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Abstract

High-grade glioma (HGG) is a lethal cancer, which is characterized by very poor prognosis. To 

help optimize treatment strategy, accurate preoperative prediction of HGG patient's outcome (i.e., 

survival time) is of great clinical value. However, there are huge individual variability of HGG, 

which produces a large variation in survival time, thus making prognostic prediction more 

challenging. Previous brain imaging-based outcome prediction studies relied only on the imaging 

intensity inside or slightly around the tumor, while ignoring any information that is located far 

away from the lesion (i.e., the “normal appearing” brain tissue). Notably, in addition to altering 

MR image intensity, we hypothesize that the HGG growth and its mass effect also change both 

structural (can be modeled by diffusion tensor imaging (DTI)) and functional brain connectivities 

(estimated by functional magnetic resonance imaging (rs-fMRI)). Therefore, integrating 

connectomics information in outcome prediction could improve prediction accuracy. To this end, 

we unprecedentedly devise a machine learning-based HGG prediction framework that can 

effectively extract valuable features from complex human brain connectome using network 

analysis tools, followed by a novel multi-stage feature selection strategy to single out good 

features while reducing feature redundancy. Ultimately, we use support vector machine (SVM) to 

classify HGG outcome as either bad (survival time ≤ 650 days) or good (survival time >650 days). 

Our method achieved 75 % prediction accuracy. We also found that functional and structural 

networks provide complementary information for the outcome prediction, thus leading to 

increased prediction accuracy compared with the baseline method, which only uses the basic 

clinical information (63.2 %).

1 Introduction

Gliomas account for around 45 % of primary brain tumors. The prognosis of gliomas 

depends on multiple factors, such as age, histopathology, tumor size and location, extent of 

resection, and type of treatment. Most deadly gliomas are classified by World Health 

Organization (WHO) as Grade III (anaplastic astrocytoma, and anaplastic 

oligodendroglioma) and Grade IV (glioblastoma multiforme), according to the 

histopathological subtypes. These are referred to as high-grade gliomas (HGG) with fast 
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growing rate and diffusive infiltration. More importantly, HGG are characterized by a very 

poor prognosis but the outcome (i.e., the overall survival time) differs significantly from case 

to case. This can be explained by a large variation in tumor characteristics (e.g., location, 

and cancer cell type). Yet still challenging, pre-operative prediction of HGG outcome is of 

great importance and is highly desired by clinicians.

Multimodal presurgical brain imaging has been gaining more solid ground in surgical 

planning. In turn, this produces abundant multimodal neuroimaging information for potential 

HGG outcome prediction. For instance, in [1], multiple features, reflecting intensity 

distributions of various magnetic resonance imaging (MRI) sequences, were extracted to 

predict patient survival time and molecular subtype of glioblastoma. In [2], morphologic 

features and hemodynamic parameters, along with clinical and genomic biomarkers, were 

used to predict the outcome of glioblastoma patients. In [3], data mining techniques based 

on image attributes from MRI produced better HGG outcome prediction performance, than 

that solely using histopathologic information. Although promising, all these studies shared a 

first key limitation: they overlooked the relationship between brain connectivity and the 

outcome. In other words, they mainly relied on extracting information from the tumor region 

(i.e., tumor and necrotic tissue) or around it (e.g., edema region). This excludes the majority 

of the “normal appearing” brain tissue — which most likely has been also affected by the 

tumor. Based on all these information, our hypothesis is rooted in the fact that HGG highly 

diffuses along white matter fiber tracts, thus altering the brain structural connectivity. 

Consecutively, altered structural connectivity will lead to functional connectivity. Moreover, 

the mass effect, edema and abnormal neovascularization may further change brain functional 

and structural connectivities. Therefore, connectomics data may present useful and 

complementary information to intensity-based survival time prediction. A second key 

limitation of previous studies is that none of them compared the prediction performance 

when using conventional clinical data versus when using advanced connectomics data from 

multimodalities. We aimed to address both of the limitations.

Conventional neuroimaging computing methods, such as graph-theory-based complex 

network analysis, have demonstrated promising value in disease classification and biomarker 

detection [4]. However, to our best knowledge, no previous study has utilized brain 

connectome to predict the treatment outcome for HGG patients. In this work, we 

hypothesize that gliomas have ‘diffusive effects’ to both structural and functional 

connectivities, involving both white matter and grey matter, which could alter the inherent 

brain connectome and lead to abnormalities in network attributes. Hence, we devise an HGG 

outcome prediction framework, by integrating, extracting and selecting the best set of 

advanced brain connectome features.

Specifically, we retrospectively divided the recruited HGG patients into short and long 
survival time groups based on the follow-up of a large number of glioma patients. Our 

method comprises the following key steps. First, we construct both functional and structural 

brain networks. Second, we extract structural and functional connectomics features using 

diverse network metrics. Third, we propose a novel framework to effectively reduce the 

dimension of connectomics features by step-wisely selecting the most discriminative 
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features in a gradual, three-stage strategy. Finally, we use support vector machine (SVM) to 

predict the outcome.

2 Method

Figure 1 illustrates the proposed pipeline to automatically predict the survival time for HGG 

patients in three steps. In Sect. 2.1, we introduce the construction of brain networks based on 

the resting-state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). In Sect. 2.2, 

we describe how to calculate network properties based on graph theory using a binary graph 

and a weighted graph. As we add up clinical information, such as tumor location, size and 

histopathological types, we generate a long stacked feature vector. In Sect. 2.3, we propose a 

three-stage feature selection algorithm to remove redundant features. Finally, we apply an 

SVM on the selected features to predict the treatment outcome.

2.1 Brain Network Construction

Subjects—A total of 147 HGG patients were originally included in this study. We 

excluded patients lacking either rs-fMRI or DTI data. Patients with inadequate follow-up 

time, or died due to other reasons (e.g., road accident) were also excluded. Those with 

significant image artifacts and excessive head motion, as suggested by the following data 

processing, were also removed. All the images were checked by three experts to quantify the 

deformation of brain caused by tumor. Those with huge deformation, for which all three 

experts reached an agreement, were removed too. Finally, 34 patients who died within 650 

days after surgery were labeled as “bad” outcome group, and the remaining 34 patients who 

survived more than 650 days after the surgery were classified into the “good” outcome 

group. The reason of using 650 days as a threshold is that the two-year survival rate for 

malignant glioma patients was reported to be 51.7 % [5]. We slightly adjusted the threshold 

to balance the sample size in the two groups.

Imaging—In addition to the conventional clinical imaging protocols, research-dedicated 

whole-brain rs-fMRI and DTI data were also collected preoperatively. The rs-fMRI has TR 

(repetition time) = 2 s, number of acquisitions = 240 (8 min), and a voxel size = 3.4 × 3.4 × 

4 mm3. The DTI has 20 directions, voxel size = 2× 2× 2 mm3, and multiple acquisition = 2.

Clinical Treatment and Follow-up—All patients were treated according to clinical 

guideline for HGGs, including a total or sub-total resection of tumor entity during 

craniotomy and radio- and chemo-therapy after surgery. They were followed up in a 

scheduled time, e.g., 3, 6, 12, 24, 36, 48 months after discharging. Any vital event, such as 

death, was reported to us to let us calculate the overall survival time.

Image Processing—SPM8 and DPARSF [6] were used to preprocess rs-fMRI data and 

build functional brain networks. FSL and PANDA [7] were used to process the DTI data and 

build structural brain networks. Multimodal images were first co-registered within subject 

and then registered to the standard space. All these processes are following the commonly 

accepted pipeline and thus not detailed here.
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Network Construction—For each subject, two types of brain networks were constructed 

(see descriptions below). For each network, we calculated graph theory-based properties 

from both binary and weighted graphs.

• Structural Brain Network. We parcellated each brain into 116 regions using 

Automated Anatomical Labeling (AAL) atlas, by warping the AAL template to 

each individual brain. The parcellated ROIs in each subject were used as graph 

nodes. The weighted network  can be constructed by calculating the structural 

connectivity strength  for the edge connecting nodes 

i and j (i,j ∈ N; i ≠ j), where N is the set of all 116 nodes in the network, l(f) 
represents the number of fibers linking each pair of the ROIs, and Si denotes the 

cortical surface area of node i. The sum Si + Sj corrects the bias caused by 

different ROI sizes. The binary structural network  can be generated by setting 

the weight of the top 15 % edges to 1 after ranking the ws descending, and the 

others to 0 [8].

• Functional Brain Network. Using the same parcellation, we extracted the mean 

BOLD time series TSi(i ∈ N) of each brain region. Then, we defined the 

functional connectivity strength wf(i,j) in the functional network by computing 

Pearson's correlations between two BOLD time series in each pair (i,j) of 116 

brain regions: wf(i,j) = Corr(TSi, TSj)(i,j ∈ N; i ≠ j), thus generating a weighted 

functional brain network . The binary functional network  can be 

generated in the same way as described above.

2.2 Feature Extraction

Graph theory-based complex network analysis is used to independently extract multiple 

features from four networks  for each subject. Since various graph metrics 

can reflect different organizational properties of the networks, we calculated four types of 

these metrics (i.e., degree, small-world properties, network efficiency properties, and nodal 

centrality) [9], which are detailed below.

• Degree. In each binary network,  and , the node i's degree, ki, counts the 

number of edges linked to it. In each of the weighted networks,  and , the 

node degree is defined by , where * refers to s or f.

• Small-world property. This type of property is originally used to describe 

small-world, and can also be separately calculated for each node, including the 

clustering coefficient Ci (which measures local interconnectivity of the node i's 

neighbors) and the shortest path length Li (which measures overall 

communication speed between node i and all other nodes). Specifically, in 

and , Ci is calculated through dividing the number of edges connecting i's 

neighbors by all possible edges linking i's neighbors (i.e., ki(ki − 1)/2). On the 

other hand, in  and , Ci is calculated by a normalized sum of the mean 
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weight of two participating edges in all triangles with node i as a vertex. Li is 

defined as the averaged minimum number of edges from node i to all other nodes 

in  or , and the averaged minimum sum of weighted edges in  and 

• Network efficiency. The efficiency property of a network measures how 

efficiently information is exchanged within a network, which gives a precise 

quantitative analysis of the networks' information flow. The global efficiency, 

Eglobal(i), is defined as the sum of the inverse of the shortest path length between 

node i and all other nodes. The local efficiency, Elocal(i), represents the global 

efficiency of a subgraph, which consists of all node i's neighbors. The binary and 

weighted versions of shortest path length can result in binary and weighted 

efficiency metrics.

• Nodal centrality. Nodal centrality, Bi, quantifies how important of node i is in 

the network. A node with high Bi acts as a hub in the network. It is calculated as 

, where Lmn is the total number of shortest paths from 

node m to node n, and Lmn (i) is the number of these shortest paths passing 

through node i. Since Lmn (i) and Lmn have both binary and weighted versions, 

Bi is calculated for each binary and weighted network.

These network metrics, which will be used as connectomics features, were computed as part 

of features using GRETNA [8]. We also add to them 13 clinical features (age, gender, tumor 

size, WHO grade, histopathological type, main location, epilepsy or not, specific location in 

all lobes, and hemisphere of tumor tissue). Therefore, a total of 2797 (6 metrics × 4 

networks × 116regions + 13 clinical features) features for each subject were used. The 

number of features is much greater than that of samples (68 subjects). This is quite 

troublesome for machine learning-based methods because of the overfitting problem and the 

interference from noise. Thus, we design a three-stage feature selection framework, as 

specified below, to select the most relevant features for our classification (i.e., prediction) 

problem.

2.3 Three-Stage Feature Selection

To identify a small number of features that are optimal for treatment outcome prediction, we 

propose a three-stage feature selection method to gradually select the most relevant features.

• First stage. We roughly select features that significantly distinguish the two 

outcome groups (i.e., “bad” and “good”) using two sample t-tests with p<0.05.

• Second stage. RELIEFF [10] is used to rank the remaining features X and 

compute their weights. RELEFF is an algorithm, which estimates feature quality 

in classification. Many heuristic measures of feature quality usually suppose the 

independence of features, while actually they may be dependent. RELIEFF can 

correctly estimate the quality of each feature in classification problem with 

strong dependency assumption among features. The main idea of RELIEFF is to 

estimate how well each feature distinguishes itself from its neighbors that belong 

to other classes. Given a randomly selected feature R from the feature set A, 
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RELIEFF searches for its k-nearest neighbors first. Basically, it defines a cohort 

of neighbors as belonging to the same class of R (called nearest hit H), and also 

other neighbors as part of a different class (called nearest miss M). Then, it 

computes and updates the quality estimation W(A) for all features based on the 

distance from R to H and also distance from R to M. Therefore, the features can 

be descendingly ranked in X based on W(A).

• Third stage. A sequential backward selection [11] strategy was applied to 

carefully select a small group of significant features from X. Then, an inner 

SVM was wrapped into the feature selection framework to evaluate the 

predictive accuracy for candidate subset of features using a leave-one-out cross 

validation. The sequential backward selection is a feature selection strategy that 

sequentially removes one feature from back to front from X. The classification 

accuracy is recorded for the remaining subset of X. When no feature is left, the 

selection process stops and a subset of X with the highest classification accuracy 

is selected.

Next, the selected features are fed into an outer SVM with a leave-one-out cross validation 

to build the prediction model. To test which features are more useful for outcome prediction, 

we conducted five experiments, where different features were combined in different ways 

for classification (see Sect. 3).

3 Results

The outcome prediction accuracy of our proposed prediction framework is displayed in 

Table 1. Using only clinical features, the prediction accuracy only reaches 63.2 %. Notably, 

when using only the features from functional networks, the accuracy increases to 72 %. As 

we combine structural network features with functional ones, the classification rate reaches 

its apex (75 %, better than when only using clinical features). However, no improvement was 

noted when clinical features were further added, which means that the information contained 

in clinical features is somehow represented already in the brain functional and structural 

networks using graph theory. In order to test the results that we learned were random or not, 

we also did 30 times permutation test. The p-value of permutation test was 0.015 and the 

mean accuracy of 30 times permutation test was 49.1 %, which means that our results can 

reflect the intrinsic properties of the data to some degree. The most significant features 

shown in Table 2 (also drawn in Fig. 2) are those that were selected by our three-stage 

feature selection strategy more than 60 times out of 68 trials.

As reported in many previous studies, the most useful regions for HGG outcome prediction 

are highly correlated with movement, cognition, emotion, language and memory functions. 

The deteriorated structural and functional connections to these regions could influence the 

survival time. The most frequently selected ROIs from functional network are those in the 

cerebellum, which have dense functional connectivity to the neocortex and are closely 

associated with motor and cognitive functions. However, the most frequently selected ROIs 

from structural network are mostly located in the cortex and less overlapped with each other, 

which may indicate that the structural network is easily affected by brain tumors.
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4 Conclusion and Future Works

In this paper, we have showed that complex brain network analysis, which is based on graph 

theory, is a powerful tool for treatment outcome prediction for high-glioma patients. Our 

findings highlighted the relevance of integrating functional and structural brain 

connectomics for HGG outcome prediction. Although the relationship between structural 

and functional brain networks is still poorly understood, our prediction framework 

remarkably benefitted from the use of brain connectomics for prognosis evaluation. In future 

works, we will incorporate the global graph properties (e.g., the averaged clustering 

coefficient, or network efficiency across all brain regions) as new features. In such case, 

individual heterogeneity of tumor characteristics can be better addressed. Also, more 

advanced graph metrics, e.g., assortativity, modularity, and rich-club value, can be taken into 

account for a more comprehensive network measurement. Moreover, intraoperatively 

derived features, e.g., extension of tumor resection, can also be integrated as important 

prognostic predictors.
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Fig. 1. 
Proposed pipeline of treatment outcome prediction for high-grade glioma patients. (K: 

degree; L: shortest path length; C: clustering coefficient; B: betweenness centrality; Eg: 

global efficiency; El: local efficiency; OS: overall survival. For details, please see Sect. 2.2).
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Fig. 2. 
Discriminative ROIs with high predictive power in functional and structural brain networks, 

respectively.
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Table 1

Prediction accuracy of using different sets of features.

Features Accuracy (%) Sensitivity (%) Specificity (%)

Clinical infomation 63.2 61.8 64.7

Structural network 69.1 64.7 73.5

Functional network 72.1 70.6 73.5

Functional + Structural networks 75 82.4 67.6

Functional + Structural + Clinical 75 82.4 67.6
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Table 2

The most useful features for outcome prediction.

Network Metrics Predictive ROIs from fMRI Predictive ROIs from DTI

Clustering coefficient PAL Ra CUN R

Shortest path length PAL R IFGoper R

Global efficiency CER9 R MFG R, IFGoper R

Degree CER9 R, PAL R

Betweenness ACG R, PoCG R

a
For the full names of the brain regions, please see [4]. R: right side; L: left side.
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