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Abstract

Mathematical models in epidemiology are an indispensable tool to determine the dynamics

and important characteristics of infectious diseases. Apart from their scientific merit, these

models are often used to inform political decisions and interventional measures during an

ongoing outbreak. However, reliably inferring the epidemical dynamics by connecting com-

plex models to real data is still hard and requires either laborious manual parameter fitting or

expensive optimization methods which have to be repeated from scratch for every applica-

tion of a given model. In this work, we address this problem with a novel combination of epi-

demiological modeling with specialized neural networks. Our approach entails two

computational phases: In an initial training phase, a mathematical model describing the epi-

demic is used as a coach for a neural network, which acquires global knowledge about the

full range of possible disease dynamics. In the subsequent inference phase, the trained neu-

ral network processes the observed data of an actual outbreak and infers the parameters of

the model in order to realistically reproduce the observed dynamics and reliably predict

future progression. With its flexible framework, our simulation-based approach is applicable

to a variety of epidemiological models. Moreover, since our method is fully Bayesian, it is

designed to incorporate all available prior knowledge about plausible parameter values and

returns complete joint posterior distributions over these parameters. Application of our

method to the early Covid-19 outbreak phase in Germany demonstrates that we are able to

obtain reliable probabilistic estimates for important disease characteristics, such as genera-

tion time, fraction of undetected infections, likelihood of transmission before symptom

onset, and reporting delays using a very moderate amount of real-world observations.
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Author summary

Emerging infections and epidemic outbreaks are associated with large uncertainties con-

cerning data integrity that challenge the timely detection of disease characteristics and

dynamics. Robust parameter inference for mathematical models aiming to describe these

dynamics is essential to predict the progression of an epidemic and inform on appropriate

public health interventions. In this study, we present a novel method based on invertible

neural networks that allows inference of important epidemiological characteristics in case

of limited data, thereby allowing for reliable uncertainty quantification. The method cir-

cumvents common challenges associated with sparse data by using simulation-based

training of an expressive generative neural network. Applying our method to data of the

early Covid-19 epidemic in Germany, we are able to obtain reliable estimates on impor-

tant disease characteristics, such as the proportion of infected individuals remaining

undetected, despite limited observations during early outbreak dynamics.

This is a PLOS Computational BiologyMethods paper.

Introduction

Assessing important disease characteristics and transmission dynamics is of utmost impor-

tance in the case of new epidemic outbreaks in order to forecast their progression and guide

effective public health measurements. Mathematical models that provide a reliable representa-

tion of the processes driving the dynamics of an epidemic are an essential tool for this task (see

for example [1]). In the case of communicable diseases, these models typically take the form of

systems of ordinary differential equations governing the transitions between different popula-

tion compartments, such as, “Susceptible”, “Infected”, and “Recovered” (SIR) [1]. Provided

that intrinsic properties of the disease (e.g., transmission rates and recovery periods) are

already known, SIR models and their extensions are successfully used to simulate outcomes of

possible public health interventions.

However, for newly emerging infectious diseases, such as Covid-19, most of these proper-

ties are initially unknown and must be estimated before realistic predictions can be made. The

task of determining these properties is additionally hampered by limited data availability and

integrity within the early outbreak phase. During the initial outbreak of the Covid-19 pan-

demic, model-based inference was used to provide rapid estimates of key epidemiological

parameters, which otherwise can be difficult to infer directly from primary clinical tracing

data. For instance, an earlier study [2] incorporated domestic and international travel from

and to Wuhan city in a SEIR model and used reported cases outside of Wuhan to infer the

reproduction number R0 and epidemic doubling time. Similar approaches were used to esti-

mate the reproduction number of Covid-19 in various other settings [3–5]. Other studies

aimed at identifying critical epidemiological characteristics, such as age-specific mortality

rates [6], the impact of implemented control measures on disease transmission [7, 8], or the

fraction of undocumented infections [9].

Importantly, since such SIR-type models are employed to forecast the dynamics of an epi-

demic dependent on public interventions or seasonal effects, reliable inference of such key epi-

demiological parameters and trustworthy uncertainty quantification is paramount to support
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decision making. The estimation of hidden model parameters from observations of model out-

comes (inverse inference) is also referred to asmodel calibration in the medical decision and

health policy modeling literature [10]. Traditionally, model calibration has been considered as

an optimization problem seeking the best possible parameter configuration explaining the

data (e.g., by performing non-linear least squares minimization or relying on maximum likeli-

hood estimation [11]). However, the resulting optimization and maximum likelihood methods

focus on point estimates for the individual parameters and usually lack appropriate approaches

to assess their accuracy. This is a severe disadvantage, because reliable uncertainty quantifica-

tion is crucial when the estimates shall be used to model and predict future outcomes.

In contrast to optimization and maximum likelihood approaches, Bayesian methods pro-

vide a principled way to quantify the uncertainty of inferred model parameters, as they return

full posterior distributions for the unknown parameters rather than single point estimates.

Markov chain Monte Carlo (MCMC) sampling represents one of the classical approaches to

Bayesian model calibration [12], and it has been extensively used in Covid-19 studies to infer

model parameters describing the dynamics of the disease [3, 4, 8, 13]. However, Bayesian

model calibration is computationally expensive and depends explicitly on the evaluation of the

likelihood function of model parameters. When the likelihood function is intractable or

unknown, approximate Bayesian computation (ABC) can be used to approximate the poste-

rior distribution of parameters [14, 15]. However, standard ABC methods notoriously suffer

from poor scalability (i.e., the efficient application to large data sets and complex models),

which confines their utility to relatively simple models containing only a few parameters [16].

In order to overcome the limitations of individual parameter estimation methods, our

approach aims to combine the advantages of optimization-based and Bayesian methods by

using specialized invertible neural networks. In particular, we develop a novel methodological

framework based on a neural network architecture called BayesFlow [17] to facilitate model-

based inference with a primary, but not exclusive, focus on epidemiology. Our method can

incorporate an arbitrary number of epidemiological time series (or other type of temporal

information) and can, in principle, be applied to any dynamic model described by (stochastic)

ordinary differential equations. Moreover, since the length of the time series is not pre-deter-

mined during training and inference, we can consider additional information in our analyzes

without having to re-train the networks. By using extensive simulation-based training, our

method circumvents the general necessity for large training sets that are lacking during emerg-

ing epidemics. Additionally, our method returns posterior distributions which are fully com-

patible with a Bayesian interpretation and can thus be used to assess the uncertainty associated

with any estimation and prediction quantity.

We demonstrate the feasibility of our method by analyzing public Covid-19 data for Ger-

many and the individual German federal states based on the reported daily number of infected,

recovered and deceased cases during the first months of the pandemic. Our neural network is

trained using simulations from a customized SEIR-model variant [18], in combination with an

observation model accounting for the differences between true and reported case numbers,

and an intervention model describing the intervention measures for prevention and control

imposed by German authorities [8]. Despite the limited number of measurements and the

considerable complexity of the model with 34 unknown parameters in total, our network man-

ages to extract information for more than half of the parameters. Credibility intervals of our

parameter estimates are well in line with independently published results, and re-simulations

starting at our estimated parameters reproduce the observed time series very well. In particu-

lar, our inference suggests that approximately four fifths of all infectious individuals remained

undetected across all German federal states.
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Materials andmethods

Data

The model was applied to epidemiological data on the number of reported Covid-19 cases

(infected, recovered and deceased) in Germany and the individual federal states (only infected

and diseased) fromMarch 01, 2020 until June 11, 2020. Data were collected from publicly

available sources during the same time period and were not subsequently cleaned or corrected

in the aftermath. Therefore, all sources of uncertainty remain in the data as they would have in

the early days of an ongoing pandemic. Code and scripts for reproducing all results and figures

as well as the general framework of OutbreakFlow for training new networks on new models

are available at https://github.com/stefanradev93/AIAgainstCorona.

Neural Bayesian parameter estimation

Following a Bayesian approach for parameter estimation requires prior knowledge about rea-

sonable parameter ranges [12]. Combining this prior knowledge with information extracted

from the observed data leads to a posterior distribution which is generally narrower than the

prior and thus expresses our updated state of knowledge and associated uncertainty for the

individual parameters. More formally, let θ be the vector of all unknown model parameters

and X≔ x1:T = [x1, . . ., xT] a multivariate epidemiological time series with T individual time

points indicating, for instance, the number of infected, recovered and diseased individuals.

Then the well-known analytical formula for the posterior according to Bayes’ rule is

pðy jXÞ ¼
pðX j yÞ pðyÞR
pðX j yÞ pðyÞ dy

ð1Þ

where p(X|θ) represents the likelihood of observing data X when the true parameters are θ, p

(θ) is the prior distribution encoding our knowledge about plausible parameter configurations

for θ, and the denominator represents a normalizing constant (usually called the evidence).

Despite being conceptually simple, this formula poses two major challenges in the present

setting: (i) Efficient and accurate approximation of the intractable posterior p(θ|X) is challeng-

ing; (ii) The likelihood is only implicitly defined via realizations X* p(X|θ) generated by

repeatedly running simulations of the underlying epidemiological model with different θ.

We solve both problems with our recently proposed neural Bayesian inference architecture

called BayesFlow, which is explained in full mathematical details in the corresponding meth-

odological work [17]. The core component of BayesFlow is an invertible neural network which

enables a bidirectional flow of information. During the training phase, the invertible network

is run in forward direction to learn an accurate model q(θ|X)� p(θ|X) for the posterior distri-

bution of parameters θ given observations X, using a large number of simulated pairs (Xi, θi)

* p(X|θ) p(θ) as training data. During the inference phase, the network makes use of its

invertible architecture and operates in the inverse direction to estimate the posterior q(θ|X =

xobs)� p(θ|X = xobs) for the actually observed data xobs.

Validation experiments reported in [17] have demonstrated for various model systems, that

the BayesFlow method (i) can estimate complex stochastic models of widely varying data types

and sizes (e.g., population time series, predator-pray population time series, human response-

time data); (ii) outperforms variational or dropout methods for uncertainty quantification;

(iii) learns data representations which are more informative than manually selected summary

statistics; and (iv) outperforms case-based methods such as ABC and MCMC, whose computa-

tions must be re-run from scratch for every observed dataset.
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The latter advantage is called “amortized inference”: a BayesFlow network learns to general-

ize the training knowledge and can efficiently apply it to multiple real observations without

retraining. The network’s training effort thus quickly amortizes over a sequence of inference

queries (e.g., time series), in contrast to sampling methods (e.g., MCMC), which cannot lever-

age experience and require the same large computational effort for every query. In addition,

fast amortized inference facilitates model validation by enabling efficient probabilistic calibra-

tion and posterior predictive checks on large validation datasets [17].

OutbreakFlow—The BayesFlow approach to epidemiological inference

We propose OutbreakFlow, an instantiation of our BayesFlow architecture that utilizes a novel

combination of three jointly trained neural modules to analyze noisy multivariate time series

with potentially long-term temporal dependencies, as are typical in the context of epidemiol-

ogy. It can process both short and long time series and can thus perform efficient Bayesian

updating as new data become available (e.g., on a daily basis in case of Covid-19). Moreover,

our method can incorporate additional prior knowledge in the formulation of the underlying

generative model.

Our neural architecture comprises three sub-networks: (i) a convolutional filtering network

performing noise reduction and feature extraction on the raw observational data; (ii) a recur-

rent summary network reducing filtered time series of arbitrary length to statistical summaries

of fixed size; and (iii) an invertible inference network performing Bayesian parameter infer-

ence, given the learned summaries of the observations. Fig 1 depicts the training and inference

phase with our inference architecture and its essential elements.

The design of the convolutional network is inspired by the well-known Inception network,

which has shown tremendous success in computer vision tasks [19]. In particular, our network

is implemented as a deep fully convolutional network which applies adjustable one-dimen-

sional filters of different size at each level (cf. Fig 1). The intuition behind this design is that fil-

ters of different size might capture patterns at different temporal scales (e.g., a filter of size one

will capture daily fluctuations whereas a filter of size seven will capture weekly dynamics).

This, in turn, should ease the task of extracting informative temporal features for parameter

estimation.

The output of the convolutional network is a multivariate sequence containing the filtered

epidemiological time series. In order to reduce the filtered sequence to a fixed-size vector, we

pass it through a long-short term memory (LSTM) recurrent network [20]. In contrast to stan-

dard feed-forward neural networks, LSTM networks incorporate feedback connections which

make them ideally suited for processing sequences of observations such as time series.

A standard LSTM network consists of a cell and three gates. The cell stores the internal

memory of the network over arbitrary temporal intervals. The three gates, comprising an input

gate, an output gate, and a forget gate, interact in determining the importance of old and new

information. Importantly, LSTM networks can deal with sequences of varying length, which

enables them to process data whose duration is dictated by data availability and to perform

online inference, that is, process new data instantly as they become available. In contrast to

predefined pooling operations (e.g., mean, max, or variance), our recurrent networks learn

pooling operations that are adapted to the data and can thus extract potentially richer repre-

sentations. In this way, our inference architecture learns to filter and extract the most informa-

tive features from the noisy observations in an end-to-end manner. Thus, the user is freed

from the difficult (and usually suboptimal) task to hand-engineer suitable data features (sum-

mary statistics). Finally, the inference network has the task of inverting the forward model
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given the information extracted by the convolutional and recurrent networks (see also [17] for

more details on the design of invertible networks for Bayesian inference).

The invertible network has two modes of operation. During training, the network is only

evaluated in the forward direction and encouraged via a suitable optimization criterion to

transform the posterior into a simple base distribution (e.g., Gaussian) from which samples

can be easily obtained. Thus, the inference network integrates information from both the prior

and the data-generating mechanism (i.e., the implicit likelihood).

During inference, the inference network is only evaluated in the inverse direction using con-

ditional information from real observed data passed through the filtering and summary net-

works. The posterior is approximated by repeatedly sampling from the simple base

distribution and applying the inverse of the forward transformation learned during the train-

ing phase. Importantly, this method recovers the true posterior under perfect convergence of

the optimization method [17].

More formally, let us denote the functions represented by the three networks as g, h, and f.

Then the filtering network determines a filtered time series ~x
1:T ¼ gðx

1:TÞ from observed data

x1:T, where the number of time steps T depends on data availability. The summary network

Fig 1. Structure and workflow of OutbreakFlow.During the training phase (orange frame on the left), the assumed epidemiological model is used to
simulate time series resembling the observed epidemiological data, based on prior distributions of the unknown parameters. The synthetic time series
are used to train the composite neural network consisting of (i) a convolutional filtering network, which extracts relevant features while preserving the
temporal structure of the data, (ii) a summary network, which reduces the transformed time series to a fixed-sized vector of maximally informative
representations, and (iii) an inference network, which estimates the joint parameter posterior from these data representations. During the inference
phase (blue frame on the right), the real epidemiological data xobs

1:T are passed to the trained network to infer the posterior distribution of the unknown
disease parameters. A full description of the architecture and the methodology is provided within Materials and methods.

https://doi.org/10.1371/journal.pcbi.1009472.g001
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turns the output of the filtering network into a fixed-size representation y ¼ hð~x
1:TÞ by keeping

only the final output vector of the LSTM network, which encodes the accumulated informa-

tion over all observed time steps. Finally, the inference network generates samples ŷ �

qðy j x
1:TÞ from the parameter posterior by computing ŷ ¼ f �1ðy; zÞ with normally distributed

random vectors z � N ð0; IÞ. The parameters of all three networks are optimized jointly dur-

ing the training phase. Denoting the vector of all trainable network parameters as ϕ, the three

networks solve the following optimization criterion

b� ¼ argmin
�

EX�pðXÞ½KLðpðy jXÞ jj q�ðy jXÞÞ� ð2Þ

¼ argmin
�

EðX;yÞ�pðX;yÞ½�log q�ðy jXÞ� ð3Þ

whereKLðp jj qÞ denotes the Kullback-Leibler divergence [21] between probability density

functions p and q. We approximate the latter expectation via its empirical mean over realiza-

tions (X, θ)* p(θ, X) obtained via simulations from a dynamic model.

As previously mentioned, one of the most important advantages of our method is amortized

inference, owing to the fact that we approximate the posterior globally via a single set of net-

work parameters b�. This is especially advantageous in epidemiological contexts, where the

same model is applied in multiple populations (countries, cultures) or at different scales (states,

regions), since the same pre-trained network architecture can be repeatedly utilized for differ-

ent populations and scales. Indeed, in the following real-world application, we demonstrate

efficient amortized inference and excellent predictive performance with a single architecture

applied simultaneously to epidemiological data from all German federal states.

The epidemiological model

In order to account for the specific nature of the current Covid-19 outbreak, our epidemiologi-

cal model consists of three submodels: (i) a disease model describing the true dynamics of rele-

vant population compartments; (ii) an intervention model describing the strengthening and

relaxation of non-pharmaceutical intervention measures; and (iii) an observation model

describing the deviations of publicly reported data from the true values. These models build

upon the previous work of Khailaie et al. [18] and Dehning et al. [8], who adapted the general

SIR approach to the specifics of the Covid-19 pandemic and the situation in Germany. Param-

eter priors are based on our current state of knowledge about disease characteristics and gov-

ernment measures, but are chosen very wide to prevent them from dominating the

information extracted from the actual observations.

Disease model. The disease model is a system of non-linear ordinary differential equa-

tions (ODEs) distinguishing between six compartments: susceptible (S), exposed (E—infected

individuals who do not show symptoms and are not yet infectious), infected (I—symptomatic

cases that are infectious), carrier (C—infectious individuals who recover without being

detected), recovered (R), and dead (D), see Fig 2. Note that direct recovery from the carrier

state C covers all reasons why an infection might go undetected, including, among others,

truly asymptomatic cases, lack of follow-up on pre-symptomatic cases, limited testing capacity

under minor symptoms—our model does not differentiate between these posibilities. Observa-

tions with limited accuracy (as described by the observation model below) are available for the

compartments I, R, and D. The true time series of all compartments are therefore considered

latent and need to be estimated.
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The ODEs for our epidemiological model are defined by:

dS

dt
¼ �lðtÞ

C þ b I

N

� �
S ð4Þ

dE

dt
¼ lðtÞ

C þ b I

N

� �
S� g E ð5Þ

dC

dt
¼ g E� ð1� aÞ ZC � a yC ð6Þ

dI

dt
¼ ð1� aÞ ZC � ð1� dÞm I � d d I ð7Þ

dR

dt
¼ a yC þ ð1� dÞm I ð8Þ

dD

dt
¼ d d I ð9Þ

The meaning of the model parameters and their priors are detailed in S1 Table in S1 Text.

Prior ranges are based on considerations in [8] and [22]. All rate parameters are considered to

be constant, except for the transmission rate λ(t) which is considered to be time-dependent as

it accounts for possible behavioral changes implied by non-pharmaceutical interventions.

Intervention model. The intervention model accounts for changes in the transmission

rate λ(t) due to non-pharmaceutical interventions and mitigation measures. Corresponding to

the approach followed by [8], we define three change points for λ(t) encoding an assumed

transmission rate reduction in response to intervention measures imposed by the German

authorities. Each change point is represented by a piece-wise linear function with three degrees

Fig 2. Sketch of the mathematical model describing the epidemiological dynamics of Covid-19. The model is of SEIR-type with six compartments:
susceptible (S), exposed (E, i.e. infected but non-infectious), carrier (C, i.e. infectious but undetected), infected (I, i.e. infectious and diagnosed),
recovered (R) and dead (D) individuals. In addition, the blue boxes indicate model extensions accounting for external factors, namely intervention
measures affecting the transmission rate λ(t) and imperfect case reporting due to noise or delays. Note, that data is only reported for the observable
compartments I, R, andD. For a detailed description of the model and the different components see Materials and methods.

https://doi.org/10.1371/journal.pcbi.1009472.g002
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of freedom: the effect strength and the boundaries defining the time interval for the effect to

fully manifest itself. The chosen priors express the expected effect of each measure to reduce

the transmission rate roughly by half after the date when it comes into force, but we allow for

wide uncertainty margins to facilitate learning of the actual behavior. In addition to the previ-

ous approach in [8], our model also includes a fourth change point expressing the assumption

that an eventual withdrawal of effective intervention measures (officially or due to non-com-

pliance) will lead to a slight increase of the transmission rate. Note that we assume that inter-

ventions do not affect the risk of infection upon contact with a detected infectious individual

(β). Prior distributions and descriptions for the intervention model’s parameters are given in

S2 Table in S1 Text.

Observation model. The observation model accounts for the fact that officially reported

cases might not represent the true case numbers of the epidemics. It represents three error

sources: a delay between actual infection and reporting, the weekly modulation of reporting

rates (since testing and reporting activities are considerably reduced on weekends), and a

noise term describing random fluctuations. Separate parameter sets are learned for each of the

three publicly reported time series I(obs), R(obs), and D(obs)—the remaining compartments are

considered unobservable. The relationship between the reported counts and their true values

is described by the following set of discrete-time difference equations with time steps tmea-

sured in days.

IðobsÞt ¼ IðobsÞt�1
þ ð1� fIðtÞÞ ð1� aÞ ZCt�LI

þ

ffiffiffiffiffiffiffiffi
IðobsÞt�1

q
sI xt ð10Þ

RðobsÞ
t ¼ RðobsÞ

t�1
þ ð1� fRðtÞÞ ð1� dÞ m It�LR

þ

ffiffiffiffiffiffiffiffiffiffi
RðobsÞ

t�1

q
sR xt ð11Þ

DðobsÞ
t ¼ DðobsÞ

t�1
þ ð1� fDðtÞÞ d d It�LD

þ

ffiffiffiffiffiffiffiffiffiffi
DðobsÞ

t�1

q
sD xt ð12Þ

where LI, LR, and LD denote the reporting delays (lags), and denote σI, σR and σD the scales of

multiplicative reporting noise for the respective compartments. The noise variables ξt follow a

Student-t distribution with 4 degrees of freedom. The weekly modulation of reporting cover-

age f
C
ðtÞ for each of the compartments C 2 fI;R;Dg is computed as follows:

f
C
ðtÞ ¼ ð1� A

C
Þ 1� sin

p

7
t � 0:5F

C

� ����
���

� �
ð13Þ

This equation yields three additional unknown parameters for the weekly modulation

amplitudes AI, AR, AD, and phases FI, FR,FD, each. The prior distributions and descriptions

for the observation model’s parameters are listed in S3 Table in S1 Text.

Neural network training

An OutbreakFlow is trained with simulated data by minimizing the negative log posterior

according to Eq 3. The training phase can be realized in different ways, depending on the

modeling scenario and the modelers’ computational budget. First of all, when only a single

time series has to be analyzed, non-amortized methods like [23, 24] may outperform Out-

breakFlow, because they constrain the simulation scope to the vicinity of the observed data.

On the other hand, when the model has to be applied tomultiple observed time series (e.g., to

different federal states in Germany or even countries), our upfront training effort quickly

amortizes, since a trained OutbreakFlow executes inference orders of magnitude faster than a

case-based (non-amortized) method. We now outline three training modes for OutbreakFlow.
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Simulation-based offline learning. Traditional simulation-based approaches utilize a

pre-computed reference tableDðSÞ, which is a large data structure containing S pairs (θ, X) of

simulation parameters θ and corresponding synthetic observations X [25, 26]. This strategy

has also been used in machine learning approaches to simulation-based inference [27, 28],

where the problem of inverse inference resembles a supervised learning task. In the context of

OutbreakFlow, the resulting offline learningmethod is outlined in S1 Algorithm in S1 Text. It

is particularly useful when calls to the simulator are computationally expensive: working with

recorded synthetic data is then faster at the expense of higher memory demands during

training.

Simulation-based online learning. Instead of pre-computing synthetic data, we can gen-

erate a potentially limitless number of training pairs (θ, X) on-the-fly. Since each simulation

result is discarded after the corresponding backpropagation update, the network never

encounters the same inputs twice and overfitting is impossible. Moreover, the training phase

can continue as long as the network keeps improving, as measured by continuous performance

monitoring. Online training is outlined in S2 Algorithm in S1 Text and is used for all experi-

ments in this work. The present application lends itself to this approach, because the computa-

tional cost of running our epidemiological model is negligible, whereas more expensive

simulations might become a bottleneck for this strategy.

Simulation-based hybrid learning. Offline and online learning represent two extremes

on a continuum of training strategies. Hybrid learning methods combine these two strategies

and allow for a more fine-grained allocation of the available simulation budget. For instance,

[24] propose a round-based strategy, where each round incorporates its own simulation phase.

Thus, the reference table is filled incrementally, and each round can reuse simulations from all

previous rounds. Such a round-based training strategy is outlined in S3 Algorithm in S1 Text.

Uncertainty calibration and computational faithfulness

Computational faithfulness refers to the ability of a Bayesian method to recover the correct tar-

get posterior in a given modeling scenario. It is an essential precondition for carrying out

model-based predictions and interpreting the parameters of a model within a reference theo-

retical framework. We can estimate the computational faithfulness of any BayesFlow applica-

tion using simulation-based calibration [29, SBC]. SBC is a diagnostic method which

considers the performance of a sampling algorithm over the entire Bayesian joint model p(θ,

X), regardless of the structure of the particular model. It leverages the fact that most Bayesian

models are generative by construction as well as the self-consistency of the Bayesian joint

model. Accordingly, the average posterior distribution over random draws from the Bayesian

joint distribution (θ, X)* p(θ, X) should always recover the prior distribution p(θ). In other

words, for any given parameter combination θ�, the following should hold:

pðy�Þ ¼
R R

pðy� jXÞ pðy;XÞ dy dX ð14Þ

Random draws from p(θ, X) are generated by first sampling a configuration θ from the

prior p(θ) and then running the (stochastic) simulator with the sampled parameter configura-

tion to obtain a synthetic outbreak trajectory. This process can be repeated multiple times and

does not require an analytically tractable likelihood function. Importantly, if a Bayesian sam-

pling method generates samples from the exact posterior, the equality implied by Eq 14 should

hold regardless of the particular form of the posterior. Thus, any violation of this equality indi-

cates some error incurred by the sampling method. The reasons for such an error can be either

inaccurate computation of the posterior or an erroneous implementation of the model itself

[29].

PLOS COMPUTATIONAL BIOLOGY OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1009472 October 25, 2021 10 / 26

https://doi.org/10.1371/journal.pcbi.1009472


In practice, we approximate this integral by an ensemble of samples from many posterior

distributions estimated from simulated time series with known generating parameters. SBC

uses a rank statistic (i.e., the number of posterior draws larger than the prior draw for each

simulated time series) to compare the average posterior with the prior. If Eq 14 holds, then the

rank statistic of each parameter will be uniformly distributed, allowing us to visually examine

the equivalence using univariate histograms. An inspection of the rank histograms thus pro-

vides a way to validate the computational faithfulness of OutbreakFlow within the scope of the

modeling assumptions [29].

A major disadvantage of SBC is that it can be extremely time-consuming, since it requires

inverse inference on potentially thousands of simulated time series. In addition, the obtained

posterior draws should exhibit no autocorrelation for SBC to yield reliable results. The latter

requirement makes it even more expensive when using MCMC or other non-amortized Bayes-

ian methods yielding dependent samples. Fortunately, amortized inference with Outbreak-

Flow alleviates these issues, since inference on multiple time series is extremely efficient and

posterior draws are independent given perfectly converged networks [17]. Thus, validating the

computational faithfulness of any OutbreakFlow application using SBC becomes a matter of

seconds.

Outbreak prediction on the basis of estimated posteriors

The posteriors estimated by a trained OutbreakFlow network can be further used to make

forecasts about the future dynamics of the pandemic, provided the parameters remain station-

ary. Due to changing intervention measures, population behavior, testing policies, and possible

treatment advances, this is only true for a relatively short period beyond the observed time

series, limiting the prediction horizon to a few weeks. Given observed time series X≔ x1:T, the

posterior predictive distribution for upcoming data X0 ≔ xT+1:T0 is given by:

pðX0 jXÞ ¼
R
pðX0 j y;XÞ pðy jXÞ dy ð15Þ

Although this quantity is hard to compute exactly, we can approximate it by running

simulations with parameters sampled from the posterior: fyðmÞ � pðy jXÞg
M

m¼1
. Since the θ(m)

are drawn from the joint posterior, statistical dependencies and correlations between parame-

ters are properly taken into account. The resulting ensemble ofM simulated time series

f~X ðmÞg
M

m¼1
can now be used to obtain point predictions (e.g., by computing their mean or

median at each future time point) and to quantify the uncertainty of future scenarios (e.g., by

computing quantiles or standard deviations at each time point).

In addition to future predictions, posterior predictive re-simulations are also crucial for fur-

ther model validation. If the estimated posteriors describe the real situation well, re-simula-

tions should replicate the data that served to fit the model in the first place. Mismatches

between original and re-simulated time series indicatemodel misspecification or a simulation

gap, that is, errors arising because important aspects of the disease dynamics or unknown cor-

ruption of the observed data are not properly represented by the model. These errors are invis-

ible to simulation-based calibration, because it solely assesses whether the posteriors conform

to model specifications. Importantly, our OutbreakFlow experiments demonstrate very good

agreement between original and re-simulated time series.
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Results

OutbreakFlow as a research tool for inferring dynamics of emerging
epidemics

In contrast to mainstream neural network applications, such as image or text analysis, analyz-

ing the dynamics of emerging epidemics poses two major challenges: (i) data are usually

sparse, with no large sets of training data available; and (ii) a reliable quantification of the

uncertainty associated with neural network outputs, such as estimated parameters, is manda-

tory to allow for reliable subsequent evaluation of possible scenarios.

Standard neural network architectures do not live up to these challenges. Therefore, we

developed a novel method on the basis of a neural network architecture called BayesFlow [17]

that addresses the aforementioned challenges in two ways: (i) We leverage the epidemiological

insight represented by SIR-type models by means of an alternative training procedure using

simulated data—simulation-based training; and (ii) we use networks that are specifically

designed to perform Bayesian uncertainty quantification over their outputs.

In our framework, a large number of plausible hypothetical scenarios simulating the

assumed epidemiological dynamics is processed by the neural network until it becomes an

expert in the interpretation of epidemiological observations. After completion of the training

phase, the available real-world observations are passed to the network, which then estimates

full Bayesian posterior distributions for the real-world parameters of interest. The design of

our network architecture is depicted in Fig 1. The details of the method, as well as the model

architecture are given in Materials and methods.

The ultimate goal of our approach is comparable to that of traditional simulation-based

Bayesian inference methods, such as ABC. However, our method operates much faster and

generalizes, without retraining, to any real-world dataset within the scope of its training exper-

tise [17].

Testing and validation of OutbreakFlow

To validate our approach and test its performance in inferring parameter values in epidemio-

logical models, we applied our architecture to a standard SIR-model describing the dynamics

of an epidemic. This greatly simplified model is suitable for the initial two weeks of the pan-

demic and highlights essential properties of our approach. It distinguishes between susceptible,

S, infected, I, and recovered, R, individuals with infection and recovery occurring at a constant

transmission rate λ and recovery rate μ, respectively. The model is defined by the following

system of ODEs:

dS

dt
¼ �l

S I

N

� �
ð16Þ

dI

dt
¼ l

S I

N

� �
� m I ð17Þ

dR

dt
¼ m I; ð18Þ

with N = S + I + R denoting the total population number. In addition to the ODE parameters λ
and μ, we consider a reporting delay parameter L and a dispersion parameter ψ, which affect
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the number of reported infected individuals via

IðobsÞt � NegBinomialðIðnewÞt�L ;cÞ; ð19Þ

where IðnewÞt ¼ l ðStIt=NÞ and we assume that the number of newly observed cases arises from

a negative binomial distribution [30]. In addition, we estimate the initial number of infected

individuals I0, so the full parameter vector of interest becomes θ = (λ, μ, L, ψ, I0). Priors over
the five parameters are given in S4 Table in S1 Text.

As a first step, we trained our network on simulations from the simple SIR-type model for-

mulated above above and then applied the network to the number of reported cases from the

first 14 days of the Covid-19 pandemic in Germany. The results from this initial study are

depicted in Fig 3. First, we observe that our posterior estimates are in line with those reported

in a previous modeling study [8], which utilized the same data and a similar model. Second,

we note that the SBC plots indicate no systematic biases in the approximate posteriors and

thus suggest that the posterior samples are trustworthy (assuming no simulation gap). Finally,

the posterior predictive check indicates that the model can accurately reproduce the observed

data (Fig 3).

Since Outbreak-Flow is especially designed to tackle complex stochastic models whose esti-

mation usually necessitates simulation-based approaches, we compared its performance to an

Fig 3. (a) Bivariate posteriors over the five model parameters obtained by OutbreakFlow (red) and ABC-SMC (blue) from cases reported during the
first 14 days of the Covid-19 pandemic in Germany. Results of the two methods are very similar except for the dispersion parameter ψ, where
OutbreakFlow achieves superior uncertainty reduction (see text for a brief discussion); (b) Model-based predictions based on the posteriors obtained by
OutbreakFlow; (c) Simulation-based calibration (SBC) computed from 10000 simulated pandemic scenarios. The uniformity of the rank statistics
indicates that there are no systematic biases in the approximate posteriors and implies trustworthy approximation.

https://doi.org/10.1371/journal.pcbi.1009472.g003
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analysis performed by ABC-SMC, a popular approximate Bayesian computation algorithm

based on sequential Monte Carlo sampling [31]. Our benchmark comparison reveals converg-

ing results. However, OutbreakFlow implies a much sharper marginal posterior of ψ than

ABC-SMC, indicating more uncertainty reduction with regard to the dispersion parameter.

Since the SBC plots indicate no overconfidence (i.e., no overdispersion) of the OutbreakFlow

posteriors, it is likely that the ABC-SMC algorithm yields an underconfident (i.e., underdis-

persed) marginal posterior with respect to this one parameter. As for wall-clock running

times, the ABC-SMC algorithm converged in 4.1 hours, whereas OutbreakFlow trained with

50, 000 iterations using online learning required 4.3 hours on the same laptop machine with-

out parallel simulations. This similar performance speaks in favor of amortized inference, as

the training effort already amortizes after as few as two data sets.

To further test if OutbreakFlow is able to provide a reliable quantification of model parame-

ters, we analyzed if the additional consideration of non-identifiable parameters within the

model would affect the calibration or predictive performance of our method. To this end, we

included 5 dummy variables uj *Uniform(0, 1) within our model that were not used for the

generation of the simulated data, but were later included in the unknown parameter vector θ

during training and inference.

Performing the same training and inference phase with these 5 additional dummy parame-

ters neither hurts the calibration of OutbreakFlow, nor does it impact inference on the

observed time series in a noticeable way, since the posterior estimates for the relevant parame-

ters appear to be unaffected by the dummy parameters (see S1 Text for full results). The same

is true for model-based posterior predictions, which underlines the ability of OutbreakFlow to

reliably characterize parameter identifiability in case of insufficient data or over-parameterized

models.

Inferring epidemiological characteristics from the early Covid-19
pandemic in Germany

After validation of the general applicability of our novel approach, we applied OutbreakFlow

to data from the Covid-19 pandemic in Germany, analyzing reported cases (infected, recov-

ered and deceased) in the time period fromMarch 01, 2020 until June 11, 2020. These data

captured the early dynamics of the emerging epidemic associated with considerable uncer-

tainty and stochasticity with regard to the number of detected cases, as well as the effect of sub-

sequent public interventions. For our analysis, we used an extended SEIR-type model that had

been developed recently and distinguishes between detected and undetected carriers of the dis-

ease comprising a total of 34 unknown model parameters (see Fig 2 and Materials and meth-

ods for a detailed description of the model) [18]. The model was trained on a time-period

fromMarch 01 until May 21 using wide prior distributions across plausible parameter ranges

from previous literature [8, 22]. The remaining data (three weeks fromMay 22 until June 11)

are then used to assess the predictive value of the model.

The observed and predicted dynamics, as well as the marginal posterior distributions of the

individual model parameters are depicted in Fig 4 (see S6 Fig in S1 Text Text for simulation-

based calibration). Our model was able to recover the observed dynamics and yields good pre-

dictions for the future period, with its forecasts having well-calibrated uncertainty bounds for

the newly infected, recovered, and diseased cases (see Fig 4). Despite the large number of

unknown model parameters and limited data, our analysis indicated considerable reduction in

uncertainty in relation to the prior knowledge for most of the model parameters (Fig 4). Stan-

dard point estimates (median, mean, MAP mode) and credibility intervals (95%-CI between
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the 2.5% and 97.5% quantiles of the corresponding posterior) for all 34 model parameters are

given in Table 1.

Interestingly, our parameter estimates (cf. Fig 4) are consistent with previous findings

about central disease parameters [8]. With the number of undetected cases being one of the

most important estimates to assess epidemic-related dynamics, our network estimates a

median probability of remaining undetected (parameter α) of 0.63 with the maximum a poste-

riori (MAP) estimate at 0.79 (95%-CI [0.07–0.91]). Notwithstanding the large uncertainty sur-

rounding the number of undetected cases, the posterior of α is clearly far from uniform (our

prior assumption), and peaks well beyond 0.5 (see Fig 4). This estimate is consistent with the

results of representative seroprevalence studies in Germany [32, 33], which find that 75% of

Fig 4. (a) Posterior predictions and forecasts of new cases obtained by inferring model parameters from epidemiological data available for reported
infected, assumed recovered and deaths by Covid-19 for the entire Germany. Cases to the left of the vertical dashed line were used for posterior
checking (model training) and cases to the right for posterior forecasts (predictions) on unseen data; (c) Marginal posteriors of all 34 model parameters
inferred from data for the entire Germany alongside median and MAP summary statistics. Gray lines depict prior distributions for comparison with the
posteriors. Vertical dashed lines indicate posterior medians.

https://doi.org/10.1371/journal.pcbi.1009472.g004
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the sero-positive individuals at the end of the first wave had not been diagnosed with the dis-

ease before. An even higher fraction of undetected cases around 80% was reported by sero-

prevalence studies focusing on the hotspot regions of Gangelt, Kupferzell, and Tischenreuth

[34–36]. Together with our estimated case fatality rate (parameter δ) of 4.1% (median)

resp. 3% (MAP), this results in an infection fatality rate of about 0.63% (MAP estimates) or

1.5% (median estimates).

Additionally, our informative priors for the parameters η and γ are not updated by the

observed data. Accordingly, around 3.2 days will typically pass before the infection is detected

Table 1. Posterior summaries and 95%-CIs for each model parameter inferred from data for entire Germany.

Parameter Symbol Median Mean MAP 95%-CI

Onsets of changes t1 March 8 March 8 March 8 [March 6–11]

(Day 7.23) (Day 7.20) (Day 7.08) [Day 4.64–9.59]

t2 March 16 March 16 March 16 [March 14–18]

(Day 15.01) (Day 15.01) (Day 15.11) [Day 12.99–17.05]

t3 March 23 March 23 March 23 [March 21–25]

(Day 22.10) (Day 22.10) (Day 22.22) [Day 20.23–24.00]

t4 May 6 May 6 May 6 [May 4–May 8]

(Day 65.55) (Day 65.53) (Day 65.56) [Day 63.48–67.54]

Duration of changes [days] Δt1 3.02 3.14 2.80 [1.61–5.34]

Δt2 3.04 3.16 2.82 [1.65–5.34]

Δt3 3.06 3.18 2.92 [1.63–5.41]

Δt4 2.95 3.08 2.72 [1.45–5.43]

Transmission rates λ0 2.98 3.12 2.78 [1.70–5.31]

λ1 0.32 0.34 0.31 [0.13–0.63]

λ2 0.31 0.33 0.28 [0.16–0.58]

λ3 0.09 0.09 0.08 [0.05–0.15]

λ4 0.13 0.14 0.11 [0.05–0.28]

Reporting delays LI 5.51 5.54 5.39 [3.87–7.35]

LR 12.88 12.91 12.72 [10.73–15.21]

LD 11.27 11.31 11.18 [9.15–13.65]

Weekly modulation amplitudes AI 0.55 0.55 0.55 [0.43–0.66]

AR 0.49 0.49 0.48 [0.33–0.65]

AD 0.49 0.49 0.49 [0.32–0.64]

Weekly modulation phases φI -0.39 -0.39 -0.39 [-0.69–-0.09]

φR -1.02 -1.02 -0.96 [-2.36–0.33]

φD -1.33 -1.33 -1.32 [-2.13–-0.55]

Reporting noise scales σI 7.85 7.92 7.73 [5.96–10.31]

σR 10.74 10.85 10.60 [8.36–13.88]

σD 2.55 2.54 2.53 [1.95–3.23]

Number of initially exposed E0 14.39 18.72 8.34 [1.20–61.37]

Risk of infection from I β 0.26 0.27 0.25 [0.14–0.45]

Rate E! C [1/days] γ 0.15 0.17 0.14 [0.09–0.30]

Rate C! I [1/days] η 0.31 0.32 0.28 [0.18–0.52]

Rate I! R [1/days] μ 0.12 0.13 0.12 [0.10–0.16]

Rate C! R [1/days] θ 0.22 0.22 0.22 [0.09–0.33]

Rate I! D [1/days] d 0.15 0.16 0.09 [0.07–0.32]

Probability of C! R α 0.63 0.58 0.79 [0.07–0.91]

Probability of I! D δ 0.04 0.05 0.03 [0.02–0.10]

https://doi.org/10.1371/journal.pcbi.1009472.t001
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(95%-CI [1.92–5.55], 1/η). This estimate is in line with results from [37] (around 4 days) and

the World Health Organization [38] (5–6 days). Combined with the latent period (i.e., the

time in compartment E: median 6.7 days, 95%-CI [3.33–11.1], 1/γ), this leads to a median

incubation period until symptom onset or a positive test outcome of around 9.9 days, as origi-

nally implied by our priors.

If the disease remains undiagnosed throughout (asymptomatic, weakly symptomatic etc.),

recovery takes a median number of 4.6 days (95%-CI [2.99–11.11], 1/θ), a time period in

which pre-symptomatic and undiagnosed individuals can be responsible for a considerable

fraction of infections. Furthermore, if we assume that most infections occur near the end of

the carrier stage, that is, after 2.5 days in compartment C, we arrive at a generation time of

around 9 days. In conjunction with the delay for reporting infections I of 5.5 days (parameter

LI), this is consistent with the generally acknowledged fact that the success of intervention

measures only becomes apparent after around two weeks.

For diagnosed individuals, the median recovery period is estimated at 8.1 days (95%-CI

[6.13–10.20], 1/μ). Thus, manifestly ill cases have a more severe disease progression than undi-

agnosed individuals and typically require 1/η + 1/μ = 3.2 + 8.1 = 11.3 days until recovery [39].

The time between diagnosis and death (6.7 days, 95%-CI [3.12–14.3], parameter 1/d) is shorter

than in clinical reports, with parameter identification possibly impaired by the estimated

reporting delay for disease-associated deaths D of 11.3 days (parameter LD), which is probably

much longer than in reality. From the available time series alone, the model is not able to dis-

tinguish a long critical phase with short reporting delay from rapid death with long reporting

delay. Nevertheless, it is remarkable how much information about 34 free parameters our net-

works can extract from seeing only about 70 time steps of real data (see Fig 4).

Finally, our results corroborate the timing of intervention measures and the gradual reduc-

tion in transmission rate as observed in [8]. According to our estimates, the lifting of measures

around May 6 would have led to an approximately 40% increase in the transmission rate, as

assumed by our prior. However, since the spreading rate at t4 has already decreased to a

median of 0.09 (95%-CI: [0.05–0.15]), the increase to a median of 0.13 (95%-CI [0.05–0.28])

does not lead to an exponential growth of infections.

Testing the robustness of model analysis and inferred dynamics

To test the validity of our results, we performed a series of ablation studies which indepen-

dently reduce either the architecture of our neural network or the considered epidemiological

model. Thereby, we are able to test (i) the importance of specific technical components for

parameter inference, as well as (ii) the importance of specific aspects in the model structure

when trying to explain the observed dynamics. Accordingly, the implemented changes com-

prise: 1) removing the convolutional filtering network; 2) removing the recurrent summary

network; 3) removing the observation model; 4) removing the intervention model; 5) remov-

ing the carrier (C) compartment from the latent disease model. For each of these ablation stud-

ies, we used the same number of simulations and training settings as before. We then

compared the predictive performance, calibration, and reliability in parameter estimation of

each of the modified analyzes to our previous analysis.

The results from all ablation studies are available in S1 Text. Indeed, our experiments indi-

cate that all network and model components are crucial for the performance of OutbreakFlow

and for the fidelity of model predictions. Interestingly, no ablation scenario leads to dramatic

miscalibration across all marginal posteriors. However, predictive performance markedly dete-

riorates in all ablation studies. For instance, removing either the intervention or the observa-

tion model leads to the rejection of all time series drawn from the posterior predictive due to
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divergences. Further, removing the latent carrier compartment leads to poor fits and notable

underestimation of the reported cases. On the other hand, removing either the filtering or the

summary network does not lead to dramatic misfits but prevents the architecture from fully

capturing the structure of the observed time series (e.g., weekly modulation is poorly captured,

see S1 Text).

Predicting the epidemiological dynamics within the individual German
federal states

In the previous section, we demonstrated the ability of our method to recover observed epide-

miological dynamics and to infer reliable parameter estimates that determine disease charac-

teristics based on data covering the early Covid-19 epidemic in whole Germany. Arguably, the

importance of uncertainty concerning the number of reported cases, as well as stochastic

effects increase with lower case numbers. To this end, we also applied our method to each Ger-

man federal state separately, as individual states are characterized by different population sizes,

as well as different onsets and progression of the epidemic. Because data for recovered cases

per federal state was lacking (in contrast to recovered cases for the entire Germany), the net-

work was trained solely on the simulated reported infected cases and deaths. Note that we only

trained a singleOutbreakFlow, which we then applied unchanged to each German federal

state. In this way, the training effort amortized over the repeated applications of the same neu-

ral estimator (see S13 Fig in S1 Text for simulation-based calibration of the trained network).

Posterior predictions and forecasts for cumulative infections (derived from estimated new

cases, see S14 Fig in S1 Text) in each federal state are depicted in Fig 5 (see also S15 Fig in S1

Text for predictions of cumulative deaths). As for Germany as a whole, we observe that median

predictions follow very closely the reported cumulative number of cases across all federal

states. Furthermore, the reported cases are very well represented by the uncertainty bounds

derived from the parameter posteriors, with prediction uncertainty increasing towards the

future (i.e., predictions after the dotted vertical lines in Fig 5). However, median predictions

can become unreliable when only a few cases are available for model training (see predictions

for cumulative deaths for the state Mecklenburg-Western Pomerania, S15 Fig in S1 Text).

Therefore, well-calibrated uncertainty estimates are particularly important and need to be

taken into account when reporting point predictions.

The posterior distributions of individual model parameters for each of the 16 German fed-

eral states are depicted in S1 Text. For comparison of individual estimates between different

states, we focused on four latent parameters that are essential for assessing early epidemical

dynamics: (i) the probability of infecteds to remain undetected (α), (ii) the recovery rate of
undetected (θ), (iii) the number of initially exposed individuals (E0), and (iv) the initial trans-

mission rate (λ0).
We observe that posterior estimates of α across states tend to peak well above 0.5 (see Fig

6a), suggesting once again that many infections have remained undetected/undiagnosed dur-

ing the initial months of the Covid-19 pandemic in Germany. Furthermore, we observe that

some states have smaller probabilities of undiagnosed infections, especially Bavaria, Berlin,

and North Rhine-Westphalia (possibly indicating a more successful testing policy), although

these estimates are associated with substantial uncertainty. Interestingly, the α posteriors of

each state are considerably sharper than the posterior of α for the entire Germany (see S1 Text

for full marginal posterior plots for each state). This may be a consequence of the high variabil-

ity of α across states, but could also be an estimation artifact of the simplified model (only two

epidemiological time series, new infections and deaths, are available for each state).
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Less variability between states is observed in the estimates for the recovery rate of unde-

tected, θ, suggesting an overall fast recovery of undiagnosed individuals (Fig 6b). However,

some differences between states are evident in the estimates of initially exposed individuals, E0
(cf. Fig 6c), with the states of Bavaria, Berlin, and North Rhine-Westphalia having significantly

more exposed individuals at onset than other states, which may correspond to observed out-

breaks in these states after skiing holidays and festivals. Finally, Fig 6c depicts a comparison of

initial transmission rates λ0 between states. We observe that estimates vary around a median

value of 2.27 across states, with the state Mecklenburg-Western Pomerania having the lowest

and the state Baden-Württemberg having the highest median transmission rate at onset.

Thus, our analysis is able to reveal differences in the epidemiological dynamics between

individual German federal states and proves reliable for different population sizes.

Discussion

In this work, we presented a novel simulation-based Bayesian inference framework for com-

plex epidemiological models. We directly demonstrated the utility of our method by applying

it to publicly available data on the early reported infected, recovered, and deceased individuals

during the first phase of the Covid-19 pandemic in Germany.

Fig 5. Model predictions of cumulative Covid-19 cases (derived from estimated new cases) for each German federal state. Cases to the left of the
vertical dashed line (8 weeks) were used for model fitting and posterior checking and cases to the right (3 weeks) for forecasts on new data. We observe
that median model predictions closely match both past and future reported cases for each German federal state. Most importantly, the reported cases
always lie within the estimated CIs, which vary across the federal states.

https://doi.org/10.1371/journal.pcbi.1009472.g005
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Given the general uncertainty in reported numbers for emerging infectious diseases, esti-

mation methods need to account for this uncertainty when providing parameter estimates and

be able to efficiently incorporate incoming data. Our method works reliably well, providing

well calibrated uncertainty bounds for individual parameter estimates even in case of small

sample sizes and a limited amount of observations. Given the limited amount of data available

for model calibration (i.e., number of reported infections, defined recoveries and deaths) and

the uncertainty concerning these values, our analysis is able to reduce the uncertainty about

quantities that could not be obtained during the time course of the epidemics.

Our estimates suggest that a large fraction of the infected individuals (60–80%) might have

gone undetected through the course of the early Covid-19 outbreak in Germany. This finding

has been confirmed by subsequent seroprevalence studies from Germany [32–36] and other

countries [40–43] and is also in line with estimates on reporting rates [44]. However, our pos-

teriors also suggest that there is non-negligible uncertainty surrounding this estimate when

derived in a purely model-based manner. Moreover, different summary statistics (e.g., means,

medians, MAPs) derived from non-symmetric posteriors offer slightly different conclusions.

This observation highlights the need to consider the full posteriors and corresponding credi-

bility intervals when aiming to draw substantive conclusions about epidemiological parame-

ters and possible forecasts for the progression of the epidemic or the effect of specific public

health interventions. When interpreting the results of parameter estimates, one should also be

Fig 6. (a) Forest plot depicting 95% credibility intervals for the probability of remaining undetected (α) obtained by amortized inference on data from
all German federal states. Thin lines depict highest density intervals (HDI), thick lines depict posterior quartiles, and white points depict the
corresponding medians of the estimated posteriors; (b-d) Corresponding plots for (b) the recovery rate of undetected (θ), (c) the number of initially
exposed (E0), and (d) the initial transmission rate (λ0).

https://doi.org/10.1371/journal.pcbi.1009472.g006
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aware that mechanistic models like the one used here only describe the average behavior of

entire compartments. Accordingly, the given confidence intervals quantify our uncertainty

about the inferred parameter averages and can not serve as a measure for the variability

between individual cases.

Our approach has two key advantages over standard Bayesian and likelihood-based point

estimation methods. First, it can flexibly deal with arbitrarily complex models and data struc-

tures, requiring no closed-form likelihoods or ad hoc distributional restrictions regarding the

shape of the joint prior or posterior. As standard SIR-models based on (stochastic) ordinary

differential equations generally provide a coarse-grained view on the epidemic dynamics [1],

more complex models accounting for heterogeneous social interactions, age-dependent effects,

and/or spatial and temporal heterogeneity become more and more important to predict the

progression of an epidemic or guide intervention measures [8, 45–49]. Such agent-based and

stochastic models can be easily incorporated within our neural Bayesian framework.

As a second advantage, the amortized inference property of our method, that is, training the

network only once on simulated data, allows efficient posterior sampling and simultaneous

application to multiple data sets. In addition, it allows for efficient online-learning and valida-

tion (i.e., the continuous integration of upcoming data), once the networks have been trained

with sufficient amounts of simulated data. These advantages are important, since they enable

researchers to concentrate on formulating, testing, and validating complex model systems

without worrying about estimation efficiency or analytical tractability.

Future developments will include Bayesian model comparison, multilevel modeling with

hierarchical priors and a systematic comparison between different neural inference architec-

tures. Hierarchical modeling allows us to better distinguish between disease-specific and

region-specific parameters by representing the natural cluster structure of epidemiological

data. In addition, model comparison is an especially important research avenue to compare

different possible disease transmission and progression schemes that could explain the

observed dynamics. Currently, in order to compare multiple competing dynamic models, sep-

arate neural networks would need to be trained and stored—one network corresponding to

each model. Even though such a training can be carried out in parallel, it would be much more

efficient to embed all competing models within a single neural architecture, which can perform

both prior predictive and posterior predictive model comparison. This idea has already been

explored in [50] and future research should investigate its utility for comparing complex epide-

miological models.

In addition, tackling non-stationary dynamic processes is an important open problem of

our framework that we plan to address in future work. This limitation is one reason why we

focus on the early outbreak dynamics, where the assumption of stationarity appears plausible

(e.g., absence of major virus mutations, largely fixed testing policy and implied fraction of

undetected infections, no significant progress on treatment options and subsequent recovery

times), with the exception of government interventions and behavioral changes, which we

explicitly model. Moreover, our Bayesian treatment ensures that deviations from stationarity

and shortcomings of the reported data do not result in catastrophic failure of our method, but

are reflected in wider uncertainty regions than would otherwise have been achievable.

When applying OutbreakFlow, one should be aware of three potential error sources that

can distort the outcomes and interpretations of amortized Bayesian workflows. First, model

misspecification and data contamination can result in a simulation gap. A simulation gap

occurs when the model cannot represent the actual disease dynamics or when data collection

is biased or contaminated in ways not accounted for by the model. We addressed these issues

by suitable model extensions, which are motivated by theoretical considerations and ablation

studies. Remaining misspecifications can often be detected via standard Bayesian model
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checking methods, for instance, insufficient posterior predictive accuracy, divergent re-simu-

lations, or very low posterior probability under the prior. However, theoretical guarantees on

upper bounds for the residual errors remain an important open problem of our approach.

The second source is theMonte Carlo error introduced by approximating the expectation in

Eq 3 with only a finite number of simulations. It is also referred to as approximation error and

widely acknowledged throughout all Monte Carlo methods. This error can be mitigated rela-

tively easily in our online learning setting, because we can generate a potentially endless stream

of synthetic training data until the continuously monitored prediction accuracy is satisfactory.

In this respect, simulation-based inference is better positioned to fully utilize the capacity of

deep neural networks than traditional supervised learning methods, which rely on a limited

supply of annotated real data.

The third source of error is an amortization gap, which refers to potential deficiencies of the

network for atypical real dynamics. Atypical dynamics are, by definition, underrepresented in

any training set, and an amortized inference scheme may be less accurate in such cases. An

amortization gap can be detected via the probabilistic calibration methods advocated in this

work, that is, simulation-based calibration. When the amortization gap is too large, resorting

to non-amortized methods such as [23, 24] might be a viable option. Alternatively, the accu-

racy of an OutbreakFlow architecture for more rare situations can by improved by increasing

the expressiveness of the filtering, summary, and inference networks (e.g., more layers and

more units, along with more training iterations). The choice of optimal neural network archi-

tectures and training algorithms is a topic of ongoing research in the deep learning community

and an important target for future work on simulation-based inference.

In summary, our OutbreakFlow architecture provides a general inference framework for

complex epidemiological scenarios and enables efficient simulation-based inference for key

epidemiological parameters. We therefore believe that our proposed architecture can facilitate

uncertainty-aware inference with complex and realistic epidemiological models, especially

during the early phase of epidemic outbreaks when information is scarce and data reliability

low. Rapid trustworthy inference can timely reveal crucial dynamic aspects of a spreading dis-

ease and inform effective public health interventions.
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17. Radev ST, Mertens UK, Voss A, Ardizzone L, Köthe U. BayesFlow: Learning complex stochastic mod-
els with invertible neural networks. IEEE Transactions on Neural Networks and Learning Systems.
2020;. https://doi.org/10.1109/TNNLS.2020.3042395 PMID: 33338021

18. Khailaie S, Mitra T, Bandyopadhyay A, Schips M, Mascheroni P, Vanella P, et al. Estimate of the devel-
opment of the epidemic reproduction number Rt from Coronavirus SARS-CoV-2 case data and implica-
tions for political measures based on prognostics. medRxiv. 2020;.

19. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015. p. 1–9.

20. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural com-
putation. 2000; 12(10):2451–2471. https://doi.org/10.1162/089976600300015015 PMID: 11032042
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