
1 

 

Outbreak caused by Escherichia coli O18:K1:H7 sequence type 95 in a neonatal 1 

intensive care unit in Barcelona, Spain 2 

Emma Sáez-López, BS1,2; Jordi Bosch, MD1,2; Maria Dolors Salvia, MD3; Dietmar 3 

Fernández-Orth, PhD1,2; Virginio Cepas, BS1,2; Mario Ferrer-Navarro, PhD1,2; Josep 4 

Figueras-Aloy, MD3; Jordi Vila, Prof.1,2; Sara M. Soto, PhD1,2 
5 

1Department of Microbiology, Hospital Clínic - Universitat de Barcelona, Barcelona, 6 

Spain 2ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - 7 

Universitat de Barcelona, Barcelona, Spain. 3Department of Neonatology, Center of 8 

Medicine Maternofetal and Neonatology (BCNatal) Hospital Clínic (ICGON) and 9 

Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain. 10 

  11 

Abbreviated title: Outbreak caused by E. coli in a NICU in Barcelona, Spain 12 

Running head: Neonatal outbreak by E. coli K1 13 

Corresponding author: 14 

Sara M. Soto 15 

ISGlobal  16 

Edificio CEK-1ª planta; C/ Roselló 149-153 17 

08036-Barcelona, Spain 18 

Phone: +34-932275707; Fax: +34-932279327 19 

e-mail: sara.soto@isglobal.org 20 

 21 

Keywords: Outbreak; E. coli; septicemia; O18:K1:H7; neonates. 22 

Title Page-revised

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

mailto:sara.soto@isglobal.org


2 

 

Abbreviated title: Outbreak caused by E. coli O18:K1:H7 in neonates. 23 

Running title: Outbreak caused by E. coli O18:K1:H7. 24 

Disclosure of Funding 25 

This work was supported by the “Institute of Health Carlos III (ISCIII) Subdirección 26 

General de Evaluación” and the “Fondo Europeo de Desarollo Regional (FEDER)” 27 

[Grant numbers PI10/01579 and PI13/00127]. Sara M. Soto has a fellowship from the I3 28 

program of the ISCIII.  29 

 30 

Conflict of Interests 31 

The authors declare that they have no conflict of interests. 32 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



 

3 

 

ABSTRACT  

Background 

Escherichia coli is one of the most frequent causes of late-onset neonatal sepsis. The 

aim of this study was to characterize an outbreak of neonatal sepsis occurring in the 

neonatal intensive care unit (NICU) of the Hospital Clinic of Barcelona from April to 

August 2013. 

Methods  

After presentation of the index case, all E. coli isolates from previously hospitalized 

neonates, health care workers, and neonates admitted to the NICU from April to 

October 2013 were tested for K1 antigen positivity and epidemiologically compared by 

pulse-field gel electrophoresis. Furthermore, the E. coli K1 strains collected from 

neonates during this period were analyzed by different methods (serotyping, 

phylotyping, PCR of virulence factors, antimicrobial resistance, and “in vitro” assays in 

HMBEC).  

Results  

An E. coli O18:K1:H7 sequence type 95 and phylogenetical group B2 strain was the 

cause of the outbreak involving 6 preterm neonates: one with late septicemia due to a 

urinary focus and 5 with late-onset septicemia and meningitis, 3 of whom died. All 

showed the same pulsotype, full resistance to ampicillin and intermediate resistance to 

gentamicin. The outbreak strain carried the PAI IIJ96-like domain that could explain the 

high-grade bacteremia necessary to develop meningitis.  

Conclusions 

Abstract-revised
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All the E. coli isolates responsible for this outbreak belonged to a single clone 

suggesting a common source of infection, and it was categorized as O18:K1:H7. 

Despite the bacteria’s pathogenicity has an important role in the severity of infection, 

the host-associated factors were crucial for the fatal outcomes. 
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INTRODUCTION  1 

Late-onset neonatal sepsis (LONS) is acquired after the first 72 hours of life and often 2 

leads to meningitis. Escherichia coli frequently causes septicemia and meningitis1. 3 

However, at present, the pathogenesis of meningitis caused by E. coli is only partially 4 

understood for two reasons: i) this infectious disease is a complex process formed by 5 

multiple bacterial-host interactions, and ii) the high genetic diversity of the pathotypes 6 

among neonatal meningitis E. coli (NMEC) strains.  7 

It is known that there are a few features that distinguish these strains. NMEC strains are 8 

part of the extraintestinal pathogenic E. coli (ExPEC) subgroup, most of which belong 9 

to phylogroup B22 and the sequence type (ST) 95 complex3. One of the most common 10 

serotypes is O18:K1:H74 to which two of the representative NMEC strains belong, C5 11 

and RS218. The K1 capsular antigen has frequently been detected among isolates 12 

causing septicemia and is also presented by approximately 80% of E. coli strains 13 

causing neonatal meningitis5. Type 1 fimbriae, S fimbriae, outer membrane protein A, 14 

cytotoxic necrotizing factor 1, invasion brain endothelial cell proteins, arylsulfatase-15 

like, and TraJ have been described as traditional virulence-associated factors involved in 16 

different stages of meningitis6–9. Some of these genes are usually located in clusters 17 

classified as “ectochromosomal DNA” (ECDNA)10, which can be horizontally 18 

transferred and hence, may be easily spread.  19 

The equilibrium between host defenses and the pathogenicity of the bacteria in terms of 20 

virulence and resistance determine the extent of bacterial infection and the outcome of 21 

the disease1. Prematurity, and consequently, low birth weight are risk factors for the 22 

development of septicemia and meningitis in neonates11, allowing these infections to be 23 

caused by “low-virulent” bacteria1. Neonatal intensive care units (NICUs) are sites in 24 

Manuscript-revised
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which infants are more prone to acquire nosocomial infections and are a focus of  25 

outbreaks, including diarrhea12 or meningitis13,14. For all these reasons, the identification 26 

of these pathogens is a challenge, especially if they present multi-drug resistance 27 

leading to a therapeutic failure. 28 

The aim of this study was to characterize an outbreak of neonatal sepsis occurring in the 29 

NICU at the Hospital Clinic of Barcelona from April to August 2013. 30 

MATERIALS AND METHODS 31 

Microbiologic examination 32 

Cerebrospinal fluid, urine and blood samples from the neonates involved in the outbreak 33 

were taken for microbiologic examination. In addition, 8 stool samples from health care 34 

workers (HCWs) and 29 from neonates admitted from April to October 2013 were 35 

included to evaluate the dissemination in the NICU and to find the possible cause of the 36 

outbreak. Stool samples were inoculated on MacConkey agar and incubated at 37ºC 37 

overnight. Suspected colonies were confirmed by MALDI-TOF. All E. coli isolates 38 

were tested for K1 antigen by the agglutination assay using a latex KIT (PASTOREX 39 

Meningitis Kit, Bio-Rad). The isolates that were positive were confirmed using specific 40 

primers for neu-PCR, which amplify the neuraminidase locus identified as a specific K1 41 

target15. Furthermore, the same PCR was performed in 42 E. coli isolates from pharynx 42 

and otic smears, blood cultures and one urine culture positive from neonates 43 

hospitalized from January 2011 to April 2013. 44 

Analysis of chromosomal DNA by Pulse-Field Gel Electrophoresis (PFGE) 45 

Bacterial suspensions were prepared and embedded in agarose following a previous 46 

protocol with slight modifications16. PFGE of the strains was performed using XbaI as 47 
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the restriction enzyme. One % agarose gel was run on a CHEF-Mapper contour-48 

clamped homogenous electric field apparatus for 20 h at 200 V (initial switch time 5 s, 49 

final switch time 35 s). The cluster analysis was performed with InfoQuest-FP software 50 

using the Dice similarity coefficient and dendrogram type UPGMA (unweighted-pair 51 

group method with arithmetic mean using average linkages) (optimization 0.50%, 52 

position tolerance 1.50%). A value of more than 95% of band similarity was considered 53 

as the same clone. 54 

Strains 55 

The strains selected to perform the different assays were the strain N38 belonging to the 56 

outbreak and other four K1-positive E. coli strains collected during the same period: 57 

N36 and N39, which were collected from healthy colonized neonates; N40, which 58 

caused an infection in a mother leading a fetal death; and N49, which was collected 59 

from a neonate suffering late-onset sepsis.  60 

Multilocus sequence typing (MLST)  61 

This study used the MLST scheme for E. coli developed by Wirth et al.17. Allele 62 

sequences were analyzed with a database available online 63 

(http://mlst.warwick.ac.uk/mlst/dbs/Ecoli). 64 

Phylogenetic analysis 65 

The new phylo-typing method by Clermont at al.18 with several modifications19 was 66 

used to assign the E. coli isolates to the eight phylogroups (B2, D, B1, A, E, Non-67 

typeable, F, C, and E clade 1).  68 

“In vivo” killing assay with Caenorhabditis elegans 69 
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Killing assays were performed in C. elegans according to a previously described 70 

model20 but using Luria Broth (LB) instead of brain heart infusion medium. Each strain 71 

was repeated more than 5 times using E. coli OP50 as the internal control. Lethal Time 72 

50% (LT50) is the number of days required to kill 50% of the nematode population.  73 

Mass spectrometric sequencing of protein silver-stained polyacrylamide gels  74 

The total proteome of N36 and N38 was analyzed using 2D gel electrophoresis followed 75 

by mass spectrometric identification as previously described by Párraga et al.21. 76 

RNA sequencing 77 

RNA extraction was performed as described elsewhere22. rRNA depletion was done 78 

with the Ribo-ZeroTM Magnetic Kit for Gram-negative bacteria. The TruSeq Stranded 79 

mRNA Sample Prep Kit protocol was followed according manufacturer’s instructions. 80 

Libraries were validated by qPCR with Kapa Paired end and 75 nt read length libraries 81 

were sequenced on an Illumina Miseq resulting in a total output of 38 million reads. An 82 

average Phred quality score of 37 was obtained for the average of 3.1 million reads per 83 

sample. Reads were mapped onto the reference genome (E. coli O7:K1 str. CE10, 84 

complete genome (NC_017646) and its associated plasmids, E.coli O7:K1 str. CE10 85 

plasmid pCE10A (NC_017647), pCE10B (NC_017648), pCE10C (NC_017649) and 86 

pCE10D(NC_017650)) using the EDGEpro software23. Resulting count datasets were 87 

exported to DESeq224, where they were normalized and pair-wise differential 88 

expression was carried out. Genes below p 0.05 were considered significant and used 89 

for Gene Ontology and Pathway analysis conducted by David25. 90 

Real-Time PCR experiments 91 
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RNA extraction was performed as mentioned above in RNA sequencing, and the Real-92 

time PCR reactions were carried out following the same protocol22. For the RT-PCR, 93 

500 ng of each RNA sample was used to make the reverse transcription, and the cDNA 94 

template was diluted 1/5. On one hand, the genes selected were those overexpressed in 95 

N38 compared to N36 by RNA-seq. These genes included: rfaI, rfaL, rfaP, rfaY, waaT, 96 

waaV, waaW (all involved in lipopolysaccharide biosynthesis of E. coli), papI1 97 

(encoding the pyelonephritis adhesin pili operon regulatory protein PapI) and, fliD and 98 

fliC (involved in flagellar assembly). On the other hand, other genes were considered 99 

relevant because of the functions of their products. These genes were: neuC (encoding 100 

the polysialic acid biosynthesis of the K1 capsule), kpsC and kpsD (encoding capsule 101 

polysaccharide transport proteins), fimD (encoding a type-1 fimbria), ompA (encoding 102 

an outer membrane protein), and aslB, ibeB, ibeC (encoding virulence factors associated 103 

with meningitis). 16S rRNA was used as the endogenous control. Primers to amplify 104 

these genes were the same as those used in previous studies or designed by Primer 105 

Express® software (see Table, Supplemental Digital Content 1). The optimal 106 

concentration of the primers was from 2 to 9 µM after several assays. Amplification was 107 

performed using a StepOne™ Real-Time PCR System using the Sybr Premix Ex Taq 108 

”Tli RNaseH Plus” kit and the Universal Thermal Cycling conditions: 2 min at 50ºC, 10 109 

min at 95ºC followed by 40 cycles of 95 ºC for 15 s and 60 ºC for 1 min. Data were 110 

analyzed with StepOne software v2.0, and the relative expression level for each sample 111 

(2-∆∆CT) was obtained. 112 

Detection of virulence factor genes (VFGs)  113 

The virulence profile was analyzed by PCR using gene-specific primers (see Table, 114 

Supplemental Digital Content 2) as described elsewhere26. Twenty-three genes were 115 

studied: hemolysin (hlyA), cytotoxic necrotizing factor (cnf1), autotransporter toxin 116 
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(sat1), P-fimbriae (papA, -EF, -C), type-1 fimbriae (fimH), type 1-C fimbria (focG), S-117 

fimbriae (sfa/foc and sfaS), yersiniabactin (fyuA), siderophores (iutA and iroN), 118 

aerobactin (iucC), invasion of brain endothelium factors (ibeA and ibeC), two genes 119 

involved in meningitis (aslA and traJ) and heat-resistant agglutinin (hra). Additionally, 120 

a PCR was performed to detect the PAI IIJ96-like domain. 121 

Adherence and invasion assays in human brain microvascular endothelial cells 122 

(HBMEC) 123 

A HMBEC line was grown in endothelial cell medium, supplemented with 5% of fetal 124 

bovine serum (FBS), 1% of endothelial cell growth factors and 1/100 dilution of 125 

penicillin/streptomycin solution (10000 units-10 mg/mL). HMBEC were seeded onto 126 

24-well tissue culture plates at a density of 2.5 x105 cells. Bacterial cultures incubated 127 

overnight in LB at 37º without shaking were used to infect each plate at a multiplicity of 128 

infection of approximately 100. Adherence and invasion assays were performed 129 

following a previously described protocol27. The only modification was the use of 130 

gentamicin (100 mg/mL) or kanamycin (50 mg/ml) for the invasion assay depending on 131 

the strain’s antimicrobial susceptibility. All experiments were run in duplicate on at 132 

least three different days. 133 

Serotyping 134 

Serotyping was performed in the Federal Institute for Risk Assessment (BfR) at the 135 

National Reference Laboratory for E. coli in Berlin, Germany. The Orksov28 [28] and 136 

Ewing29 protocols were used. 137 

Antibiotic susceptibility testing 138 

Minimal inhibitory concentrations were determined using E-test strips on Müeller-139 

Hinton agar plates inoculated with 0.5 MacFarland densities. Susceptibility was tested 140 
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for the following antimicrobial agents: ampicillin (AMP), amoxicillin-clavulanic acid 141 

(AMC), piperacillin-tazobactam (TZP), cefotaxime (CTX), meropenem (MEM), 142 

tetracycline (TET), trimethoprim-sulfamethoxazole (SXT), gentamicin (GEN), 143 

amikacin (AK), kanamycin (KAN), nalidixic acid (NA), ciprofloxacin (CIP), and 144 

fosfomycin (FOF). The ATCC 25922 strain was used as a standard control and results 145 

were analyzed according to the 2014 CLSI guidelines30.  146 

Biofilm assay  147 

Biofilm formation was detected using a previous protocol described by Merrit et al.31. 148 

The result was considered positive when absorbance was greater than 4-fold the value 149 

of the absorbance of the negative control. 150 

RESULTS 151 

Outbreak description 152 

The index case was a 7-day-old female neonate with a gestational age and birth weight 153 

of 29.2 weeks and 1,000 g, respectively. The neonate presented LONS the 13th of April 154 

2013, in addition to meningitis and intraventricular hemorrhage (IVH)-Grade II (Table 155 

1). Five more cases were detected thereafter. All were preterm neonates: one had late 156 

septicemia from a urinary focus, and 4 presented late onset septicemia and meningitis 157 

with severe neurological sequelae leading to death in three. The gestational age and 158 

birth weight of the neonates ranged from 25.2 to 29.2 weeks and from 750 to 1,000 g, 159 

respectively. The neonates also had other pathologies such as different grades of hyaline 160 

membrane disease, necrotizing enterocolitis and central nervous system hemorrhage. 161 

Due to AMP and GEN resistance, the treatment was CTX, CTX + AK, MEM + CIP or 162 
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MEM + AK according to the case. The length of the outbreak was 5 months, from April 163 

to August 2013 (Table 2). 164 

Characterization of the strain causing the outbreak  165 

An E. coli O18:K1:H7 strain was the cause of the outbreak. In epidemiological terms, 166 

the sequence type of the outbreak strain was ST95 (ST95 complex) and it belonged to 167 

phylogroup B2. In addition, this strain carried the PAI IIJ96-like (containing the hlyA, 168 

cnf1 and hra genes) and the PAI III536-like (containing the sfa/foc and iroN genes) 169 

domains. As for antimicrobial resistance, this strain showed full resistance to ampicillin, 170 

amoxicillin-clavulanic acid, tetracycline, and fosfomycin, and intermediate resistance to 171 

gentamicin.  172 

Comparative study with other K1-positive E. coli counterparts  173 

One (12.5%) and 5 (17.2%) isolates were found to be K1 antigen positive among 8 and 174 

29 E. coli isolates from the HCWs and neonates hospitalized during the study period, 175 

respectively. The prevalence of this antigen was 23.8% (10/42) among the neonates 176 

hospitalized from January 2011 to October 2013. PFGE was performed in all K1-177 

positive E. coli isolates resulting in 2 well differentiated clusters and 7 E. coli isolates 178 

were considered to be from the same clone due to 98.58% of band profile similarity. Six 179 

isolates were recovered from the symptomatic neonates belonging to the outbreak, while 180 

one was from an asymptomatic neonate who was hospitalized in the NICU at the time 181 

of the outbreak (Figure 1). All the E. coli isolates causing the outbreak belonged to 182 

phylogroup B2 as did most of the other strains analyzed. Only 2 strains belonged to the 183 

F phylogenetic group. 184 
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Besides the strain recovered from the outbreak case (N38), another K1-positive strain 185 

isolated from a healthy colonized neonate during the same period (N36) was tested in 186 

the C. elegans infection assay (see Figure, Supplemental Digital Content 3). Both 187 

clinical isolates showed a significant difference (p-value<0.0001) in virulence regarding 188 

the mean of survival compared with the avirulent E. coli OP50 control strain. The LT50 189 

was five versus eight days. However, no significant differences were found between 190 

N36 and N38. Neither was any significant differences found in the sequencing of 191 

proteins. 192 

RNA-seq analysis was performed in order to investigate the differences in gene 193 

expression profiles between strains N36 and N38. One hundred eight genes were 194 

differentially expressed between the strains (see Table, Supplemental Digital Content 4 195 

for a complete list of these genes), with the expression levels of 68 genes being more 196 

than three-fold higher in strain N38 than its counterpart N36, specifically, in relevant 197 

genes related to lipopolysaccharide biosynthesis, virulence and flagellar assembly 198 

(Table 3). In addition to the previous strains (N36 and N38), 3 more K1-positive strains 199 

(N39, N40 and N49) collected during the same period (April to October 2013) were 200 

selected to confirm the expression of several genes (Table 4). In this case, only 3 genes 201 

were overexpressed in the outbreak strain compared to the others: 2 genes associated 202 

with lipopolysaccharide biosynthesis (rfaI and rfaL) and the papI1 gene which encodes 203 

for a regulator protein of the pap operon, showing significant overexpression.  204 

Regarding the VFGs, the outbreak strain carried S-fimbriae (sfa/foc and sfaS) and the 205 

PAI IIJ96-like domain that were not present in the other K1 strains (Table 5). 206 

Strains N38 and 40 showed a higher capacity of adhesion than the other strains (Figure 207 

2A) whereas strain N39 was the most invasive of the HBMECs (Figure 2B). 208 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



14 

 

All the isolates belonging to the outbreak showed multi-drug resistance having identical 209 

susceptibility patterns as those mentioned above (see Table, Supplemental Digital 210 

Content 5). Other strains also showed resistance to other antimicrobial agents. All the 211 

strains studied, including that causing the outbreak, had the ability to form “in vitro” 212 

biofilm. 213 

E. coli O18:H7 strains were recovered from the outbreak cases, whereas the other four 214 

strains (N36, N39, N40 and N49) were Or:H4 (Or means “rough” lipopolysaccharide), 215 

O2:H6, O75:[H5] ([Hxx] refers to H antigens listed by E&E in brackets), and O2:[H4], 216 

respectively.  217 

DISCUSSION 218 

This was the first outbreak of neonatal sepsis and meningitis at the NICU of the 219 

Hospital Clinic in Barcelona. An E. coli O18:K1:H7 sequence type 95 and phylogenetic 220 

group B2 strain was the cause of the outbreak involving six preterm neonates, one with 221 

late septicemia from a urinary focus and five with late septicemia and meningitis 222 

leading to death in three of them. All E. coli isolates from the outbreak were shown to 223 

belong to a single clone, suggesting a common source of infection.  224 

The prevalence of K1 antigen positivity among the E. coli isolates collected from the 225 

HCWs and neonates hospitalized at the Maternity was lower than that found among 226 

previously hospitalized neonates, a similar finding to what Sarff et al.32 described in a 227 

study carried out among healthy individuals but very low compared with another study 228 

performed in France33. 229 

The reason why the K1 capsule and only a few O-lipopolysaccharide antigens are 230 

associated with E. coli meningitis is still unclear, but their resistance properties allow 231 

these microorganisms to produce high-grade bacteraemia9. The outbreak strain belonged 232 
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to the serotype O18:K1:H7, which is one of the strains most frequently found among 233 

NMEC strains4,34. In addition, none of the serogroups from the other strains analyzed 234 

has been previously reported among E. coli causing neonatal meningitis. All the isolates 235 

belonged to phylogroups B2 and F, considered the most virulent among ExPEC isolates. 236 

Indeed, phylogroup B2 is commonly the most representative among NMEC 237 

isolates2,35,36. Likewise, ST95 is also frequent among ExPEC isolates and in particular 238 

those that cause neonatal meningitis37,38.  239 

Regarding the prevalence of VFGs by Real-Time PCR, the papI1 gene was 240 

overexpressed in the outbreak strain compared to the other genes. This is a 241 

transcriptional regulatory factor of the pap operon required in the P-fimbriae phase 242 

variation, a switch between the expression (Phase-ON) and the loss of expression 243 

(Phase-OFF) of these fimbriae. This is a regulatory complex that allows the cells to 244 

phenotypically change in response to environmental factors or other signals and 245 

represents an advantage for survival in hostile environments39. All the isolates including 246 

those belonging to the outbreak showed the genes encoding iron acquisition systems 247 

(fyuA, iutA, iroN, and iucC) which are necessary in iron-limited environments and 248 

relevant in septicemia and other extraintestinal infections11,40,41. In particular, the fyuA 249 

gene was present in all 11 representative NMEC strains used in a study performed by 250 

Yao et al.36. In contrast to the other strains, E. coli strains belonging to the outbreak 251 

carried the PAI IIJ96-like (hlyA, cnf1 and hra genes positive)42 and the PAI III536-like 252 

(sfa/foc and iroN genes positive) domains43. These ECDNA-like domains, along with 253 

the possession of the ibeA gene, are very frequent among O18:K1 strains4 and are 254 

involved in the virulence of NMEC isolates but do not explain the whole pathogenesis 255 

of meningitis35. The PAI IC5, which is similar to the PAI IIJ96, and is harboured by strain 256 

C5, has been directly associated with bacterial survival in blood inducing high 257 
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bacteraemia but not with the passage of the bacteria across the blood-brain barrier44. As 258 

opposed to their counterparts, the outbreak strain possessed the hra gene, the presence 259 

of which is 91% homologous in uropathogenic E. coli strains compared to NMEC C5 260 

and RS218 strains45. Moreover, it is suspected that these two strains have developed an 261 

extraintestinal virulence specialization, such as uropathogenicity and meningitis, which 262 

has been helped by the genetic background of the clonal group O18:K135. There is 263 

controversy about the role of S fimbriae and Cnf1 in HMBEC binding or/and 264 

invasion9,44,46. These VFGs may have contributed to the higher ability of adhesion of the 265 

outbreak strain shown compared with their counterparts and other E. coli strains in other 266 

studies37,47. The only exception was strain N40, which caused infection in a mother 267 

leading to fetal death and showed the highest attachment of HMBEC. Strain N39 268 

showed the highest capacity to invade HMBEC, whereas strain N38 displayed the 269 

outstanding lowest frequency, which was very similar to that shown by the negative 270 

control E. coli K-12 HB101 in several assays37,48.  271 

Multi-drug resistance is a problem for the administration of adequate treatment. The 272 

outbreak strain showed full resistance to ampicillin and intermediate to gentamicin, with 273 

these antibiotics being the 1st line combination used to combat neonatal sepsis and 274 

meningitis. This results support that a change on the empiric regimen is needed in 275 

developed countries. Thus, cefotaxime could be used instead gentamicin due to the low 276 

percentages of resistance found among E. coli strains causing neonatal sepsis. In 277 

addition, all the strains were biofilm-producers, a feature which makes the pathogen 278 

more resistant and virulent49, especially when medical devices are used and may 279 

facilitate the transmission of colonizing microorganisms.  280 
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One three-month-old neonate developed urinary tract infection and septicemia but not 281 

meningitis. Age has been reported to be related to the achievement of the threshold level 282 

of bacteraemia required for the development of meningitis, but not for HMBEC binding 283 

and/or invasion50. At the time of the development of sepsis this neonate did not have a 284 

low weight and therefore likely presented a stronger immune system than the other 285 

neonates. Hence, a high bacterial inoculation might have been required to reach the 286 

necessary level of bacteraemia to develop meningitis. Features such as multi-drug 287 

resistance, capacity of biofilm-production, virulence-associated factors (PAI IIJ96-like 288 

and PAI III536-like domains), and pertinence to the O18:K1:H7 serotype, sequence type 289 

95, and phylogroup B2, may have been key factors for the strain to cause the outbreak. 290 

Nonetheless, the status of the immune system of the neonates and the lack of host 291 

defenses undoubtedly played a major role in the outcome of the disease. 292 

The method of transmission remained unclear, although mothers, HCWs and, even 293 

other neonates, as in the present case, are potential reservoirs and routes of entry of 294 

pathogenic organisms associated with nosocomial infections in NICUs.  295 
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Figure legends 445 

Figure 1. Characterization of the strains causing the outbreak and the K1-positive E. 446 

coli counterparts used in this study. Abbreviation: ND, not determined. Bold letters 447 

represent the strains belonging to the outbreak. 448 

Figure 2. Adhesion (A) and invasion (B) assays of E. coli isolates to HBMECs. The 449 

displayed data are the mean ± standard deviation of adhesion and invasion %, 450 

respectively, of at least three independent experiments by duplicate. The strain N38 451 

belonged to the outbreak, whereas N36, N39, N40 and N49 are non-outbreak strains. 452 

Supplementary figure legend 453 

Supplementary Figure 1. C. elegans infection assay of strains N36 (non-outbreak) vs. 454 

N38 (outbreak strain).455 
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Number 

of strain 

Date of 

sepsis 

(day/month) 

Sex 

Gestational 

age (weeks) 

Birth 

Weight (g) 

Age a 

(days) 

Diagnosis Other pathologies Evolution Treatment 

N35 13/04/2013 Female 29.2 1,000 7 b 

Late sepsis   & 

meningitis  

IVHd-Grade II Meningitis and death CTX + AK 

N38 03/05/2013 Female 28 750 12 b 

Late sepsis   & 

meningitis 

Hyaline membrane 

disease+ IVH-Grade II 

Meningitis, 

hydrocephalus and death 

CTX + MEM 

MEM + AK 

N41 31/05/2013 Male 28.2 710 105 

Late sepsis 

& UTI b 

Hyaline membrane disease 

+ Inguinal hernia 

Good evolution CTX 

N43 09/07/2013 Female 25.2 776 96 

Late sepsis   & 

meningitis 

Hyaline membrane 

disease+ IVH-Grade III + 

Necrotizing enterocolitis 

Hydrocephalus MEM + CIP 

N47 08/08/2013 Male 26.3 900 11b 

Late sepsis   & 

meningitis 

Hyaline membrane disease 

+ central nervous system 

hemorrhage 

Meningitis and death MEM + CIP 

N48 15/08/2013 Female 27.3 870 23 Late sepsis   & Hyaline membrane disease Hydrocephalus MEM + CIP 

Table 1



a Age when the neonate developed sepsis 

b Patient died 

Abbreviations: UTI, Urinary Tract Infection; IVH, Intraventricular hemorrhage; CTX, Cefotaxime; AK, Amikacin; MEM, Meropenem; CIP, 

Ciprofloxacin. 

Table 1. Characteristics of the neonates belonging to the outbreak. 

meningitis 



Grey color, length of stay at the hospital. Dark grey color, date of sepsis. 

aDate of admission to the NICU in the Hospital Clinic, Barcelona 

bPatient died 

cDate of discharge  

Abbreviations: F, February; M, March; A, April; My, May; J, June; JL, July; AG, August; S, September. 

Table 2. Temporal distribution of the cases belonging to the outbreak. 

 

 

  Month (Year 2013) 

Case 

Date of 

birth 

(day/ 

month) 

F M A My J JL AG S 

N35 7/4   7/4 a 13/4 29/4b   

N38 21/4  21/4a 3/5 22/5 b   

N41 15/2  15/2 a  22/4c  30/5 a 31/5 11/6c  

N43 4/4   4/4 a    9/7  26/8c  

N47 28/7  28/7a 8/8  4/9b 

N48 22/7  22/7a 15/8 27/9c 

Table 2



Table 3. Transcriptional values of representative genes overexpressed in N38 (outbreak 

strain) comparing to N36 (non-outbreak strain). Fold change indicates the ratio between 

the levels of expression in N38 and N36.  Only statistically significant results (p < 0.05) 

are shown. 

Locus tag Gene Description 

Fold change 

(N38/N36) 

LIPOPOLYSACCHARIDE BIOSYNTHESIS 

CE10_4186 

 

rfaI 

 

UDP-glucose:(Glucosyl) LPS alpha1. 3-

glucosyltransferase 

266.39 

 

CE10_4181 

 

rfaL 

 

O-antigen ligase 

 

156.4 

 

CE10_4187 

 

rfaP kinase that phosphorylates core heptose of 

lipopolysaccharide 

5.28 

 

CE10_4184 

 

rfaY 

 

lipopolysaccharide core biosynthesis protein 

 

195.615 

 

CE10_4185 

 

waaT 

 

UDP-galactose:(Glucosyl) LPS alpha1. 2-

galactosyltransferase 

143.05 

 

CE10_4182 

 

waaV 

 

putative beta1.3-glucosyltransferase 

 

59.46 

 

CE10_4183 

 

waaW 

 

UDP-galactose:(Galactosyl) LPS alpha1. 2-

galactosyltransferase 

216.03 

 

VIRULENCE 

CE10_3431 

 

papI1 

 

pap operon regulatory protein PapI 

 

46.80 

 

FLAGELLAR ASSEMBLY 

CE10_2209 

 

fliD 

 

flagellar filament capping protein 

 

23.96 

 

CE10_2208 

 

fliC 

 

flagellar filament structural protein (flagellin) 

 

5.40 

 

Table 3



Table 4. Fold change of gene expression of N36, N39, N40, and N49 (all non-outbreak 

strains) versus the outbreak strain N38. NE, not expressed. 

Gene Description/function N36 N39 N40 N49 

neuC UDP-N-acetylglucosamine 2-epimerase -1.462 -1.008 1.31 2.463 

kpsC capsule polysaccharide export protein 1.717 5.198 22.297 18.879 

kpsD polysialic acid transport protein 1.103 -8.684* -1.162 -5.858* 

fimD Type-1 fimbria 3.3112* 6.561* -1.3 3.971* 

ompA Outer membrane protein A 1.001 1.652 1.791 9.247** 

aslB VFG associated with meningitis -2.239 2.172 -1.187 4.867 

ibeB VFG associated  with meningitis 2.043 15.144 2.614 5.255 

ibeC VFG associated  with meningitis 4.238** 1.457 3.866* 2.027 

papI1  Pap operon regulatory protein PapI NE** NE** -8.471* NE** 

rfaI UDP-glucose:(Glucosyl) LPS alpha1, 3-

glucosyltransferase 

NE** -4.879 -36.744** -4.568 

rfaL O-antigen ligase NE** -1.092 -4.794** -2.16 

rfaP kinase that phosphorylates core heptose of 

lipopolysaccharide 

-1.338 1.5 -1.187 1.079 

rfaY lipopolysaccharide core biosynthesis 

protein 

NE** 180.403** 47.001** 62.175** 

waaT UDP-galactose:(Glucosyl) LPS alpha1, 2-

galactosyltransferase 

NE 2.46 -1.695 2.031 

waaV putative beta1,3-glucosyltransferase NE** 168.868** 74.456** 136.712** 

waaW UDP-galactose:(Galactosyl) LPS alpha1, 2-

galactosyltransferase 

NE** 156.637** 85.067** 160.839** 

fliD flagellar filament capping protein NE* 108.737 NE NE 

fliC flagellar filament structural protein 

(flagellin) 

NE* 3.764 NE** NE 

Table 4



Bold letters represent genes for which the expression is higher in N38 than in all the 

other strains. 

*p-value<0.05 

**p-value<0.01 

 

 

 



*Bold letter represent the genes present in N38 but absent in the other strains. 

Table 5. Prevalence of virulence factor genes (VFGs) among N38 (outbreak strain) and 

N36, N39, N40 and, N49 (non-outbreak strains). 

Gene Description/function N36 N38 N39 N40 N49 

Toxins 

hlyA hemolysin - + + - - 

cnf1* cytotoxic necrotizing factor - + - - - 

sat1 autotransporter toxin - - - + - 

P- fimbriae 

papA  - - - - + 

papEF  - - - - + 

papC  - - + - - 

Type-1 fimbriae 

fimH  + + + + + 

Type 1-C fimbria 

focG  - - - - - 

S-fimbriae 

sfa/foc*  - + - - - 

sfaS*  - + - - - 

Iron uptake systems 

fyuA yersiniabactin + + + + + 

iutA siderophore + + + + + 

iroN siderophore + + + + + 

iucC aerobactin + + + + + 

Other VFGs associated with virulence 

ibeA  invasion of brain endothelium factor + + + - - 

ibeC invasion of brain endothelium factor + + + + + 

aslA arylsulfatase-like - - + + + 

traJ VFG involved in meningitis + - + + + 

hra* heat-resistant agglutinin - + - - - 

Table 5



Figure 1 Click here to download Figure Figure_1.tif 
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Figure 2 Click here to download Figure Figure_2.tif 
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Supplemental Digital Content 1. Table. Primers used in Real-Time PCR experiments. 

Gene Primer sequence (5´-3´) (F/R) 

neuC AGGCAGAAAGGCCGTGTTC/CCCTCTGACGATTGCATTTTTT 

kpsC GCCGGAAATACAGCTCTGATAAG/TCCCCGGTCACGATGGT 

kpsD GCGAATGCAGGAAGCACAA/CCACGGTGCGTGCTTTC 

fimD CGCGCGTTGGGATAAAACT/CAAACGGCAGCGGCTTA 

ompA CAGGAGTGATCGCATACTCAACA/ACGACACCGGCGTTTCTC 

aslB CGCCTGGCTGATGAAACG/ATATCGCCGGGAGCATGTAG 

ibeB GTTAAATTACCGGCGGGCTT/GGTCAGGCTGATAGACGGGAA 

ibeC CCAGCGTGGACGCATGA/AGCTCCGGCGTGGTTTC 

rfaI CTGGGCCGGTTATCCAAGT/TCCAGGGCGATGCTTCTTT 

rfaL CAGCTTCCCACGCTACAACA/TTGATGCCAGTAAAGAAGGGAAA 

rfaP ATGCTGCGGGCATTAACC/GCAAGTGCAGCAGGAAATGA 

rfaY ACGGCAGAGCGGAAAGC/CAATACCCAGGTGACGTTCCA 

waaT AAACGCCCCAGAGCTAAATGT/CGCCAGCACCATACAAAAAA 

waaV TTGCGCACGAAAGAATCTACTC/TGAATTTCTTCTTTCCGGTTACCT 

waaW GACGAATTATCCCTGCCAGAAG/GCCACATCATTCCAGCAAGA 

papI_1 GGAGGGAAAACCGCAGAAA/CGTGCCTGATAATCCGTTACC 

fliD TGCCAGCGGCGTAGGT/GGTTGTGATGCCGGTTTTTT 

fliK GCGATGCTGCACAAGATTTTC/GTTGTCTCGCCTGCTAATGCT 

fliC CCATCGACAAATTCCGTTCA/CGCAGAATCCAGACGGTTCT 

Supplemental Digital Content (Including Separate Legend) Click here to download Supplemental Digital Content
(Including Separate Legend) Supplemental Digital

http://www.editorialmanager.com/pidj/download.aspx?id=515398&guid=a8539a7b-eb9b-4537-a11a-1d7962d50d3e&scheme=1
http://www.editorialmanager.com/pidj/download.aspx?id=515398&guid=a8539a7b-eb9b-4537-a11a-1d7962d50d3e&scheme=1


Supplemental Digital Content 2. Table. Primers used to detect the virulence factor 

genes (VFGs) and PAI IIJ96-like domain. 

Gene Primer sequence (5´-3´) (F/R) Reference 

hlyA AACAAGGATAAGCACTGTTCTGGCT/ACCATATA

AGCGGTCATTCCCGTCA 

(1) 

cnf1 AAGATGGAGTTTCCTATGCAGGAG/CATTCAGAG

TCCTGCCCTCATTATT 

(1) 

sat1 ACTGGCGGACTCATGCTGT/AACCCTGTAAGAAG

ACTGAGC 

(1) 

papA ATGGCAGTGGTGTCTTTTGGTG/CGTCCCACCATA

CGTGCTCTTC 

(1) 

papEF GCAACAGCAACGCTGGTTGCATCAT/AGAGAGAG

CCACTCTTATACGGACA 

(1) 

papC GACGGCTGTACTGCAGGGTGTGGCG/ATATCCTT

TCTGCAGGGATGCAATA 

(1) 

fimH CAGCGATGATTTCCAGTTTGTGTG/TGCGTACCAG

CATTAGCAATGTCC 

(2) 

focG CAGCACAGGCAGTGGATACGA/GAATGTCGCCTG

CCCATTGCT 

(1) 

sfa/foc CTCCGGAGAACTGGGTGCATCTTAC/ 

CGGAGGAGTAATTACAAACCTGGCA 

(3) 

sfaS AGAGAGAGCCACTCTTATACGGACA/CCGCCAGC

ATTCCCTGTATTC 

(1) 

hra CAGAAAACAACCGGTATCAG/ACCAAGCATGATG

TCATGAC 

(1) 
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fyuA TGATTAACCCCGCGACGGGAA/CGCAGTAGGCAC

GATGTTGTA 
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iutA GGCTGGACATCATGGGAACTGG/CGTCGGGAACG
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Supplemental Digital Content 3. Figure. Caenorhabditis elegans infection assay of 

strains N36 (non-outbreak) vs. N38 (outbreak strain). 



 

Supplemental Digital Content 4. Table. Transcriptional values of representative genes 

differentially expressed in the outbreak strain N38 comparing to the non-outbreak strain 

N36. Fold change indicates the ratio between the levels of expression in N38 and N36.  

Only statistically significant results (p < 0.05) are shown. 



Locus tag Gene Description 

Fold 

change 

(N38/N36) 

CE10_4186 rfaI UDP-glucose:(Glucosyl) LPS alpha1, 3-

glucosyltransferase 

266.39 

CE10_1685 yddB putative porin protein 194.92 

CE10_4183 waaW UDP-galactose:(Galactosyl) LPS alpha1, 2-

galactosyltransferase 

216.03 

CE10_3421 papX HTH-type transcriptional regulator 184.27 

CE10_4184 rfaY lipopolysaccharide core biosynthesis protein 195.61 

CE10_1687 yddA ABC transporter ATP-binding protein 156.87 

CE10_3206 mazF mRNA interferase toxin, antitoxin is MazE 134.06 

CE10_4181 rfaL O-antigen ligase 156.40 

CE10_2290 ibrA immunoglobulin-binding regulator A 100.25 

CE10_4185 waaT UDP-galactose:(Glucosyl) LPS alpha1, 2-

galactosyltransferase 

143.05 

CE10_4203 dinD DNA-damage-inducible protein 86.38 

CE10_3207 mazE antitoxin of the ChpA-ChpR toxin-antitoxin 

system 

58.53 

CE10_4611 tsx2 nucleoside-specific channel-forming protein 

Tsx 

67.25 

CE10_1043 essD2 DLP12 prophage phage lysis protein 56.86 

CE10_1762 celA 6-phospho-beta-glucosidase 49.48 

CE10_4182 waaV putative beta1,3-glucosyltransferase 59.46 

CE10_3431 papI1 pap operon regulatory protein PapI 46.80 



CE10_1496 yciE putative rubrerythrin/ferritin-like metal-binding 

protein 

48.93 

CE10_1684 pqqL putative peptidase 14.08 

CE10_5142 quuQ Qin prophage antitermination protein Q 28.62 

CE10_2292 yaiP2 putative glucosyltransferase 26.38 

CE10_2209 fliD flagellar filament capping protein 23.96 

CE10_1858 ynfF S- and N-oxide reductase, A subunit, 

periplasmic 

23.14 

CE10_4830 eptA putative metal dependent hydrolase 8.59 

CE10_1608 ynbB putative CDP-diglyceride synthase 20.92 

CE10_0326 yaiO1 outer membrane protein 19.33 

CE10_1610 ynbD putative phosphatase inner membrane protein 18.12 

CE10_1857 ynfE putative selenate reductase, periplasmic 17.49 

CE10_2055 ydjK putative transporter 9.27 

CE10_2293 yaiX2 putative nucleotidyl transferase 16.77 

CE10_1460 essD3 DLP12 prophage phage lysis protein 17.38 

CE10_1497 yciF YciF protein 15.58 

CE10_1726 tfaE e14 prophage tail fiber assembly protein 15.21 

CE10_2294 yaiO2 outer membrane protein 14.39 

CE10_1605 ydbC putative oxidoreductase, NAD(P)-binding 

protein 

12.83 

CE10_0327 yaiX1 putative transferase 13.65 

CE10_3139 ascB cryptic 6-phospho-beta-glucosidase 11.19 

CE10_1609 ynbC putative hydrolase 11.59 

CE10_2053 ydjI putative aldolase 6.07 



CE10_2054 ydjJ putative oxidoreductase, Zn-dependent and 

NAD(P)-binding protein 

7.20 

CE10_3180 cysI sulfite reductase, beta subunit, NAD(P)-

binding, heme-binding protein 

10.07 

CE10_4829 basR DNA-binding response regulator in two-

component regulatory system with BasS 

6.10 

CE10_2317 yeeT1 CP4-44 prophage protein 11.12 

CE10_1394 chaA calcium/sodium:proton antiporter 4.04 

CE10_2052 ydjH putative kinase 5.61 

CE10_1692 ydeP putative oxidoreductase 4.20 

CE10_4187 rfaP kinase that phosphorylates core heptose of 

lipopolysaccharide 

5.28 

CE10_3125 srlA PTS system glucitol/sorbitol-specific 

transporter subunit IIC 

6.98 

CE10_3128 srlD sorbitol-6-phosphate dehydrogenase 8.74 

CE10_2208 fliC flagellar filament structural protein (flagellin) 5.40 

CE10_2636 arnB uridine 5'-(beta-1-threo-pentapyranosyl-4-ulose 

diphosphate) aminotransferase, PLP-dependent 

4.85 

CE10_3936 gntT gluconate transporter, high-affinity GNT I 

system 

5.18 

CE10_1045 arrQ1 Qin prophage lysozyme 8.20 

CE10_0595 entB isochorismatase 5.92 

CE10_1693 ydeQ putative fimbrial-like adhesin protein 4.12 

CE10_4851 cadB putative lysine/cadaverine transporter 5.08 

CE10_4389 asnA asparagine synthetase A 3.53 



CE10_0917 lolA chaperone for lipoproteins 4.20 

CE10_2344 ugd UDP-glucose 6-dehydrogenase 5.46 

CE10_5067 uxuB D-mannonate oxidoreductase, NAD-binding 

protein 

4.92 

CE10_1694 ydeR putative fimbrial-like adhesin protein 3.17 

CE10_0143 htrE putative outer membrane usher protein 6.70 

CE10_1435 ompW outer membrane protein W 4.45 

CE10_2638 arnA fused UDP-L-Ara4N formyltransferase/UDP-

GlcA C-4'-decarboxylase 

3.68 

CE10_0328 yaiP1 putative glucosyltransferase 6.56 

CE10_4638 yijD inner membrane protein 3.11 

CE10_2343 cld regulator of length of O-antigen component of 

lipopolysaccharide chains 

4.55 

CE10_1607 ynbA inner membrane protein 6.40 

CE10_3199 scrR Sucrose operon repressor -491.15 

CE10_3662 yhaV toxin of the SohB(PrlF)-YhaV toxin-antitoxin 

system 

-292.77 

CE10_3201 ygcG hypothetical protein -213.97 

CE10_2355 rfbC dTDP-4-deoxyrhamnose-3,5-epimerase -151.44 

CE10_3198 scrB sucrose-6-phosphate hydrolase -78.95 

CE10_3197 scrA PTS system sucrose-specific transporter 

subunit IIBC 

-82.48 

CE10_3661 sohA antitoxin of the SohA(PrlF)-YhaV toxin-

antitoxin system 

-70.09 

CE10_3196 scrY sucrose porin -66.66 



CE10_4290 yicL hypothetical protein -58.63 

CE10_0280 yahA c-di-GMP-specific phosphodiesterase -30.90 

CE10_4540 yihO putative transporter -51.37 

CE10_4548 yihW putative DNA-binding transcriptional regulator -40.77 

CE10_1650 pptA 4-oxalocrotonate tautomerase -33.64 

CE10_4539 ompL outer membrane porin L -31.66 

CE10_4555 yiiF hypothetical protein -25.18 

CE10_3195 scrK aminoimidazole riboside kinase -24.33 

CE10_4542 yihQ alpha-glucosidase -22.06 

CE10_0154 fhuA ferrichrome outer membrane transporter -7.91 

CE10_3807 yhdZ putative amino-acid transporter subunit -9.18 

CE10_1709 yneE hypothetical protein -6.46 

CE10_4544 yihS aldose-ketose isomerase, D-mannose isomerase -10.77 

CE10_2274 yeeN hypothetical protein -8.39 

CE10_4078 bcsB regulator of cellulose synthase, cyclic di-GMP 

binding protein 

-6.72 

CE10_1581 abgT p-aminobenzoyl-glutamate transporter, 

membrane protein 

-6.35 

CE10_4563 frvR putative frv operon regulator, contains a PTS 

EIIA domain 

-9.65 

CE10_3805 yhdX putative amino-acid transporter subunit -6.39 

CE10_1098 efeO inactive ferrous ion transporter EfeUOB -4.71 

CE10_3178 iap aminopeptidase in alkaline phosphatase 

isozyme conversion 

-4.34 

CE10_0355 ykiA hypothetical protein -5.20 



CE10_1526 osmB lipoprotein -5.40 

CE10_3090 ygaC hypothetical protein -5.14 

CE10_0136 panB 3-methyl-2-oxobutanoate 

hydroxymethyltransferase 

-4.60 

CE10_2379 wza lipoprotein required for capsular 

polysaccharide translocation through the outer 

membrane 

-7.66 

CE10_3931 yhgA putative transposase -4.15 

CE10_0281 yahB putative DNA-binding transcriptional regulator -3.88 

CE10_2001 ydiY putative outer membrane protein, acid-

inducible 

-4.46 

CE10_0525 arrD1 DLP12 prophage lysozyme -5.63 

CE10_0133 yadD putative transposase -3.35 

CE10_2250 yedZ inner membrane heme subunit for periplasmic 

YedYZ reductase 

-3.76 

CE10_4079 bcsA cellulose synthase, catalytic subunit -4.58 



 

Supplemental Digital Content 5. Table. Minimum inhibitory concentrations (µg/ml) 

among N38 (outbreak strain) and N36, N39, N40 and, N49 (non-outbreak strains).  

Abbreviations: AMP, ampicillin; AMC, amoxicillin-clavulanic acid; TZP, piperacillin-

tazobactam; CTX, cefotaxime; MEM, meropenem; TET, tetracycline; SXT, 

trimethoprim-sulfamethoxazole; GEN,gentamicin; AK, amikacin; KAN, kanamycin; 

NA, nalidixic acid; CIP, ciprofloxacin, and FOF, fosfomycin. 

 

 

 Antimicrobial agents 

No. of 

Strain 

AMP AMC TZP CTX MEM TET SXT GEN AK KAN NA CIP FOF 

N36 3 8 1.5 0.5 0.012 2 1 0.5 1.5 2 3 0.012 0.50 

N38 >256 16 2 0.5 0.016 128 0.006 4 8 6 3 0.012 192 

N39 3 6 1 0.5 0.012 2 0.094 0.5 2 3 128 0.19 0.75 

N40 >256 8 1 0.5 0.012 64 >32 48 2 6 >256 >256 0.5 

N49 >256 12 1 0.38 0.006 >256 >32 0.5 2 1.5 3 0.006 1 


