passage of the bacteria across the blood-brain barrier⁴⁴. As opposed to their counterparts, the outbreak strain possessed the hra gene, the presence of which is 91% homologous in uropathogenic E. coli strains compared to NMEC C5 and RS218 strains⁴⁵. Moreover, it is suspected that these two strains have developed an extraintestinal virulence specialization, such as uropathogenicity and meningitis, which has been helped by the genetic background of the clonal group O18:K1³⁵. There is controversy about the role of S fimbriae and Cnf1 in HMBEC binding or/and invasion^{9,44,46}. These VFGs may have contributed to the higher ability of adhesion of the outbreak strain shown compared with their counterparts and other E. coli strains in other studies^{37,47}. The only exception was strain N40, which caused infection in a mother leading to fetal death and showed the highest attachment of HMBEC. Strain N39 showed the highest capacity to invade HMBEC, whereas strain N38 displayed the outstanding lowest frequency, which was very similar to that shown by the negative control E. coli K-12 HB101 in several assays^{37,48}.

Multi-drug resistance is a problem for the administration of adequate treatment. The outbreak strain showed full resistance to ampicillin and intermediate to gentamicin, with these antibiotics being the 1st line combination used to combat neonatal sepsis and meningitis. This results support that a change on the empiric regimen is needed in developed countries. Thus, cefotaxime could be used instead gentamicin due to the low percentages of resistance found among E. coli strains causing neonatal sepsis. In addition, all the strains were biofilm-producers, a feature which makes the pathogen more resistant and virulent⁴⁹, especially when medical devices are used and may facilitate the transmission of colonizing microorganisms.

One three-month-old neonate developed urinary tract infection and septicemia but not meningitis. Age has been reported to be related to the achievement of the threshold level of bacteraemia required for the development of meningitis, but not for HMBEC binding and/or invasion⁵⁰. At the time of the development of sepsis this neonate did not have a low weight and therefore likely presented a stronger immune system than the other neonates. Hence, a high bacterial inoculation might have been required to reach the necessary level of bacteraemia to develop meningitis. Features such as multi-drug resistance, capacity of biofilm-production, virulence-associated factors (PAI II_{J96}-like and PAI III536-like domains), and pertinence to the O18:K1:H7 serotype, sequence type 95, and phylogroup B2, may have been key factors for the strain to cause the outbreak. Nonetheless, the status of the immune system of the neonates and the lack of host defenses undoubtedly played a major role in the outcome of the disease.

The method of transmission remained unclear, although mothers, HCWs and, even other neonates, as in the present case, are potential reservoirs and routes of entry of pathogenic organisms associated with nosocomial infections in NICUs.

297 Acknowledgments

We would especially like to thank to Angelika Miko and her staff in the Federal Institute for Risk Assessment (BfR) at the National Reference Laboratory for *E. coli* in Berlin, for the serotyping of our strains. Additionally, we are grateful to Olivier Clermont, who provided some of the reference *E. coli* strains for the phylogenetic analysis. Finally, the *C. elegans* fer-15 conditional sterile mutant was kindly provided by J.J. Ewbank, CIML, Marseille, France.

References

- Tullus K, Brauner A, Fryklund B, et al. Host factors versus virulence-associated
 bacterial characteristics in neonatal and infantile bacteraemia and meningitis
 caused by *Escherichia coli*. *J Med Microbiol*. 1992;36(3):203–8.
- Bingen E, Picard B, Brahimi N, et al. Phylogenetic analysis of *Escherichia coli* strains causing neonatal meningitis suggests horizontal gene transfer from a
 predominant pool of highly virulent B2 group strains. *J Infect Dis.* 1998;177(3):642–50.
- 313 3. Reedijk M, Odorcic S, Zhang H, et al. Clonal analysis reveals high rate of
 314 structural mutations in fimbrial adhesions of extraintestinal pathogenic
 315 *Escherichia coli. Mol Microbiol.* 2009;33(6):1223–9.
- 316 4. Xie Y, Kolisnychenko V, Paul-satyaseela M, et al. Identification and
 317 characterization of *Escherichia coli* RS218 derived islands in the pathogenesis
 318 of *E. coli* meningitis. *J Infect Dis.* 2006;194(3):358-64.
- 319 5. Robbins JB, McCracken GHJr, Gotschlich EC, et al. *Escherichia co*li K1
 320 capsular polysaccharide associated with neonatal meningitis. *N Engl J* 321 *Med.* 1974;290(22):1216-20
- 322 6. Teng C-H, Cai M, Shin S, et al. *Escherichia coli* K1 RS218 interacts with human
 323 brain microvascular endothelial cells via type 1 fimbria bacteria in the fimbriated
 324 state. *Infect Immun.* 2005;73(5):2923–31.

1	325	7.	Stins MF, Prasadarao NV, Ibric L, et al. Binding characteristics of S fimbriated
1 2 3	326		Escherichia coli to isolated brain microvascular endothelial cells. Am J Pathol.
4 5 6	327		1994;145(5):1228–36.
7 8 9	328	8.	Kim KS. Pathogenesis of bacterial meningitis: from bacteraemia to neuronal
10 11 12 13	329		injury. Nat Rev Neurosci. 2003;4(5):376-85.
14 15	330	9.	Xie Y, Kim KJ, Kim KS. Current concepts on Escherichia coli K1 translocation
16 17 18 19	331		of the blood-brain barrier. FEMS Immunol Med Microbiol. 2004;42(3):271–9.
20 21 22	332	10.	Hacker J, Kaper JB. Pathogenicity islands and the evolution of pathogenic
22 23 24 25	333		microbes. Annu Rev Microbiol. 2000;54:641-79
26 27 20	334	11.	Korczak B, Frey J, Schrenzel J, et al. Use of diagnostic microarrays for
29 30	335		determination of virulence gene patterns of Escherichia coli K1, a major cause of
31 32 33 34	336		neonatal meningitis. J Clin Microbiol. 2005;43(3):1024–31.
35 36	337	12.	Chinen I, Rivas M, Soriano V, et al. Escherichia coli ehl1 gene-positive serotype
37 38 39	338		O18ac:H31 associated with an outbreak of diarrhea in a neonatal nursery in
40 41 42	339		Neuquén City, Argentina. J Clin Microbiol. 2002;40(4):1225–9.
43 44 45	340	13.	Headings DL, Overall JC. Outbreak of meningitis in a newborn intensive care
46 47	341		unit caused by a single Escherichia coli K1 serotype. J Pediatr. 1977;90(1):99-
48 49 50 51	342		102.
52 53	343	14.	Moissenet D, Salauze B, Clermont O, et al. Meningitis caused by Escherichia
54 55 56	344		coli producing TEM-52 extended-spectrum beta-lactamase within an extensive
57 58	345		outbreak in a neonatal ward: Epidemiological investigation and characterization
59 60 61	346		of the strain. J Clin Microbiol. 2010;48(7):2459–63.
62 63			19

evolutionary perspective. Mol Microbiol. 2006;60(5):1136-51. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep. 2013;5:58-65

Sáez-López E, Guiral E, Fernández-Orth D, et al. Vaginal versus obstetric infection Escherichia coli isolates among pregnant women: antimicrobial resistance and genetic virulence profile. PLoS One. 2016;11(1):e0146531.

Lavigne JP, Nicolas-Chanoine MH, Bourg G, et al. Virulent synergistic effect between Enterococcus faecalis and Escherichia coli assayed by using the Caenorhabditis elegans model. PLoS One. 2008;3(10):e3370.

Párraga-Niño N, Colomé-Calls N, Canals F, et al. A comprehensive proteome of Mycoplasma genitalium. J Proteome Res. 2012;11(6):3305-16

Wirth T, Falush D, Lan R, et al. Sex and virulence in Escherichia coli: an

2010;70(4):250-5. Durmaz R, Otlu B, Koksal F, et al. The optimization of a rapid pulsed-field gel electrophoresis protocol for the typing of Acinetobacter baumannii, Escherichia

neonatal invasive Escherichia coli during labor. Gynecol Obstet Invest.

-	367	22.	Fàbrega A, Ballesté-Delpierre C, Vila J. Differential impact of ramRA mutations
1 2 3	368		on both ramA transcription and decreased antimicrobial susceptibility in
4 5 6	369		Salmonella Typhimurium. J Antimicrob Chemother. 2016;71(3):617-24
7 8 9	370	23.	Magoc T, Wood D, Salzberg SL. EDGE-pro: Estimated Degree of Gene
10 11 12	371		Expression in Prokaryotic Genomes. Evol Bioinform Online. 2013;9:127–36.
13 14 15	372	24.	Love MI, Huber W, Anders S. Moderated estimation of fold change and
16 17 18	373		dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1-34.
19 20 21	374	25.	Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of
22 23 24	375		large gene lists using DAVID bioinformatics resources. Nat Protoc.
25 26 27	376		2009;4(1):44–57.
28 29 30	377	26.	Guiral E, Bosch J, Vila J, et al. Prevalence of Escherichia coli among samples
31 32	378		collected from the genital tract in pregnant and nonpregnant women: relationship
33 34 35	379		with virulence. FEMS Microbiol Lett. 2011;314:170-13.
36 37 38	380	27.	Fàbrega A, du Merle L, Le Bouguénec C, et al. Repression of invasion genes and
39 40 41	381		decreased invasion in a high-level fluoroquinolone-resistant Salmonella
42 43 44	382		Typhimurium mutant. PLoS One. 2009;4(11):e8029
45 46 47	383	28.	Orskov F, Orskov I. Serotyping of Escherichia coli. In: T. Bergan., F. Orskov, I.
48 49	384		Orskov et al. Methods in Microbiology. Vol 14. London: Academic Press Inc.
50 51 52	385		1984;43-112
53 54 55 56	386	29.	Ewing WH. Edwards and Ewing's identification of Enterobacteriaceae. 4th ed.
57 58 59	387		New York: Elsevier Science Publishing Co Inc. 1986.
59 60 61 62 63 64 65			21

1	388	30.	Clinical and Laboratory Standards Institute (CLSI). Performance standards for
1 2 3	389		antimicrobial susceptibility testing. 24th information supplement, M100-S24, vol.
4 5 6	390		34, no. 1. 2014. Clinical and Laboratory Standards Institute, Wayne, PA. T
7 8 9	391	31.	Merritt JH, Kadouri DE, O'Toole GA. Growing and analyzing static biofilms.
.0 .1 .2 .3	392		Curr Protoc Microbiol. 2005;Chapter 1:Unit 1B.1.
_4 _5	393	32.	Sarff LD, McCracken GH, Schiffer MS, et al. Epidemiology of Escherichia coli
-6 -7 -8 9	394		K1 in healthy and diseased newborns. Lancet. 1975;1(7916):1099–104.
20 21	395	33.	Watt S, Lanotte P, Mereghetti L, et al. Escherichia coli strains from pregnant
22 23 24	396		women and neonates: intraspecies genetic distribution and prevalence of
25 26 27	397		virulence factors. J Clin Microbiol. 2003;41:1929-35.
28 29 30	398	34.	Bonacorsi S, Bingen E. Molecular epidemiology of Escherichia coli causing
81 82 83	399		neonatal meningitis. Int J Med Microbiol. 2005;295(6-7):373-81.
34 35 36	400	35.	Bonacorsi S, Clermont O, Houdouin V, et al. Molecular analysis and
37 38	401		experimental virulence of French and North American Escherichia coli neonatal
9 10 11	402		meningitis isolates: identification of a new virulent clone. J Infect Dis.
12 13 14	403		2003;187(12):1895–906.
16 17	404	36.	Yao Y, Xie Y, Kim KS. Genomic comparison of Escherichia coli K1 strains
18 19	405		isolated from the cerebrospinal fluid of patients with meningitis. Infect Immun.
50 51 52 53	406		2006;74(4):2196–206.
54 55	407	37.	Alkeskas A, Ogrodzki P, Saad M, et al. The molecular characterisation of
57 58	408		Escherichia coli K1 isolated from neonatal nasogastric feeding tubes. BMC Infect
59 50	409		Dis. 2015;15:449
52 53			22

410 38. Tivendale KA, Logue CM, Kariyawasam S, et al. Avian-pathogenic *Escherichia*411 *coli* strains are similar to neonatal meningitis *E. coli* strains and are able to cause
412 meningitis in the rat model of human disease. *Infect Immun.* 2010;78(8):3412–9.

413 39. Graveline R, Garneau P, Martin C, et al. Leucine-responsive regulatory protein
414 Lrp and PapI homologues influence phase variation of CS31A fimbriae. J
415 Bacteriol. 2014;196(16):2944–53.

416 40. Hancock V, Ferrières L, Klemm P. The ferric yersiniabactin uptake receptor
417 FyuA is required for efficient biofilm formation by urinary tract infectious
418 *Escherichia coli* in human urine. *Microbiology*. 2008;154:167–75.

419 41. Johnson JR, Stell AL. Extended virulence genotypes of *Escherichia coli* strains
420 from patients with urosepsis in relation to phylogeny and host compromise. J
421 *Infect Dis.* 2000;181:261–72.

422 42. Bingen-bidois M, Clermont O, Terki M, et al. Phylogenetic analysis and
423 prevalence of urosepsis strains of *Escherichia coli* bearing pathogenicity island424 like domains. *Infect Immun.* 2002;70(6):3216–26.

425 43. Burdet C, Clermont O, Bonacorsi S, et al. *Escherichia coli* Bacteremia in
426 Children. *Pediatr Infect Dis J.* 2014;33(8):872–9.

427 44. Houdouin V, Bonacorsi S, Brahimi N, et al. A uropathogenicity island
428 contributes to the pathogenicity of *Escherichia coli* strains that cause neonatal
429 meningitis. *Infect Immun.* 2002;70(10):5865–9.

1	430	45.	Srinivasan U, Foxman B, Marrs CF. Identification of a gene encoding heat-
1 2 3	431		resistant agglutinin in Escherichia coli as a putative virulence factor in urinary
4 5 6	432		tract infection. J Clin Microbiol. 2003;41(1):285–9.
7 8 9	433	46.	Kim BY, Kang J, Kim KS. Invasion processes of pathogenic Escherichia coli. Int
10 11 12	434		J Med Microbiol. 2005;295(6-7):463-70.
13 14 15	435	47.	Whitlock GC, Valbuena GA, Popov VL, et al. Burkholderia mallei cellular
16 17 18	436		interactions in a respiratory cell model. J Med Microbiol. 2009;58(Pt 5):554-62.
20 21	437	48.	Townsend S, Hurrell E, Forsythe S. Virulence studies of Enterobacter sakazakii
22 23 24	438		isolates associated with a neonatal intensive care unit outbreak. BMC Microbiol.
25 26 27	439		BioMed Central. 2008;8:64.
28 29 30	440	49.	Mittal S, Sharma M, Chaudhary U. Biofilm and multidrug resistance in
31 32 33	441		uropathogenic Escherichia coli. Pathog Glob Health. 2015;109(1):26-9.
34 35 36	442	50.	Stins MF, Nemani PV, Wass C, et al. Escherichia coli binding to and invasion of
37 38 20	443		brain microvascular endothelial cells derived from humans and rats of different
39 40 41 42 43 44 45 46 47 48 49 51 52 55 55 55 55 55 55 55 55 55 55 55 55	444		ages. Infect Immun. 1999;67(10):5522–5.
63 64 65			24

Figure legends

Figure 1. Characterization of the strains causing the outbreak and the K1-positive *E*. *coli* counterparts used in this study. Abbreviation: ND, not determined. Bold letters
represent the strains belonging to the outbreak.

Figure 2. Adhesion (A) and invasion (B) assays of *E. coli* isolates to HBMECs. The
displayed data are the mean ± standard deviation of adhesion and invasion %,
respectively, of at least three independent experiments by duplicate. The strain N38
belonged to the outbreak, whereas N36, N39, N40 and N49 are non-outbreak strains.

453 Supplementary figure legend

454 Supplementary Figure 1. C. elegans infection assay of strains N36 (non-outbreak) vs.

(outbreak

strain).

455 N38

	1
	2
	3
	Λ
	ч г
	5
	6
	7
	8
	a
-	2
T	0
1	1
1	2
1	3
1	Λ
1	-
T	5
1	6
1	7
1	8
1	a
- -	0
2	0
2	1
2	2
2	3
2	Δ
2	-
2	5
2	6
2	7
2	8
2	g
2	2
3	0
3	1
3	2
3	3
ې ۲	Λ
2	-
3	5
3	6
3	7
3	8
3	9
1	0
4	U
4	1
4	2
4	3
4	4
т Л	5
4	5
4	6
4	7
4	8
4	9
5	0
5	1
с -	T
5	2
5	3
5	4
5	5
5	6
5	0
5	/
5	8
-	
5	9
5	9 0
5 6 6	9 0 1
566	9 0 1 2
5666	9 0 1 2
56666	9 0 1 2 3

456	
457	List of Supplemental Digital Content
458	Supplemental Digital Content 1. Table
459	Supplemental Digital Content 2. Table
460	Supplemental Digital Content 3. Figure
461	Supplemental Digital Content 4. Table
462	Supplemental Digital Content 5. Table

Number of strain	Date of sepsis (day/month)	Sex	Gestational age (weeks)	Birth Weight (g)	Age ^a (days)	Diagnosis	Other pathologies	Evolution	Treatment	
N35	13/04/2013	Female	29.2	1,000	7 ^b	Late sepsis & meningitis	IVH ^d -Grade II	Meningitis and death	CTX + AK	
N120	02/05/2012	Famala	29	750	10 h	Late sepsis &	Hyaline membrane	Meningitis,	$\text{CTX} + \text{MEM} \rightarrow$	
N38	03/05/2013	Female	28	750	12°	meningitis	disease+ IVH-Grade II	hydrocephalus and death	MEM + AK	
N/11	31/05/2013	Male	28.2	710	105	Late sepsis	Hyaline membrane disease	Good evolution	СТУ	
IN41	51/05/2015	whate	20.2	/10	105	& UTI ^b	+ Inguinal hernia		CIA	
					96	Late sensis &	Hyaline membrane			
N43	09/07/2013	Female	25.2	776		meningitis	disease+ IVH-Grade III +	Hydrocephalus	MEM + CIP	
						inciningitus	Necrotizing enterocolitis			
						Late sensis &	Hyaline membrane disease			
N47	08/08/2013	Male	26.3	900	11 ^b	meningitis	+ central nervous system	Meningitis and death	MEM + CIP	
						meningitis	hemorrhage			
N48	15/08/2013	Female	27.3	870	23	Late sepsis &	Hyaline membrane disease	Hydrocephalus	MEM + CIP	

meningitis

^a Age when the neonate developed sepsis

^b Patient died

Abbreviations: UTI, Urinary Tract Infection; IVH, Intraventricular hemorrhage; CTX, Cefotaxime; AK, Amikacin; MEM, Meropenem; CIP, Ciprofloxacin.

Table 1. Characteristics of the neonates belonging to the outbreak.

			Month (Year 2013)													
Case	Date of birth (day/ month)	F	М			A			N	Iy		J	J	L	AG	S
N35	7/4		1	7/4	1	3/4	29/4 ^b									
N38	21/4			•			21/4ª	3/5	22/5 ^b							
N41	15/2	15/2*	l				22/4°			30/5 ^a	31/5	11/6°				
N43	4/4			4/-	a								9/7		26/8 ^c	
N47	28/7													28/7ª	8/8	4/9 ^b
N48	22/7													22/7ª	15/8	27/9°

Grey color, length of stay at the hospital. Dark grey color, date of sepsis.

^aDate of admission to the NICU in the Hospital Clinic, Barcelona

^bPatient died

^cDate of discharge

Abbreviations: F, February; M, March; A, April; My, May; J, June; JL, July; AG, August; S, September

Table 2. Temporal distribution of the cases belonging to the outbreak.

Table 3. Transcriptional values of representative genes overexpressed in N38 (outbreak strain) comparing to N36 (non-outbreak strain). Fold change indicates the ratio between the levels of expression in N38 and N36. Only statistically significant results (p < 0.05) are shown.

	~	D	Fold change									
Locus tag	Gene	Description	(N38/N36)									
LIPOPOLYS	LIPOPOLYSACCHARIDE BIOSYNTHESIS											
CE10_4186	rfaI	UDP-glucose:(Glucosyl) LPS alpha1. 3-	266.39									
		glucosyltransferase										
CE10_4181	rfaL	O-antigen ligase	156.4									
CE10_4187	rfaP	kinase that phosphorylates core heptose of	5.28									
		lipopolysaccharide										
CE10_4184	rfaY	lipopolysaccharide core biosynthesis protein	195.615									
CE10_4185	waaT	UDP-galactose:(Glucosyl) LPS alpha1. 2-	143.05									
		galactosyltransferase										
CE10_4182	waaV	putative beta1.3-glucosyltransferase	59.46									
CE10_4183	waaW	UDP-galactose:(Galactosyl) LPS alpha1. 2-	216.03									
		galactosyltransferase										
VIRULENCE												
CE10_3431	papI1	pap operon regulatory protein PapI	46.80									
FLAGELLAR	FLAGELLAR ASSEMBLY											
CE10_2209	fliD	flagellar filament capping protein	23.96									

CE10_2208 *fliC* flagellar filament structural protein (flagellin) 5.40

Table 4. Fold change of gene expression of N36, N39, N40, and N49 (all non-outbreakstrains) versus the outbreak strain N38. NE, not expressed.

Gene	Description/function	N36	N39	N40	N49
neuC	UDP-N-acetylglucosamine 2-epimerase	-1.462	-1.008	1.31	2.463
kpsC	capsule polysaccharide export protein	1.717	5.198	22.297	18.879
kpsD	polysialic acid transport protein	1.103	-8.684*	-1.162	-5.858*
fimD	Type-1 fimbria	3.3112*	6.561*	-1.3	3.971*
ompA	Outer membrane protein A	1.001	1.652	1.791	9.247**
aslB	VFG associated with meningitis	-2.239	2.172	-1.187	4.867
ibeB	VFG associated with meningitis	2.043	15.144	2.614	5.255
ibeC	VFG associated with meningitis	4.238**	1.457	3.866*	2.027
papI1	Pap operon regulatory protein PapI	NE**	NE**	-8.471*	NE**
rfaI	UDP-glucose:(Glucosyl) LPS alpha1, 3-	NE**	-4.879	-36.744**	-4.568
	glucosyltransferase				
<i>rfa</i> L	O-antigen ligase	NE**	-1.092	-4.794**	-2.16
rfaP	kinase that phosphorylates core heptose of	-1.338	1.5	-1.187	1.079
	lipopolysaccharide				
rfaY	lipopolysaccharide core biosynthesis	NE**	180.403**	47.001**	62.175**
	protein				
waaT	UDP-galactose:(Glucosyl) LPS alpha1, 2-	NE	2.46	-1.695	2.031
	galactosyltransferase				
waaV	putative beta1,3-glucosyltransferase	NE**	168.868**	74.456**	136.712**
waaW	UDP-galactose:(Galactosyl) LPS alpha1, 2-	NE**	156.637**	85.067**	160.839**
	galactosyltransferase				
fliD	flagellar filament capping protein	NE*	108.737	NE	NE
fliC	flagellar filament structural protein	NE*	3.764	NE**	NE
	(flagellin)				

Bold letters represent genes for which the expression is higher in N38 than in all the other strains.

*p-value<0.05

**p-value<0.01

Gene	Description/function	N36	N38	N39	N40	N49
Toxins						
hlyA	hemolysin	-	+	+	-	-
cnf1*	cytotoxic necrotizing factor	-	+	-	-	-
sat1	autotransporter toxin	-	-	-	+	-
P- fimbriae						
papA		-	-	-	-	+
papEF		-	-	-	-	+
papC		-	-	+	-	-
Type-1 fimbria	e					
fimH		+	+	+	+	+
Type 1-C fimbr	ia					
focG		-	-	-	-	-
S-fimbriae						
sfa/foc*		-	+	-	-	-
sfaS*		-	+	-	-	-
Iron uptake sy	stems					
fyuA	yersiniabactin	+	+	+	+	+
iutA	siderophore	+	+	+	+	+
iroN	siderophore	+	+	+	+	+
iucC	aerobactin	+	+	+	+	+
Other VFGs as	ssociated with virulence					
ibeA	invasion of brain endothelium factor	+	+	+	-	-
ibeC	invasion of brain endothelium factor	+	+	+	+	+
aslA	arylsulfatase-like	-	-	+	+	+
traJ	VFG involved in meningitis	+	-	+	+	+
hra*	heat-resistant agglutinin	-	+	-	-	-

*Bold letter represent the genes present in N38 but absent in the other strains.

Table 5. Prevalence of virulence factor genes (VFGs) among N38 (outbreak strain) andN36, N39, N40 and, N49 (non-outbreak strains).

Dice (Opt:0.50%) (Tol 1.5%+1.5%) (H>0.0% S>0.0%) (0.0%+100.0%) 1

8 8 8 8 ⁸	Strain	Isolation site	PG
	22	Stools	ND
	34	Stools	ND
	29	Stools	ND
	15	Stools	ND
	N10	Blood Culture	B2
65.4	N49	Otic smear	B2
	N40	Pharynx smear	B2
9 <u>43</u> 76.5	N26	Pharynx smear	B2
	N36	Otic smear	B2
	N5	Otic smear	F
	23	Stools	ND
	N18	Pharynx and otic smear	F
	NI	Blood culture	F
and the second se	2	Stools	B2
	N48	Blood culture and CSF	B2
	N35	Blood culture and CSF	B2
	N38	Blood culture and CSF	B2
	N41	Blood culture	B2
	N43	Blood culture and CSF	B2
MAT .	N47	Blood culture and CSF	B2
· · · · · · · · · · · · · · · · · · ·	N39	Pharynx smear	B2
	N12	Otic smear	B2

Supplemental Digital Content 1. Table. Primers used in Real-Time PCR experiments.

Gene	Primer sequence (5'-3') (F/R)
neuC	AGGCAGAAAGGCCGTGTTC/CCCTCTGACGATTGCATTTTT
kpsC	GCCGGAAATACAGCTCTGATAAG/TCCCCGGTCACGATGGT
kpsD	GCGAATGCAGGAAGCACAA/CCACGGTGCGTGCTTTC
fimD	CGCGCGTTGGGATAAAACT/CAAACGGCAGCGGCTTA
ompA	CAGGAGTGATCGCATACTCAACA/ACGACACCGGCGTTTCTC
aslB	CGCCTGGCTGATGAAACG/ATATCGCCGGGAGCATGTAG
ibeB	GTTAAATTACCGGCGGGCTT/GGTCAGGCTGATAGACGGGAA
ibeC	CCAGCGTGGACGCATGA/AGCTCCGGCGTGGTTTC
rfaI	CTGGGCCGGTTATCCAAGT/TCCAGGGCGATGCTTCTTT
<i>rfa</i> L	CAGCTTCCCACGCTACAACA/TTGATGCCAGTAAAGAAGGGAAA
<i>rfa</i> P	ATGCTGCGGGCATTAACC/GCAAGTGCAGCAGGAAATGA
rfaY	ACGGCAGAGCGGAAAGC/CAATACCCAGGTGACGTTCCA
waaT	AAACGCCCCAGAGCTAAATGT/CGCCAGCACCATACAAAAAA
waaV	TTGCGCACGAAAGAATCTACTC/TGAATTTCTTCTTCCGGTTACCT
waaW	GACGAATTATCCCTGCCAGAAG/GCCACATCATTCCAGCAAGA
papI_1	GGAGGGAAAACCGCAGAAA/CGTGCCTGATAATCCGTTACC
fliD	TGCCAGCGGCGTAGGT/GGTTGTGATGCCGGTTTTTT
fliK	GCGATGCTGCACAAGATTTTC/GTTGTCTCGCCTGCTAATGCT
fliC	CCATCGACAAATTCCGTTCA/CGCAGAATCCAGACGGTTCT

Supplemental Digital Content 2. Table. Primers used to detect the virulence factor genes (VFGs) and PAI II_{J96}-like domain.

Gene	Primer sequence (5'-3') (F/R)	Reference
hlyA	AACAAGGATAAGCACTGTTCTGGCT/ACCATATA	(1)
	AGCGGTCATTCCCGTCA	
cnf1	AAGATGGAGTTTCCTATGCAGGAG/CATTCAGAG	(1)
	TCCTGCCCTCATTATT	
sat1	ACTGGCGGACTCATGCTGT/AACCCTGTAAGAAG	(1)
	ACTGAGC	
рарА	ATGGCAGTGGTGTCTTTTGGTG/CGTCCCACCATA	(1)
	CGTGCTCTTC	
papEF	GCAACAGCAACGCTGGTTGCATCAT/AGAGAGAG	(1)
	CCACTCTTATACGGACA	
papC	GACGGCTGTACTGCAGGGTGTGGCG/ATATCCTT	(1)
	TCTGCAGGGATGCAATA	
fimH	CAGCGATGATTTCCAGTTTGTGTG/TGCGTACCAG	(2)
	CATTAGCAATGTCC	
focG	CAGCACAGGCAGTGGATACGA/GAATGTCGCCTG	(1)
	CCCATTGCT	
sfa/foc	CTCCGGAGAACTGGGTGCATCTTAC/	(3)
	CGGAGGAGTAATTACAAACCTGGCA	
sfaS	AGAGAGAGCCACTCTTATACGGACA/CCGCCAGC	(1)
	ATTCCCTGTATTC	
hra	CAGAAAACAACCGGTATCAG/ACCAAGCATGATG	(1)
	TCATGAC	

fyuA	TGATTAACCCCGCGACGGGAA/CGCAGTAGGCAC	(1)
	GATGTTGTA	
iutA	GGCTGGACATCATGGGAACTGG/CGTCGGGAACG	(1)
	GGTAGAATCG	
iroN	AAGTCAAAGCAGGGGTTGCCCG/GACGCCGACAT	(1)
	TAAGACGCAG	
iucC	AAACCTGGCTTACGCAACTGT/ACCCGTCTGCAA	(4)
	ATCATGGAT	
ibeA	AGGCAGGTGTGCGCCGCGTAC/TGGTGCTCCGGC	(1)
	AAACCATGC	
ibeC	CACAGAAGTCCAGGCTAAACC/	This study
	TACCCACCTGATCGCCATAC	
aslA	CGGTGTCTGATATGTACACCG/	(6)
	CATCCCTTTCCAGTAAACG	
traJ	TCTGACGGCAGTTATTCAGG/GATGCGTGTTTCTT	This study
	TGATGTGG	
PAI	GGATCCATGAAAACATGGTTAATGGG/	(7)
Пј96-	GATATTTTGTTGCCATTGGTTACC	
like		
domain		

REFERENCES

1 Guiral E, Bosch J, Vila J, et al. Prevalence of *Escherichia coli* among samples collected from the genital tract in pregnant and nonpregnant women: relationship with virulence. *FEMS Microbiol Lett.* 2011;314:170–3.

- Kvas A. Detection of genes characteristic for extraintestinal pathogens in cattle commensal strains of *E. coli*. Thesis of Master Study Programmes: Field Microbiology. University of Ljubljana (Slovenia). 2013; http://www.digitalnaknjiznica.bf.uni-lj.si/mikrobiologija/du2_kvas_ana.pdf
- 3. Le Bouguenec C, Archambaud M, Labigne A. Rapid and specific detection of the *pap*, *afa*, and *sfa* adhesin-encoding operons in uropathogenic *Escherichia coli* strains by polymerase chain reaction. *J Clin Microbiol*. 1992;30(5):1189–93.
- 4. Johnson JR, Stell AL. 2000. Extended virulence genotypes of *Escherichia coli* strains from patients with urosepsis in relation to phylogeny and host compromise. *J Infect Dis.* 181:261–72.
- Wang S, Shi Z, Xia Y, Li H, Kou Y, Bao Y, et al. IbeB is involved in the invasion and pathogenicity of avian pathogenic *Escherichia coli*. *Vet Microbiol*. 2012;159(3-4):411–9.
- Hoffman JA, Badger JL, Zhang Y, Huang SH, Kim KS. *Escherichia coli* K1 aslA contributes to invasion of brain microvascular endothelial cells in vitro and in vivo. *Infect Immun.* 2000;68(9):5062–7.
- Landraud L, Gibert M, Popoff MR, Boquet P, Gauthier M. Expression of *cnf1* by *Escherichia coli* J96 involves a large upstream DNA region including the *hlyCABD* operon, and is regulated by the RfaH protein. *Mol Microbiol.* 2003;47(6):1653–67.

Supplemental Digital Content 3. Figure. *Caenorhabditis elegans* infection assay of strains N36 (non-outbreak) *vs.* N38 (outbreak strain).

Supplemental Digital Content 4. Table. Transcriptional values of representative genes differentially expressed in the outbreak strain N38 comparing to the non-outbreak strain N36. Fold change indicates the ratio between the levels of expression in N38 and N36. Only statistically significant results (p < 0.05) are shown.

			Fold
Locus tag	Gene	Description	change
			(N38/N36)
CE10_4186	rfaI	UDP-glucose:(Glucosyl) LPS alpha1, 3-	266.39
		glucosyltransferase	
CE10_1685	yddB	putative porin protein	194.92
CE10_4183	waaW	UDP-galactose:(Galactosyl) LPS alpha1, 2-	216.03
		galactosyltransferase	
CE10_3421	papX	HTH-type transcriptional regulator	184.27
CE10_4184	rfaY	lipopolysaccharide core biosynthesis protein	195.61
CE10_1687	yddA	ABC transporter ATP-binding protein	156.87
CE10_3206	mazF	mRNA interferase toxin, antitoxin is MazE	134.06
CE10_4181	rfaL	O-antigen ligase	156.40
CE10_2290	ibrA	immunoglobulin-binding regulator A	100.25
CE10_4185	waaT	UDP-galactose:(Glucosyl) LPS alpha1, 2-	143.05
		galactosyltransferase	
CE10_4203	dinD	DNA-damage-inducible protein	86.38
CE10_3207	mazE	antitoxin of the ChpA-ChpR toxin-antitoxin	58.53
		system	
CE10_4611	tsx2	nucleoside-specific channel-forming protein	67.25
		Tsx	
CE10_1043	essD2	DLP12 prophage phage lysis protein	56.86
CE10_1762	celA	6-phospho-beta-glucosidase	49.48
CE10_4182	waaV	putative beta1,3-glucosyltransferase	59.46
CE10_3431	papI1	pap operon regulatory protein PapI	46.80

CE10_1496	yciE	putative rubrerythrin/ferritin-like metal-binding			
		protein			
CE10_1684	pqqL	putative peptidase	14.08		
CE10_5142	quuQ	Qin prophage antitermination protein Q	28.62		
CE10_2292	yaiP2	putative glucosyltransferase	26.38		
CE10_2209	fliD	flagellar filament capping protein	23.96		
CE10_1858	ynfF	S- and N-oxide reductase, A subunit,	23.14		
		periplasmic			
CE10_4830	eptA	putative metal dependent hydrolase	8.59		
CE10_1608	ynbB	putative CDP-diglyceride synthase	20.92		
CE10_0326	yaiO1	outer membrane protein	19.33		
CE10_1610	ynbD	putative phosphatase inner membrane protein	18.12		
CE10_1857	ynfE	putative selenate reductase, periplasmic	17.49		
CE10_2055	ydjK	putative transporter	9.27		
CE10_2293	yaiX2	putative nucleotidyl transferase	16.77		
CE10_1460	essD3	DLP12 prophage phage lysis protein	17.38		
CE10_1497	yciF	YciF protein	15.58		
CE10_1726	tfaE	e14 prophage tail fiber assembly protein	15.21		
CE10_2294	yaiO2	outer membrane protein	14.39		
CE10_1605	ydbC	putative oxidoreductase, NAD(P)-binding	12.83		
		protein			
CE10_0327	yaiX1	putative transferase	13.65		
CE10_3139	ascB	cryptic 6-phospho-beta-glucosidase	11.19		
CE10_1609	ynbC	putative hydrolase	11.59		
CE10_2053	ydjI	putative aldolase	6.07		

_

CE10_2054	ydjJ	putative oxidoreductase, Zn-dependent and 7.20			
		NAD(P)-binding protein			
CE10_3180	cysI	sulfite reductase, beta subunit, NAD(P)-	10.07		
		binding, heme-binding protein			
CE10_4829	basR	DNA-binding response regulator in two-	6.10		
		component regulatory system with BasS			
CE10_2317	yeeT1	CP4-44 prophage protein	11.12		
CE10_1394	chaA	calcium/sodium:proton antiporter	4.04		
CE10_2052	ydjH	putative kinase	5.61		
CE10_1692	ydeP	putative oxidoreductase	4.20		
CE10_4187	rfaP	kinase that phosphorylates core heptose of	5.28		
		lipopolysaccharide			
CE10_3125	srlA	PTS system glucitol/sorbitol-specific	6.98		
		transporter subunit IIC			
CE10_3128	srlD	sorbitol-6-phosphate dehydrogenase	8.74		
CE10_2208	fliC	flagellar filament structural protein (flagellin)	5.40		
CE10_2636	arnB	uridine 5'-(beta-1-threo-pentapyranosyl-4-ulose	4.85		
		diphosphate) aminotransferase, PLP-dependent			
CE10_3936	gntT	gluconate transporter, high-affinity GNT I	5.18		
		system			
CE10_1045	arrQ1	Qin prophage lysozyme	8.20		
CE10_0595	entB	isochorismatase	5.92		
CE10_1693	ydeQ	putative fimbrial-like adhesin protein	4.12		
CE10_4851	cadB	putative lysine/cadaverine transporter	5.08		
CE10_4389	asnA	asparagine synthetase A	3.53		

CE10_0017	lolA	chaperone for linoproteins	4 20
CE10_0917	l0lA	chaperone for hpoprotents	4.20
CE10_2344	ugd	UDP-glucose 6-dehydrogenase	5.46
CE10_5067	ихиВ	D-mannonate oxidoreductase, NAD-binding	4.92
		protein	
CE10_1694	ydeR	putative fimbrial-like adhesin protein	3.17
CE10_0143	htrE	putative outer membrane usher protein	6.70
CE10_1435	ompW	outer membrane protein W	4.45
CE10_2638	arnA	fused UDP-L-Ara4N formyltransferase/UDP-	3.68
		GlcA C-4'-decarboxylase	
CE10_0328	yaiP1	putative glucosyltransferase	6.56
CE10_4638	yijD	inner membrane protein	3.11
CE10_2343	cld	regulator of length of O-antigen component of	4.55
		lipopolysaccharide chains	
CE10_1607	ynbA	inner membrane protein	6.40
CE10_3199	scrR	Sucrose operon repressor	-491.15
CE10_3662	yhaV	toxin of the SohB(PrlF)-YhaV toxin-antitoxin	-292.77
		system	
CE10_3201	ygcG	hypothetical protein	-213.97
CE10_2355	rfbC	dTDP-4-deoxyrhamnose-3,5-epimerase	-151.44
CE10_3198	scrB	sucrose-6-phosphate hydrolase	-78.95
CE10_3197	scrA	PTS system sucrose-specific transporter	-82.48
		subunit IIBC	
CE10_3661	sohA	antitoxin of the SohA(PrlF)-YhaV toxin-	-70.09
		antitoxin system	
CE10_3196	scrY	sucrose porin	-66.66

_

CE10_4290	yicL	hypothetical protein	-58.63
CE10_0280	yahA	c-di-GMP-specific phosphodiesterase	-30.90
CE10_4540	yihO	putative transporter	-51.37
CE10_4548	yihW	putative DNA-binding transcriptional regulator	-40.77
CE10_1650	pptA	4-oxalocrotonate tautomerase	-33.64
CE10_4539	ompL	outer membrane porin L	-31.66
CE10_4555	yiiF	hypothetical protein	-25.18
CE10_3195	scrK	aminoimidazole riboside kinase	-24.33
CE10_4542	yihQ	alpha-glucosidase	-22.06
CE10_0154	fhuA	ferrichrome outer membrane transporter	-7.91
CE10_3807	yhdZ	putative amino-acid transporter subunit	-9.18
CE10_1709	yneE	hypothetical protein	-6.46
CE10_4544	yihS	aldose-ketose isomerase, D-mannose isomerase	-10.77
CE10_2274	yeeN	hypothetical protein	-8.39
CE10_4078	bcsB	regulator of cellulose synthase, cyclic di-GMP	-6.72
		binding protein	
CE10_1581	abgT	p-aminobenzoyl-glutamate transporter,	-6.35
		membrane protein	
CE10_4563	frvR	putative frv operon regulator, contains a PTS	-9.65
		EIIA domain	
CE10_3805	yhdX	putative amino-acid transporter subunit	-6.39
CE10_1098	efeO	inactive ferrous ion transporter EfeUOB	-4.71
CE10_3178	iap	aminopeptidase in alkaline phosphatase	-4.34
		isozyme conversion	
CE10_0355	ykiA	hypothetical protein	-5.20

CE10_1526	osmB	lipoprotein	-5.40
CE10_3090	ygaC	hypothetical protein	-5.14
CE10_0136	panB	3-methyl-2-oxobutanoate	-4.60
		hydroxymethyltransferase	
CE10_2379	wza	lipoprotein required for capsular	-7.66
		polysaccharide translocation through the outer	
		membrane	
CE10_3931	yhgA	putative transposase	-4.15
CE10_0281	yahB	putative DNA-binding transcriptional regulator	-3.88
CE10_2001	ydiY	putative outer membrane protein, acid-	-4.46
		inducible	
CE10_0525	arrD1	DLP12 prophage lysozyme	-5.63
CE10_0133	yadD	putative transposase	-3.35
CE10_2250	yedZ	inner membrane heme subunit for periplasmic	
		YedYZ reductase	
CE10_4079	<i>bcsA</i>	cellulose synthase, catalytic subunit	-4.58

	Antimicrobial agents												
No. of Strain	AMP	AMC	TZP	СТХ	MEM	TET	SXT	GEN	AK	KAN	NA	CIP	FOF
N36	3	8	1.5	0.5	0.012	2	1	0.5	1.5	2	3	0.012	0.50
N38	>256	16	2	0.5	0.016	128	0.006	4	8	6	3	0.012	192
N39	3	6	1	0.5	0.012	2	0.094	0.5	2	3	128	0.19	0.75
N40	>256	8	1	0.5	0.012	64	>32	48	2	6	>256	>256	0.5
N49	>256	12	1	0.38	0.006	>256	>32	0.5	2	1.5	3	0.006	1

Supplemental Digital Content 5. Table. Minimum inhibitory concentrations (µg/ml)

among N38 (outbreak strain) and N36, N39, N40 and, N49 (non-outbreak strains).

Abbreviations: AMP, ampicillin; AMC, amoxicillin-clavulanic acid; TZP, piperacillintazobactam; CTX, cefotaxime; MEM, meropenem; TET, tetracycline; SXT, trimethoprim-sulfamethoxazole; GEN,gentamicin; AK, amikacin; KAN, kanamycin; NA, nalidixic acid; CIP, ciprofloxacin, and FOF, fosfomycin.